説明

波長可変干渉フィルター、光モジュール、及び光分析装置

【課題】簡素な構成で反射膜同士の貼り付きを防止できる波長可変干渉フィルター、光モジュール、及び光分析装置を提供すること。
【解決手段】エタロン5は、第1基板51と、第1基板51に対向する第2基板52と、第1基板51の第2基板52に対向する面に設けられた固定ミラー54と、第2基板52に設けられ、固定ミラー54とミラー間ギャップG1を介して対向する可動ミラー55と、第1基板51の第2基板52に対向する面に設けられた第1電極561と、を備え、第1電極561の一部と、固定ミラー54の外周縁の少なくとも一部とが積層されて構成される第1積層ストッパー部60を有する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、波長可変干渉フィルター、この波長可変干渉フィルターを備える光モジュール、及びこの光モジュールを備える光分析装置に関する。
【背景技術】
【0002】
従来、一対の基板の互いに対向する面に、それぞれ反射膜を所定のギャップを介して対向配置した可変干渉装置(波長可変干渉フィルター)が知られている(例えば、特許文献1参照)。
【0003】
特許文献1に記載の波長可変干渉フィルターでは、ギャップを調整するために、一対の反射膜の互いに対向する面に、電極が対向配置されており、各電極に駆動電圧を印加することで、静電引力によりギャップを調整することが可能となる。これにより、波長可変干渉フィルターは、当該ギャップに応じた特定波長の光のみを透過させることが可能となる。すなわち、波長可変干渉フィルターは、入射光を一対の反射膜間で光を多重干渉させ、多重干渉により互いに強め合った特定波長の光のみを透過させる。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】特開平1−94312号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
ところで、このような波長可変干渉フィルターの製造工程で基板同士を接合する工程において、反射膜同士が貼り付くおそれがある。また、ギャップを調整する際に、反射膜同士が貼り付いたり、外力が加わった際の衝撃等により反射膜同士が貼り付いたりするおそれがある。このような反射膜同士の貼り付きが生じると、反射膜の表面が損傷するため、反射膜の光学特性(透過率や反射率)が低下する。
そこで、反射膜同士の貼り付きを防止するために、反射膜の近傍に突起部を設けることが考えられる。
しかしながら、このような突起部を設ける場合、波長可変干渉フィルターの製造工程において、別途、突起部を設ける工程が必要となるとともに、構成が複雑化するという課題がある。
【0006】
本発明の目的は、簡素な構成で反射膜同士の貼り付きを防止できる波長可変干渉フィルター、光モジュール、及び光分析装置を提供することにある。
【課題を解決するための手段】
【0007】
本発明の波長可変干渉フィルターは、第1基板と、前記第1基板と互いに対向する第2基板と、前記第1基板の前記第2基板に対向する面に設けられた第1反射膜と、前記第2基板に設けられ、前記第1反射膜と所定のギャップを介して対向する第2反射膜と、前記第1基板の前記第2基板に対向する面に設けられた第1電極と、を備え、前記第1電極の一部と、前記第1反射膜の外周縁の少なくとも一部とが積層されて構成される第1積層ストッパー部を有することを特徴とする。
【0008】
本発明によれば、第1電極の一部と、第1反射膜の外周縁の少なくとも一部とを積層して構成される第1積層ストッパー部を有する。これにより、反射膜間のギャップの寸法よりも第1積層ストッパー部と第2反射膜との間の寸法の方が小さくなる。このため、反射膜間のギャップ寸法が小さくなった場合に、第1積層ストッパー部と第2反射膜とが接触するので、反射膜同士の貼り付きを防止できる。
また、本発明によれば、第1積層ストッパー部は、第1電極及び第1反射膜を積層して形成されるため、上述した突起部を反射膜に別途設ける必要がなく、第1反射膜及び第1電極を形成する工程を実施することで設けることができるため、製造工程を簡略化でき、簡素な構成にできる。
【0009】
本発明の波長可変干渉フィルターでは、前記第2基板の前記第1基板に対向する面に設けられた第2電極を備え、前記第2電極の一部と、前記第2反射膜の外周縁の少なくとも一部とが積層されて構成される第2積層ストッパー部を有することが好ましい。
【0010】
本発明によれば、第2基板に第2積層ストッパー部が形成される。このような構成では、第2基板側にも反射膜同士の接触を防止する第2積層ストッパーが設けられているので、より確実に反射膜同士の接触を防止することができる。
ここで、第1基板及び第2基板を基板厚み方向から見た平面視において、第2積層ストッパー部は、第1積層ストッパー部に重なる位置に形成されている場合、第1積層ストッパー部と第2積層ストッパー部とが当接することで、第1及び第2反射膜の接触を防止できる。この場合、第1積層ストッパー部の厚み寸法と第2積層ストッパー部の厚み寸法との合計分だけ、第1基板と第2基板との間に隙間が生じる。したがって、例えば第1積層ストッパー部のみにより、反射膜同士の接触を防止した場合よりも、反射膜間のギャップ寸法を大きくでき、反射膜同士の接触、貼り付きをより確実に防止できる。
一方、前記平面視において、第1積層ストッパー部と第2積層ストッパー部とが全く重ならない位置に設けられる構成としてもよい。この場合、第1積層ストッパー部のみにより反射膜同士の接触、貼り付きを防止する場合に比べて、第2積層ストッパー部が設けられる分、反射膜同士の接触、貼り付きを防止するストッパー部の面積が増大し、より強い応力に対しても抗することができる。
【0011】
本発明の波長可変干渉フィルターでは、前記第2基板には、前記第1電極と対向する第2電極が設けられ、前記第1電極及び前記第2電極は、電圧が印加されることで、前記ギャップの寸法を変更させる駆動電極であることが好ましい。
【0012】
本発明によれば、第1電極及び第2電極は、駆動電極であるため、ギャップの寸法を変更させるギャップ変更部を兼ねることができる。すなわち、波長可変干渉フィルターの製造工程において、上述した突起部を別途設ける工程を不要にでき、第1反射膜を形成する工程と、駆動電極を形成する工程により、容易に第1積層ストッパー部を形成することができ、製造工程を簡素にでき、構造を簡素化できる。
【0013】
本発明の波長可変干渉フィルターでは、前記第2基板には、前記第1電極と対向する第2電極が設けられ、前記第1電極及び前記第2電極は、前記第1電極及び前記第2電極の間で保持される静電容量を測定する静電容量測定用電極であることが好ましい。
【0014】
本発明によれば、第1電極及び第2電極は、静電容量測定用の電極として機能する。このような静電容量測定量の電極が設けられた波長可変干渉フィルターでは、第1電極及び第2電極に保持された電荷量を測定することで、第1反射膜及び第2反射膜間のギャップを算出することができる。したがって、波長可変干渉フィルターにより取り出される光の波長を正確に求めることができ、この静電容量に基づいて、第1反射膜及び第2反射膜間のギャップを設定することで、反射膜間ギャップを所望のギャップに正確に設定することができる。
そして、波長可変干渉フィルターの製造工程において、第1反射膜を形成する工程と、静電容量測定用電極を形成する工程により、容易に第1積層ストッパー部を形成することができる。
【0015】
本発明の波長可変干渉フィルターでは、前記第1電極は、前記第1反射膜の帯電を除去する帯電除去用電極であることが好ましい。
【0016】
本発明によれば、第1電極は、第1反射膜の帯電を除去する帯電除去用電極として機能する。また、反射膜間のギャップの寸法が小さくなって、第1積層ストッパー部と第2反射膜とが接触した際、第2反射膜に保持された電荷も第1積層ストッパー部の帯電除去用電極から逃がすことができる。従って、第1反射膜及び第2反射膜のそれぞれに保持された電荷により、静電引力が発生したりすることがなく、反射膜間のギャップを所望のギャップ寸法に正確に設定できる。
【0017】
本発明の波長可変干渉フィルターでは、前記第1積層ストッパー部は、前記第1基板側から前記第1反射膜、及び前記第1電極の順に積層されたことが好ましい。
【0018】
一般に、基板に成膜された反射膜は、外周端部が比較的剥がれ易く、劣化し易いという問題がある。しかし、本発明によれば、第1積層ストッパー部は第1反射膜上に第1電極が積層される構成であるため、第1反射膜の端部を第1電極が確実に保護し、第1反射膜の劣化を防止できる。
【0019】
本発明の波長可変干渉フィルターでは、前記第1積層ストッパー部は、前記第1基板側から前記第1電極、及び前記第1反射膜の順に積層されたことが好ましい。
【0020】
本発明によれば、第1積層ストッパー部は、第1基板側から第1電極、及び第1反射膜の順に積層される。これによれば、第1電極を第1基板に成膜した後に、第1反射膜を成膜するため、第1反射膜の形成工程をより後工程にでき、製造工程中に第1反射膜が損傷を受けることをより防止できる。
また、第1反射膜が、例えば、SiO2、TiO2等の絶縁層を積層した誘電体多層膜であり、第2基板に、第1電極と対向する第2電極が設けられている場合、第1電極のうち、第2電極に対向する領域全体を第1反射膜で覆って第1積層ストッパー部を構成することで、第1反射膜を絶縁層として用いることができる。この場合、第1積層ストッパー部により、反射膜同士の接触、貼り付きを防止できるとともに、第1電極及び第2電極間の放電やリーク等の不都合をも防止することができる。
【0021】
本発明の波長可変干渉フィルターでは、前記第1電極は、非透光性の材質で形成され、前記第1積層ストッパー部は、前記第1基板及び第2基板の基板厚み方向に見る平面視において、前記第1反射膜及び第2反射膜を透過する入射光の光透過領域を規定するリング状に設けられたことが好ましい。
ここで、本発明で述べる非透光性の材料とは、波長可変干渉フィルターにおいて測定対象となる波長域の光を透過しない材質を指す。したがって、測定対象となる波長域が可視光である場合、第1電極として、赤外光を透過可能で、Siのような可視光域を透過しない金属材料を用いてもよい。
【0022】
本発明によれば、非透光性の材質の第1電極と、第1反射膜とを積層してリング状の第1積層ストッパー部が形成されるので、非透光性の第1積層ストッパー部の内側に露出した第1反射膜の領域が入射光の光透過領域となり、第1積層ストッパー部をアパーチャとして用いることができる。このような波長可変干渉フィルターを用い、波長干渉フィルターにより取り出された光の光量を測定することで、正確な光量測定を実施することができる。
【0023】
本発明の波長可変干渉フィルターでは、前記第2基板の前記第1基板に対向する面には、前記第2電極が設けられ、前記第2電極の一部は、前記第2反射膜の外周縁に積層されて、リング状の第2積層ストッパー部を構成し、前記第1基板及び前記第2基板を前記第1基板及び前記第2基板の基板厚み方向から見た平面視において、前記第1積層ストッパー部の内径寸法は、前記第2積層ストッパー部の内径寸法よりも小さいことが好ましい。
【0024】
本発明によれば、第1積層ストッパー部の内径寸法は、第2積層ストッパー部の内径寸法よりも小さく形成される。すなわち、第1積層ストッパー部の内径寸法により光透過領域が規定される。
一般に、同一内径寸法を有する2つのアパーチャーを、内径部分が完全に一致するようにアライメントすることは困難であり、アライメントのずれが生じると、光の透過量も変化してしまう。これに対して、上記のように、第1積層ストッパー部の内径寸法が第2積層ストッパー部の内径寸法よりも小さく形成しておけば、第1積層ストッパー部の内径と第2積層ストッパー部の内径とを完全に一致させる場合に比べ、第1積層ストッパー部の内径部分が第2積層ストッパー部の内周側に位置するように設置することは容易となる。また、内径寸法が小さい第1積層ストッパー部により、光透過領域が規定されるので、光透過領域を容易に精度良く規定できる。これにより、光透過領域を透過した光の透過光量を所望の値に容易に設定できる。
【0025】
本発明の光モジュールは、上述の波長可変干渉フィルターと、前記波長可変干渉フィルターを透過した検査対象光を受光する受光部とを備えることを特徴とする。
【0026】
本発明によれば、上述したように、波長可変干渉フィルターにおいて、簡素な構成で反射膜同士の貼り付きを防止でき、反射膜の光学性能の低下を防止して分解能を高精度に維持することができる。このため、このような波長可変干渉フィルターを備えた光モジュールにおいても、受光部により精度の高い光量測定を実施することができる。
【0027】
本発明の光分析装置は、上述の光モジュールと、前記光モジュールの前記受光部により受光された光に基づいて、前記検査対象光の光特性を分析する分析処理部とを備えることを特徴とする。
【0028】
本発明によれば、上述した波長可変干渉フィルターを有する光モジュールを備えるので、精度の高い測定を実施でき、この測定結果に基づいて光分析処理を実施することで、正確な分光特性を実施することができる。
【図面の簡単な説明】
【0029】
【図1】本発明に係る第1実施形態の測色装置の概略構成を示すブロック図。
【図2】前記第1実施形態のエタロンの第1基板の平面図。
【図3】前記第1実施形態のエタロンの第2基板の平面図。
【図4】前記第1実施形態のエタロンの概略構成を示す断面図。
【図5】前記第1実施形態の第1変形例のエタロンの要部を示す部分断面図。
【図6】前記第1実施形態の第2変形例のエタロンの要部を示す部分断面図。
【図7】前記第1実施形態の第2変形例のエタロンの要部を示す部分断面図。
【図8】前記第1実施形態の第3変形例のエタロンの要部を示す部分断面図。
【図9】前記第1実施形態の第4変形例のエタロンの要部を示す部分断面図。
【図10】前記第1実施形態の第5変形例のエタロンの要部を示す部分断面図。
【図11】本発明に係る第2実施形態のエタロンの第1基板の平面図。
【図12】前記第2実施形態のエタロンの第2基板の平面図。
【図13】前記第2実施形態のエタロンの要部を示す部分断面図。
【図14】本発明に係る第3実施形態のエタロンの要部を示す部分断面図。
【図15】本発明に係る第4実施形態のエタロンの第1基板の平面図。
【図16】前記第4実施形態のエタロンの第2基板の平面図。
【発明を実施するための形態】
【0030】
[第1実施形態]
以下、本発明に係る第1実施形態を図面に基づいて説明する。
〔1.測色装置の概略構成〕
図1は、本実施形態の測色装置1(光分析装置)の概略構成を示すブロック図である。
測色装置1は、図1に示すように、検査対象Aに光を射出する光源装置2と、測色センサー3(光モジュール)と、測色装置1の全体動作を制御する制御装置4とを備える。そして、この測色装置1は、光源装置2から射出される光を検査対象Aにて反射させ、反射された検査対象光を測色センサー3にて受光し、測色センサー3から出力される検出信号に基づいて、検査対象光の色度、すなわち検査対象Aの色を分析して測定する装置である。
【0031】
〔2.光源装置の構成〕
光源装置2は、光源21、複数のレンズ22(図1には1つのみ記載)を備え、検査対象Aに対して白色光を射出する。また、複数のレンズ22には、コリメーターレンズが含まれてもよく、この場合、光源装置2は、光源21から射出された白色光をコリメーターレンズにより平行光とし、図示しない投射レンズから検査対象Aに向かって射出する。なお、本実施形態では、光源装置2を備える測色装置1を例示するが、例えば検査対象Aが液晶パネルなどの発光部材である場合、光源装置2が設けられない構成としてもよい。
【0032】
〔3.測色センサーの構成〕
測色センサー3は、図1に示すように、エタロン5(波長可変干渉フィルター)と、エタロン5を透過する光を受光する受光素子31(受光部)と、エタロン5で透過させる光の波長を可変する電圧制御部6とを備える。また、測色センサー3は、エタロン5に対向する位置に、検査対象Aで反射された反射光(検査対象光)を、内部に導光する図示しない入射光学レンズを備えている。そして、この測色センサー3は、エタロン5により、入射光学レンズから入射した検査対象光のうち、所定波長の光を分光し、分光した光を受光素子31にて受光する。
受光素子31は、複数の光電交換素子により構成されており、受光量に応じた電気信号を生成する。そして、受光素子31は、制御装置4に接続されており、生成した電気信号を受光信号として制御装置4に出力する。
【0033】
(3−1.エタロンの構成)
図2は、エタロン5の第1基板51の平面図であり、図3は、エタロン5の第2基板52の平面図である。図4は、図2及び図3の矢視IV-IV線で示す位置でのエタロン5の断面図である。なお、図1では、エタロン5に検査対象光が図中下側から入射しているが、図4では、検査対象光が図中上側から入射するものとする。
第1基板51及び第2基板52は、図2及び図3に示すように、平面視正方形状の板状の光学部材であり、一辺が例えば10mmに形成されている。このエタロン5は、図4に示すように、第1基板51及び第2基板52を備え、これらの基板51,52が、プラズマ重合膜を用いたシロキサン接合などにより接合層53を介して互いに接合されて一体的に構成される。これらの2枚の基板51,52は、それぞれ例えば、ソーダガラス、結晶性ガラス、石英ガラス、鉛ガラス、カリウムガラス、ホウケイ酸ガラス、無アルカリガラスなどの各種ガラスや、水晶などにより形成されている。
【0034】
また、第1基板51と第2基板52との間には、図2から図4に示すように、径寸法R1を有する固定ミラー54(第1反射膜)、及び径寸法R2を有する可動ミラー55(第2反射膜)が設けられる。ここで、固定ミラー54は、第2基板52の第1基板51に対向する面に形成され、可動ミラー55は、第1基板51の第2基板52に対向する面に形成される。また、これらの固定ミラー54及び可動ミラー55は、ミラー間ギャップG1を介して対向配置されている。
さらに、第1基板51と第2基板52との間には、各ミラー54,55の間のミラー間ギャップG1の寸法を調整するための静電アクチュエーター56が設けられている。この静電アクチュエーター56は、各ミラー54,55の外周縁を覆うようにそれぞれ形成され、基板厚み方向に見る平面視(以下、エタロン平面視)において、リング状に形成されている。なお、静電アクチュエーター56の構成の詳細については、後述する。
【0035】
(3−1−1.第1基板の構成)
第1基板51は、厚みが例えば500μmのガラス基材をエッチングにより加工することで形成される。この第1基板51には、図2及び図4に示すように、エッチングにより電極形成溝511及びミラー固定部512が形成される。
【0036】
電極形成溝511には、図2及び図4に示すように、ミラー固定部512の外周縁から、電極形成溝511の内周壁面までの間に、エタロン平面視でリング状の電極固定面511Aが形成される。
ミラー固定部512は、図2及び図4に示すように、電極形成溝511と同軸上で、電極形成溝511よりも小さい径寸法となる略円柱状に形成され、第2基板52に対向する側の面にミラー固定面512Aを備える。
そして、ミラー固定面512Aには、分光可能な波長域として可視光全域をカバーできる円形状のAgC合金単層により形成された固定ミラー54が固定されている。なお、本実施形態では、固定ミラー54として、AgC合金単層のミラーを用いる例を示すが、TiO−SiO系の誘電体多層膜や、AgC合金以外のAg合金や、Ag合金及び誘電体膜の積層膜のミラーを用いる構成としてもよい。
【0037】
第1基板51には、電極固定面511Aからミラー固定面512Aの外周縁に向けて延出し、かつ、ミラー固定面512A上に形成された固定ミラー54の外周縁を覆う第1電極561が形成される。
第1電極561は、エタロン平面視でリング状に形成される。そして、第1基板51側から順に固定ミラー54の外周縁、及び第1電極561の内周縁が積層され、エタロン平面視でリング状に形成される第1積層ストッパー部60(図2に示す斜線部分)が構成される。すなわち、第1積層ストッパー部60は、固定ミラー54の中心点C1(図2参照)を中心とした仮想円の周方向に沿って形成される。
【0038】
第1積層ストッパー部60は、固定ミラー54の外周縁に設けられるため、固定ミラー54のうち、光透過領域Ar1(図2参照)が露出する。そして、この第1積層ストッパー部60と、可動ミラー55との間のギャップG2は、ミラー間ギャップG1よりも小さくなる。このため、静電アクチュエーター56によりミラー間ギャップギャップG1が小さくなった際に、可動ミラー55が第1積層ストッパー部60に当接し、各ミラー54,55が近接した場合でも、ミラー54,55同士が貼り付くことが防止される。
【0039】
また、第1電極561の上面には、図4に示すように、第1電極561及び第2基板52の後述する第2電極562の間の放電等によるリークを防止するために絶縁膜563が形成される。すなわち、絶縁膜563は、第1積層ストッパー部60も覆っている。
この絶縁膜563としては、SiOやTEOS(TetraEthoxySilane)などを用いることができ、特に第1基板51を形成するガラス基板と同一光学特性を有するSiOが好ましい。なお、絶縁膜563として、SiOを用いる場合には、第1基板51及び絶縁膜の間での光の反射等がないため、第1基板51上に第1電極561を形成した後、第1基板51の第2基板52に対向する側の面の全面に絶縁膜を形成することが可能となる。
なお、第1電極561は、導電性及び非透光性を有し、第2基板52の後述する第2電極562との間で電圧を印加することで、第1電極561及び第2電極562間に静電引力を発生させることが可能なものであれば、特に限定されないが、本実施形態では、Au/Crの金属積層体を用いている。
また、後述する第2電極562上にも第1電極561と同様に、絶縁膜を形成してもよい。
【0040】
第1電極561の外周縁の一部からは、図2に示す平面視において、第1基板51の対角線に沿うように、右上方向に向かって、1本の第1電極線561Lが延出して形成される。
第1電極線561Lの先端には、第1電極パッド561Pが形成され、第1電極パッド561Pが電圧制御部6(図1参照)に接続される。そして、静電アクチュエーター56を駆動時には、電圧制御部6(図1参照)により、第1電極パッド561Pに電圧が印加される。
【0041】
ここで、第1基板51において、電極形成溝511及びミラー固定部512が形成されていない部分が第1基板51の接合面513となる。この接合面513には、図4に示すように、接合用の接合層53が形成されている。この接合層53には、主材料としてポリオルガノシロキサンが用いられたプラズマ重合膜などを用いることができる。
【0042】
(3−1−2.第2基板の構成)
第2基板52は、厚みが例えば200μmのガラス基材をエッチングにより加工することで形成される。この第2基板52には、図3に示すエタロン平面視で基板中心点を中心とした円形の変位部521が形成される。この変位部521は、図3及び図4に示すように、第1基板51に向けて進退可能に移動する円柱状の可動部522と同軸であり、エタロン平面視で円環状に形成されて可動部522を第2基板52の厚み方向に移動可能に保持する連結保持部523を備える。
【0043】
変位部521は、第2基板52の形成素材である平板状のガラス基材をエッチングにより溝を形成することで形成される。すなわち、変位部521は、第2基板52の第1基板51に対向しない入射側面に、連結保持部523を形成するための円環状の円環溝部523Aをエッチング形成することで形成されている。
【0044】
可動部522は、連結保持部523よりも厚み寸法が大きく形成され、例えば、本実施形態では、第2基板52の厚み寸法と同一寸法である200μmに形成されている。この可動部522の径寸法は、第1基板51のミラー固定部512の径寸法よりも大きく形成されている。
可動部522の第1基板51に対向する面には、第1基板51のミラー固定面512Aに平行な可動面522Aを備え、この可動面522Aには、固定ミラー54と対向する可動ミラー55と、第1電極561に対向する第2電極562とが形成されている。ここで、第2電極562と前述の第1電極561とにより、静電アクチュエーター56が構成される。
【0045】
可動ミラー55は、固定ミラー54と同一材質で形成され、固定ミラー54の径寸法R1よりも大きい径寸法R2で形成されている。そして、可動ミラー55は、エタロン平面視で、固定ミラー54に重なるように設けられている。
第2電極562は、第1電極561と同一材質で形成され、かつ、エタロン平面視でリング状に形成されて、内周縁が可動ミラー55の外周縁を覆うように形成される。そして、第2基板52側から順に可動ミラー55の外周縁及び第2電極562の内周縁が積層され、エタロン平面視でリング状に形成される第2積層ストッパー部70(図3に示す斜線部分)が構成される。すなわち、第2積層ストッパー部70は、可動ミラー55の中心点C2(図3参照)を中心とした仮想円の周方向に沿って形成される。
【0046】
第2積層ストッパー部70は、可動ミラー55の外周縁に設けられるため、可動ミラー55のうち、光透過領域Ar2(図3参照)を露出させている。可動ミラー55は、固定ミラー54よりも大きく形成されているため、可動ミラー55の光透過領域Ar2は、固定ミラー54の光透過領域Ar1よりも大きくなるように設定される。すなわち、第2積層ストッパー部70の内径寸法は、第1積層ストッパー部60の内径寸法よりも大きく形成されている。このため、第2基板52の上面側から入射する検査対象光のエタロン5を透過する透過光量は、第1積層ストッパー部70の内径寸法、つまり固定ミラー54の光透過領域Ar1で規定される。
なお、第2電極562は、第1電極561と同一材質のAu/Crの金属積層体を用いたが、透光性を有するITO(Indium Tin Oxide:酸化インジウムスズ)を用いてもよい。
また、第2積層ストッパー部70の内径寸法は、第1積層ストッパー部60の外形寸法R1よりも大きく形成されている。すなわち、エタロン5を基板厚み方向から見た平面視において、第1積層ストッパー部60は、第2積層ストッパー部70と重ならない位置に設けられている。
【0047】
連結保持部523は、可動部522の周囲を囲うダイヤフラムであり、厚み寸法が例えば50μmに形成されている。
【0048】
第2電極562の外周縁の一部からは、図3に示すエタロン平面視において、第2基板52の対角線に沿うように左下方向に向かって、1本の第2電極線562Lが延出して形成される。
第2電極線562Lの先端には、第2電極パッド562Pが形成され、第2電極パッド562Pが電圧制御部6(図1参照)に接続される。そして、静電アクチュエーター56を駆動時には、電圧制御部6(図1参照)により、第2電極パッド562Pに電圧が印加される。
【0049】
ここで、第2基板52の第1基板51に対向する面において、第1基板51の接合面513と対向する領域が、第2基板52における接合面524となる。この接合面524には、第1基板51の接合面513と同様に、主材料としてポリオルガノシロキサンを用いた接合層53が設けられている。
【0050】
(3−2.電圧制御部の構成)
電圧制御部6は、制御装置4からの入力される制御信号に基づいて、静電アクチュエーター56の第1電極561及び第2電極562に印加する電圧を制御する。
【0051】
〔4.制御装置の構成〕
制御装置4は、測色装置1の全体動作を制御する。この制御装置4としては、例えば汎用パーソナルコンピューターや、携帯情報端末、その他、測色専用コンピューターなどを用いることができる。
そして、制御装置4は、図1に示すように、光源制御部41、測色センサー制御部42、及び測色処理部43(分析処理部)などを備えて構成されている。
【0052】
光源制御部41は、光源装置2に接続されている。そして、光源制御部41は、例えば利用者の設定入力に基づいて、光源装置2に所定の制御信号を出力し、光源装置2から所定の明るさの白色光を射出させる。
測色センサー制御部42は、測色センサー3に接続されている。そして、測色センサー制御部42は、例えば利用者の設定入力に基づいて、測色センサー3にて受光させる光の波長を設定し、この波長の光の受光量を検出する旨の制御信号を測色センサー3に出力する。これにより、測色センサー3の電圧制御部6は、制御信号に基づいて、利用者が所望する光の波長を透過させるよう、静電アクチュエーター56への印加電圧を設定する。
測色処理部43は、測色センサー制御部42を制御して、エタロン5のミラー間ギャップを変動させて、エタロン5を透過する光の波長を変化させる。また、測色処理部43は、受光素子31から入力される受光信号に基づいて、エタロン5を透過した光の光量を取得する。そして、測色処理部43は、上記により得られた各波長の光の受光量に基づいて、検査対象Aにより反射された光の色度を算出する。
【0053】
〔5.第1実施形態の作用効果〕
上述の第1実施形態に係るエタロン5によれば、以下の効果を奏する。
(1)リング状の第1電極561及び第2電極562の内周縁と、円形状の固定ミラー54及び可動ミラー55の外周縁とを積層して積層ストッパー部60,70が構成される。これにより、ミラー間ギャップG1の寸法よりも積層ストッパー部60,70と各ミラー54,55との間のギャップG2の寸法の方が小さくなるため、ミラー間ギャップG1の寸法が小さくなった場合でも、積層ストッパー部60,70が対向するミラー54,55に接触する。従って、ミラー54,55同士が貼り付くことがなく、ミラー54,55同士の貼り付きを防止できる。
また、積層ストッパー部60,70は、電極561,562及びミラー54,55を積層して形成されるため、上述した従来の構成の突起部をミラー54,55に別途設ける必要がなく、製造工程を簡略化でき、簡素な構成にできる。すなわち、電極561、562を形成する工程と、ミラー54,55を形成する工程を実施するだけで、第1積層ストッパー部60を容易に形成することができる。
【0054】
(2)第1電極561及び第2電極562は、駆動電極であるため、ミラー間ギャップG1の寸法を変更させる静電アクチュエーター56を兼ねることができる。すなわち、エタロン5の製造工程において、上述した従来の構成の突起部を別途設ける工程を不要にでき、製造工程を簡素にでき、構造を簡素化できる。
(3)積層ストッパー部60,70は、ミラー54,55の上に電極561,562が積層された構成であるため、各ミラー54,55の端部を電極561,562が確実に保護し、ミラー54,55の劣化を防止できる。
【0055】
(4)非透光性の材質の電極561,562及びミラー54,55を積層して積層ストッパー部60,70が形成されるので、非透光性の積層ストッパー部60,70の内側に露出したミラー54,55の領域のうち、小さい方の領域が入射光の光透過領域となる。そして、本実施形態では、固定ミラー54の径寸法R1が可動ミラー55の径寸法R2よりも小さく形成されているため、固定ミラー54の露出した光透過領域Ar1が入射光の光透過領域となる。このため、製造工程上、各ミラー54,55の径寸法R1,R2を同一寸法に形成することが難しい場合でも、積層ストッパー部60,70を形成することで、光透過領域Ar1を容易に精度良く規定できる。これにより、光透過領域Ar1を透過した光の透過光量を所望の値に容易に設定できる。
【0056】
(5)第1積層ストッパー部70の外形寸法R1は、第2積層ストッパー部70の内径寸法よりも小さく形成され、エタロン5を基板厚み方向から見た平面視において、第1積層ストッパー部60と第2積層ストッパー部70とが重なり合わない。このため、エタロン5の基板厚み方向に大きい応力が加わった際、第1積層ストッパー部70のみが形成される場合、または第1積層ストッパー部60と第2積層ストッパー部70とが互いに接触する場合に比べて、接触部位の面積が大きくなり、圧力を分散されることができる。したがって、応力によりこれらの第1積層ストッパー部60及び第2積層ストッパー部70の破損を防止できる。
【0057】
[第1実施形態の第1変形例]
図5は、第1実施形態の第1変形例に係るエタロン5の要部を示す部分断面図である。
前記第1実施形態では、エタロン5の平面視において、第1積層ストッパー部60と第2積層ストッパー部70とは、互いに重ならない位置に設けられる構成としたが、この変形例として、図5に示すような構成としてもよい。つまり、平面視において、第1積層ストッパー部60の一部と第2積層ストッパー部70の一部とが重なり合う位置に設けられており、第1積層ストッパー部60と第2積層ストッパー部70とが当接することで、ミラー54,55の接触、貼り付きを防止する。
このような構成においても、第1積層ストッパー部60の内周縁は、第2積層ストッパー部70の内周縁よりも径寸法が小さく、かつ第2積層ストッパー部の内周縁の内側に設けられることで、エタロン5を透過する検査対象光の光透過領域を規定することができる。
また、本変形例では、エタロン平面視で、第1積層ストッパー部60と第2積層ストッパー部70とが重なるように形成されるため、ギャップG2は、各積層ストッパー部60,70間の寸法である。
本変形例によれば、ミラー間ギャップG1の寸法が小さくなった場合に、各積層ストッパー部60,70同士が接触する。この場合、積層ストッパー部60,70同士が接触して可動部522の移動が規制された状態で、上記第1実施形態よりもミラー54,55同士の間隔が大きくなる。したがって、より確実にミラー54,55同士の接触、貼り付きを防止できる。
なお、前記第1実施形態と同様に、本変形例でも絶縁膜が第1電極561を覆うように形成してもよく、また、第2電極562のみに覆うように形成してもよい。さらに、絶縁膜が第1電極561及び第2電極562の双方を覆うように形成してもよい。
【0058】
[第1実施形態の第2変形例]
図6は、第1実施形態の第2変形例に係るエタロン5の要部を示す部分断面図である。
前記第1実施形態での各積層ストッパー部60,70は、各基板51,52側から順にミラー54,55、及び電極561,562が積層された構成であったが、この変形例として、図6に示すように、各基板51,52側から順に電極561,562、及びミラー54,55が積層された構成にしてもよい。
このような構成のエタロン5は、製造工程において、各電極561,562を成膜した後に、各ミラー54,55を成膜することになる。このため、環境温度等の要因により、透過率や反射率等の光学特性が劣化しやすいミラー54,55の形成工程をより後工程にでき、製造工程中にミラー54,55が損傷を受けることをより確実に防止できる。
また、例えば、固定ミラー54を誘電体多層膜として形成した場合に、当該誘電体多層膜の一部または全部を、第1電極561及び第2電極562上に形成し、絶縁層として用いてもよい。このような構成であれば、絶縁層を形成するための工程をも省略でき、製造工程をより簡略化できる。
【0059】
なお、図6では、前記第1変形例と同様に、第1積層ストッパー部60と第2積層ストッパー部70とが当接することで各ミラー54,55同士の接触、貼り付きを防止する構成としたが、前記第1実施形態のように、エタロン5の平面視において、第1積層ストッパー部60と第2積層ストッパー部70とが重ならない位置に設けられる構成としてもよい。
【0060】
また、図7に示すように、上述した構成において、ミラー保護膜59を各ミラー54,55、及び各積層ストッパー部60,70を覆うように形成してもよい。このミラー保護膜59としては、ケイ素(Si)の酸化膜が用いられている。この他に、アルミニウム(Al)の酸化膜や、マグネシウム(Mg)のフッ化膜などを用いることができる。
このような構成によれば、ミラー間ギャップG1が小さくなって、第1積層ストッパー部60と第2積層ストッパー部70とが接触した場合、各ミラー54,55をミラー保護膜59が覆っているので、各ミラー54,55の損傷を確実に防止できる。また、ミラー54,55のうち、劣化や剥離が進行しやすい外周縁をミラー保護膜59で覆っているため、ミラー54,55の劣化、剥離を防止することができる。
【0061】
[第1実施形態の第3変形例]
図8は、第1実施形態の第3変形例に係るエタロン5の要部を示す部分断面図である。
前記第1実施形態では、絶縁膜563が第1電極561を覆って形成されていたが、絶縁性を有するミラー保護膜59が各ミラー54,55、及び各電極561,562を覆って形成されていてもよい。
このような構成によれば、ミラー保護膜59により、ミラー54,55の劣化を抑えることができ、かつ第1電極561及び第2電極562間の放電やリークをも防止することができる。
【0062】
[第1実施形態の第4変形例]
図9は、第1実施形態の第4変形例に係るエタロン5の要部を示す部分断面図である。
前記第1実施形態の第3変形例では、ミラー保護膜59が各ミラー54,55、及び各積層ストッパー部60,70を覆うように形成されていたが、ミラー保護膜59を各積層ストッパー部60,70において、各電極561,562と各ミラー54,55との間に形成し、各ミラー54,55を覆うように形成してもよい。
本変形例によれば、ミラー保護膜59により、ミラー54,55の劣化を抑えることができる。
【0063】
[第1実施形態の第5変形例]
図10は、第1実施形態の第5変形例に係るエタロン5の要部を示す部分断面図である。
前記第1実施形態では、第1基板51及び第2基板52の双方に積層ストッパー部60,70を形成したが、第1基板51にのみ第1積層ストッパー部60を設ける構成としてもよい。
なお、図10では、前記第1変形例と同様に各ミラー54,55の径寸法が同一寸法に形成された場合を例示したが、前記第1実施形態のように、各ミラー54,55の径寸法が異なる構成に適用してもよい。
また、本変形例でも、ミラー保護膜が各ミラー54,55を覆うように設けてもよい。さらに、絶縁膜が第1電極561を覆うように形成してもよく、第2電極562にのみ覆うように形成してもよい。また、絶縁膜が第1電極561及び第2電極562の双方を覆うように形成してもよい。
さらに、第1基板51に第1積層ストッパー部60を設けずに、第2基板52にのみ第2積層ストッパー部70を設ける構成としてもよい。
【0064】
[第2実施形態]
以下、本発明に係る第2実施形態について、図11から図13を参照して説明する。
図11は、本実施形態におけるエタロン5Aの第1基板51Aの平面図であり、図12は、第2基板52Aの平面図である。なお、図11及び図12では、図示の都合上、各基板51A,52Aに形成される各電極561A,562A、及び各ミラー54,55のみを図示している。図13は、図11及び図12の矢視XIII-XIII線で示す位置でのエタロン5Aの要部を示す部分断面図である。
本実施形態のエタロン5Aは、前記第1実施形態のエタロン5と同様の構成を備えるが、本実施形態のエタロン5Aでは、第1電極561A及び第2電極562Aの他に、第1駆動電極571及び第2駆動電極572を備え、この第1駆動電極571及び第2駆動電極572が静電アクチュエーター56を構成する点で相違する。
なお、以下の説明では、前記第1実施形態と同一構成要素については、同一符号を付し、その説明を省略する。
【0065】
本実施形態での各ミラー54,55の径寸法R1,R2は、同一寸法に形成されて、各ミラー54,55の光透過領域Ar1,Ar2(図13中の一点鎖線から各ミラー54,55側の領域)を同一サイズに形成してもよい。この場合には、エタロン5Aを透過する検査対象光の光透過領域は、各ミラー54,55の光透過領域Ar1,Ar2で規定される。
第1積層ストッパー部60Aは、図13に示すように、第1基板51A側から順に第1電極561A、及び固定ミラー54が積層されて構成される。
また、第2積層ストッパー部70Aは、図13に示すように、第2基板52A側から順に第2電極562A、及び可動ミラー55が積層されて構成される。
なお、各積層ストッパー部60A,70Aは、前記第1実施形態と同様に、各基板51,52側から順に各ミラー54,55、及び各電極561A,562Aが積層された構成であってもよい。
【0066】
第1電極561A及び第2電極562Aは、電荷を保持させるものであり、静電容量測定用電極として機能する。このため、第1電極561A及び第2電極562Aには、図13に示すように、絶縁膜563が設けられて、電極561A,562A間のリークを防止している。この絶縁膜563は、固定ミラー54及び可動ミラー55にも形成されて、ミラー保護膜としての機能も兼ねる。すなわち、ミラー間ギャップG1が小さくなって、各積層ストッパー部60A,70Aが接触した場合でも、各ミラー54,55の損傷が防止される。
また、第1電極561Aは、ミラー固定部512のミラー固定面512Aにのみ形成され、第2電極562Aは、可動部522の可動面522Aにのみ形成される。
【0067】
第1電極561Aの電荷保持量は、第1電極パッド561P(図11参照)を介して電圧制御部6(図1参照)により検出される。また、第2電極562Aの電荷保持量は、第2電極パッド562P(図12参照)を介して電圧制御部6(図1参照)により検出される。そして、電圧制御部6(図1参照)は、検出された静電容量に基づいて、ギャップを算出し、所望のギャップにミラー間ギャップG1を設定するための電圧を第1駆動電極571及び第2駆動電極572に印加する。すなわち、ミラー間ギャップG1は、所望のギャップに正確に設定される。
【0068】
第1駆動電極571及び第2駆動電極572は、図11及び図12に示すように、エタロン平面視でC字状にそれぞれ形成される。第2駆動電極572は、連結保持部523の第1基板51に対向する面に形成され、第1駆動電極571は、第1基板51の第1駆動電極572に対向する面に形成される。
【0069】
第1駆動電極571は、図11に示すように、固定ミラー54の中心点C1を中心として第1電極561Aと同心円状で、第1電極561Aの外側に形成される。そして、第1駆動電極571の外周縁の一部からは、図11に示す平面視において、第1基板51の対角線に沿うように、左上方向に向かって、1本の第1駆動電極線571Lが延出して形成される。
第1駆動電極線571Lの先端には、第1駆動電極パッド571Pが形成され、第1駆動電極パッド571Pが電圧制御部6(図1参照)に接続される。そして、静電アクチュエーター56を駆動時には、電圧制御部6(図1参照)により、第1駆動電極パッド571Pに電圧が印加される。
【0070】
第2駆動電極572は、図12に示すように、可動ミラー55の中心点C2を中心として第2電極562Aと同心円状で、第2電極562Aの外側に形成される。そして、第2駆動電極572の外周縁の一部からは、図12に示す平面視において、第2基板52の対角線に沿うように、左下方向に向かって、1本の第2駆動電極線572Lが延出して形成される。
第2駆動電極線572Lの先端には、第2駆動電極パッド572Pが形成され、第2駆動電極パッド572Pが電圧制御部6(図1参照)に接続される。そして、静電アクチュエーター56を駆動時には、電圧制御部6(図1参照)により、第2駆動電極パッド572Pに電圧が印加される。
【0071】
上述の第2実施形態に係るエタロン5Aによれば、前記第1実施形態の効果の他、以下の効果を奏する。
本実施形態によれば、第1電極561A及び第2電極562Aは、静電容量測定用の電極として機能する。そして、電圧制御部6は、検出した静電容量に基づいて、ギャップを算出して、ミラー間ギャップG1を所望のギャップに設定するための電圧を第1駆動電極571及び第2駆動電極572に印加する。これにより、ミラー間ギャップG1を所望のギャップに正確に設定することができる。
そして、エタロン5Aの製造工程において、各ミラー54,55を形成する工程と、第1電極561A及び第2電極562A(静電容量測定用電極)を形成する工程により、容易に各積層ストッパー部60A,70Aを形成することができる。
【0072】
[第3実施形態]
以下、本発明に係る第3実施形態について、図14を参照して説明する。
図14は、本実施形態に係るエタロン5Bの要部を示す部分断面図である。
本実施形態のエタロン5Bでも、前記第2実施形態と同様に、第1電極561B及び第2電極562Bの他に、第1駆動電極571及び第2駆動電極572を備え、この第1駆動電極571及び第2駆動電極572が静電アクチュエーター56を構成する。
なお、以下の説明では、前記第1実施形態と同一構成要素については、同一符号を付し、その説明を省略する。また、第1駆動電極571及び第2駆動電極572は、前記第2実施形態と同様の構成であるため、以下での説明を省略する。
【0073】
本実施形態の第1積層ストッパー部60A及び第2積層ストッパー部70Aは、前記第2実施形態と同様に、各基板51A,52A側から順に各電極561B,562B、及び各ミラー54,55が積層された構成である。
なお、各積層ストッパー部60A,70Aは、前記第1実施形態と同様に、各基板51A,52A側から順に各ミラー54,55、及び各電極561B,562Bが積層された構成であってもよい。
【0074】
第1電極561B及び第2電極562Bは、ミラー54,55に帯電した電荷を除去する帯電除去用電極として機能する。このため、本実施形態では、前記第1実施形態で形成されていた第1電極線561L及び第2電極線562Lは、GNDに接続されており、第1電極561B及び第2電極562Bの電位差が0となるように設定されている。
なお、第1電極561B及び第2電極562Bのいずれか一方を帯電除去用電極としてもよい。
【0075】
上述の第3実施形態に係るエタロン5Bによれば、前記第1実施形態の効果の他、以下の効果を奏する。
本実施形態によれば、第1電極561B及び第2電極562Bは、各ミラー54,55の帯電を除去する帯電除去用電極として機能する。また、ミラー間ギャップG1の寸法が小さくなって、各積層ストッパー部60A,70A同士が接触した際、各ミラー54,55に保持された電荷も各積層ストッパー部60A,70Aの第1電極561B及び第2電極562B(帯電除去用電極)から逃がすことができる。従って、各ミラー54,55のそれぞれに保持された電荷により、静電引力が発生したりすることがなく、ミラー間ギャップG1を所望のギャップ寸法に正確に設定できる。
【0076】
[第4実施形態]
以下、本発明に係る第4実施形態について、図15及び図16を参照して説明する。
図15は、本実施形態に係るエタロン5Cの第1基板51Bを示す平面図であり、図16は、エタロン5Cの第2基板52Bを示す平面図である。なお、図15及び図16においても、図11及び図12と同様に、図示の都合上、各基板51B,52Bに形成される各電極561C,562C、及び各ミラー54,55のみを図示している。
前記第1実施形態での各積層ストッパー部60,70は、リング状に形成されていたが、本実施形態のエタロン5Cでは、各積層ストッパー60B,70Bが各ミラー54,55の中心点C1,C2を中心とした仮想円の周方向に沿って等間隔で形成されている点で相違する。
なお、以下の説明では、前記第1実施形態と同一構成要素については、同一符号を付し、その説明を省略する。
【0077】
本実施形態に係るエタロン5Cの第1電極561Cには、図15に示すように、当該第1電極561Cの第1リング部561C1の周方向において、90度間隔で延出する4つの第1延出部561C2が形成されている。具体的に、第1延出部561C2は、第1リング部561C1から第1基板51Bの対角線に沿って、固定ミラー54の中心点C1に向けて延出している。そして、この4つの第1延出部561C2の先端側が固定ミラー54の外周縁に積層されることで、4つの第1積層ストッパー部60Bが形成される。
すなわち、この第1積層ストッパー部60Bは、図15に示すように、固定ミラー54の中心点C1を中心とした仮想円(第1電極561Cの第1リング部561C1)の周方向に沿って90度間隔で設けられている。換言すれば、4つの第1積層ストッパー部60Bは、固定ミラー54の中心点C1を対称中心として、点対称に形成される。
【0078】
第2電極562Cには、図16に示すように、当該第2電極562Cの第2リング部562C1の周方向において、90度間隔で延出する4つの第2延出部562C2が形成されている。具体的に、第2延出部562C2は、第2リング部562C1から第2基板52Bの中心線(図16中の一点鎖線)に沿って、可動ミラー55の中心点C2に向けて延出している。そして、この4つの第2延出部562C1の先端側が可動ミラー55の外周縁に積層されることで、4つの第2積層ストッパー部70Bが形成される。
すなわち、この第2積層ストッパー部70Bは、図16に示すように、可動ミラー55の中心点C2を中心とした仮想円(第2電極562Cの第2リング部562C1)の周方向に沿って90度間隔で設けられている。換言すれば、4つの第2積層ストッパー部70Bは、可動ミラー55の中心点C2を対称中心として、点対称に形成される。
また、この第2積層ストッパー部70Bは、エタロン平面視で、各ミラー54,55の中心点C1,C2を中心として、第1積層ストッパー部60Bをそれぞれ45度回転させた位置に形成されるため、第1積層ストッパー部60Bに重ならない位置に形成される。
【0079】
以上のような構成において、ミラー間ギャップG1(図4参照)が小さくなると、第2積層ストッパー部70Bが固定ミラー54に接触し、また、第1積層ストッパー部60Bが可動ミラー55に接触することで、各ミラー54,55同士の接触が防止される。
【0080】
なお、本実施形態の各電極561C,562Cに絶縁膜を設ける構成としてもよい。また、本実施形態においても、前記第1実施形態の第3変形例及び第4変形例を適用してもよい。
また、本実施形態の各積層ストッパー部60B,70Bは、前記仮想円の周方向に沿って90度間隔で設けられていたが、例えば、180度間隔に設けてもよく、等間隔に設けられていればよい。
さらに、本実施形態の各積層ストッパー部60B,70Bは、エタロン平面視で重ならない位置に形成されていたが、各積層ストッパー部60B,70Bが重なるように形成されていてもよい。
また、本実施形態の各積層ストッパー部60B,70Bの積層順を、前記第1実施形態の第1変形例、前記第2実施形態、及び第3実施形態の各積層ストッパー部60A,70Aの積層順としてもよい。この場合には、各ミラー54,55にミラー保護膜を設ける構成とすれば、各積層ストッパー部60B,70Bがミラー54,55にそれぞれ接触した場合でも、各ミラー54,55の損傷を防止できる。
【0081】
さらに、本実施形態の各ミラー54,55をAg合金で形成することで、各ミラー54,55に駆動電極としての機能を持たせて、第1電極561C及び第2電極562C、第1電極線561L及び第2電極線562Lを各ミラー54,55に接続される電極線としての機能を持たせてもよい。この場合には、各電極パッド561P,562Pから印加された電圧が前記電極線を介して、各ミラー54,55に印加され、各ミラー54,55間に静電引力が発生させることができ、ミラー間ギャップを変更できる。
【0082】
上述の第4実施形態に係るエタロン5Cによれば、前記第1実施形態の効果の他、以下の効果を奏する。
本実施形態によれば、各積層ストッパー部60B,70Bが各ミラー54,55の中心点C1,C2を中心とした仮想円の周方向に沿って、等間隔に設けられるため、積層ストッパー部60B,70B、及び当該積層ストッパー部60B,70Bに対向するミラー54,55が接触することとなり、前記第1実施形態での接触面積に比べて小さくできる。これによれば、接触部分での吸着を防止でき、ミラー54,55間ギャップG1を所望のギャップ寸法に正確に設定できる。
【0083】
[実施形態の変形]
なお、本発明は前述の実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良等は本発明に含まれるものである。
前記各実施形態では、各基板51,52に第1、第2積層ストッパー部60,70を設けたが、第1実施形態の第5変形例のように、いずれか一方の基板にのみ積層ストッパー部を設ける構成としてもよい。
前記第1実施形態から第3実施形態では、各積層ストッパー部60,70はリング状に形成されていたが、前記第4実施形態のように、各積層ストッパー部を各ミラー54,55の中心点C1,C2を中心とする仮想円の周方向に沿って、等間隔に形成してもよい。
前記第3実施形態では、第1電極561B及び第2電極562Bの電位差が0となるように設定されていたが、ミラー54,55が互いに接触することで、ミラー54,55が導通して同電位となるようにしてもよい。
【0084】
前記各実施形態では、ミラー間ギャップG1を変更する構成として、静電アクチュエーター56を例示したが、電流が通流される電磁コイルと、電磁力により電磁コイルに対して移動する永久磁石とを備える電磁アクチュエーターを用いてもよい。このような構成によれば、電磁コイルに電流を通流し、永久磁石からの磁束とこの磁束と電流との相互作用による電磁力により、永久磁石が電磁コイルに向けて移動するので、変位部が変動する。また、電圧印加により伸縮可能な圧電素子を基板間に設ける構成としてもよい。
【0085】
前記実施形態において、接合面513,524は、接合層53により接合されるとしたが、これに限られない。例えば、接合層53が形成されず、接合面513,524を活性化し、活性化された接合面513,524を重ね合わせて加圧することにより接合する、いわゆる常温活性化接合により接合させる構成などとしてもよく、いかなる接合方法を用いてもよい。
【0086】
また、上記各実施形態において、ミラー固定部512の可動基板52に対向するミラー固定面512Aが、電極固定面511Aよりも可動基板52に近接して形成される例を示したが、これに限らない。電極固定面511Aおよびミラー固定面512Aの高さ位置は、ミラー固定面512Aに固定される固定ミラー54、および可動基板52に形成される可動ミラー55の間のギャップの寸法、第1電極561および第2電極562の間の寸法、固定ミラー54や可動ミラー55の厚み寸法等により適宜設定される。したがって、例えば、電極固定面511Aとミラー固定面512Aとが同一面に形成される構成や、電極固定面511Aの中心部に、円筒凹溝上のミラー固定溝が形成され、このミラー固定溝の底面にミラー固定面が形成される構成などとしてもよい。
【0087】
前記実施形態では、本発明の光モジュールとして、測色センサー3を例示し、光分析装置として、測色センサー3を備えた測色装置1を例示したが、これに限定されるものではない。例えば、センサー内部にガスを流入させ、入射光のうちガスにて吸収された光を検出するガスセンサーを本発明の光モジュールとして用いてもよく、このようなガスセンサーによりセンサー内に流入されたガスを分析、判別するガス検出装置を本発明の光分析装置としてもよい。さらに、光分析装置は、このような光モジュールを備えた分光カメラ、分光分析器などであってもよい。
また、各波長の光の強度を経時的に変化させることで、各波長の光でデータを伝送させることも可能であり、この場合、光モジュールに設けられたエタロン5により特定波長の光を分光し、受光部で受光させることで、特定波長の光により伝送されるデータを抽出することができ、このようなデータ抽出用光モジュールを備えた光分析装置により、各波長の光のデータを処理することで、光通信を実施することもできる。
【符号の説明】
【0088】
1…測色装置(光分析装置)、3…測色センサー(光モジュール)、5,5A,5B,5C…エタロン(波長可変干渉フィルター)、31…受光素子(受光部)、43…測色処理部(分析処理部)、51,51A,51B…第1基板、52,52A,52B…第2基板、54…固定ミラー(第1反射膜)、55…可動ミラー(第2反射膜)、60,60A,60B…第1積層ストッパー部、70,70A,70B…第2積層ストッパー部、561,561A,561B,561C…第1電極、562,562A,562B,562C…第2電極、563…絶縁膜、Ar1,Ar2…光透過領域、G1…ミラー間ギャップ。

【特許請求の範囲】
【請求項1】
第1基板と、
前記第1基板と互いに対向する第2基板と、
前記第1基板の前記第2基板に対向する面に設けられた第1反射膜と、
前記第2基板に設けられ、前記第1反射膜と所定のギャップを介して対向する第2反射膜と、
前記第1基板の前記第2基板に対向する面に設けられた第1電極と、を備え、
前記第1電極の一部と、前記第1反射膜の外周縁の少なくとも一部とが積層されて構成される第1積層ストッパー部を有する
ことを特徴とする波長可変干渉フィルター。
【請求項2】
請求項1に記載の波長可変干渉フィルターにおいて、
前記第2基板の前記第1基板に対向する面に設けられた第2電極を備え、
前記第2電極の一部と、前記第2反射膜の外周縁の少なくとも一部とが積層された第2積層ストッパー部を有する
ことを特徴とする波長可変干渉フィルター。
【請求項3】
請求項1または請求項2に記載の波長可変干渉フィルターにおいて、
前記第2基板には、前記第1電極と対向する第2電極が設けられ、
前記第1電極及び前記第2電極は、電圧が印加されることで、前記ギャップの寸法を変更させる駆動電極である
ことを特徴とする波長可変干渉フィルター。
【請求項4】
請求項1または請求項2に記載の波長可変干渉フィルターにおいて、
前記第2基板には、前記第1電極と対向する第2電極が設けられ、
前記第1電極及び前記第2電極は、前記第1電極及び前記第2電極の間で保持される静電容量を測定する静電容量測定用電極である
ことを特徴とする波長可変干渉フィルター。
【請求項5】
請求項1または請求項2に記載の波長可変干渉フィルターにおいて、
前記第1電極は、前記第1反射膜の帯電を除去する帯電除去用電極である
ことを特徴とする波長可変干渉フィルター。
【請求項6】
請求項1から請求項5のいずれかに記載の波長可変干渉フィルターにおいて、
前記第1積層ストッパー部は、前記第1基板側から前記第1反射膜、及び前記第1電極の順に積層された
ことを特徴とする波長可変干渉フィルター。
【請求項7】
請求項1から請求項5のいずれかに記載の波長可変干渉フィルターにおいて、
前記第1積層ストッパー部は、前記第1基板側から前記第1電極、及び前記第1反射膜の順に積層された
ことを特徴とする波長可変干渉フィルター。
【請求項8】
請求項1から請求項7のいずれかに記載の波長可変干渉フィルターにおいて、
前記第1電極は、非透光性の材質で形成され、
前記第1積層ストッパー部は、前記第1基板及び第2基板の基板厚み方向に見る平面視において、前記第1反射膜及び第2反射膜を透過する入射光の光透過領域を規定するリング状に設けられた
ことを特徴とする波長可変干渉フィルター。
【請求項9】
請求項8に記載の波長可変干渉フィルターにおいて、
前記第2基板の前記第1基板に対向する面には、前記第2電極が設けられ、
前記第2電極の一部は、前記第2反射膜の外周縁に積層されて、リング状の第2積層ストッパー部を構成し、
前記第1基板及び前記第2基板を前記第1基板及び前記第2基板の基板厚み方向から見た平面視において、前記第1積層ストッパー部の内径寸法は、前記第2積層ストッパー部の内径寸法よりも小さい
ことを特徴とする波長可変干渉フィルター。
【請求項10】
請求項1から請求項9のいずれかに記載の波長可変干渉フィルターと、
前記波長可変干渉フィルターを透過した検査対象光を受光する受光部とを備えた
ことを特徴とする光モジュール。
【請求項11】
請求項10に記載の光モジュールと、
前記光モジュールの前記受光部により受光された光に基づいて、前記検査対象光の光特性を分析する分析処理部とを備えた
ことを特徴とする光分析装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate


【公開番号】特開2012−155023(P2012−155023A)
【公開日】平成24年8月16日(2012.8.16)
【国際特許分類】
【出願番号】特願2011−12199(P2011−12199)
【出願日】平成23年1月24日(2011.1.24)
【出願人】(000002369)セイコーエプソン株式会社 (51,324)
【Fターム(参考)】