説明

流量検出装置

【課題】部品点数が削減された流量検出装置を提供する。
【解決手段】管内の流体の流量を検出する流量検出装置であって、圧電材料から成る、弁体に設けられたセンサチップと、センサチップに駆動信号を供給し、センサチップの検出信号を処理する処理手段と、を有し、センサチップは、流体に晒されるセンサ面に、駆動信号を受けて表面弾性波を発生し、表面弾性波を検出信号に変換する弾性波部と、弾性波部によって発生された表面弾性波を、弾性波部に反射する反射部と、駆動信号を受信するとともに、検出信号を送信する内部通信部と、を有し、処理手段は、駆動信号を生成する生成部と、駆動信号を送信するとともに、検出信号を受信する外部通信部と、駆動信号と検出信号とに基づいて、流体の圧力、温度、弁体の開度、及び、流体の流量を算出する算出部と、を有する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、管の内部を流れる流体の流量を検出する流量検出装置に関するものである。
【背景技術】
【0002】
従来、例えば特許文献1に示されるように、スロットル装置に取り付けられるセンサモジュールユニットが提案されている。このセンサモジュールユニットは、スロットル装置に取り付けられるユニット本体と、該ユニット本体に設けられた複数のセンサ室と、を有する。複数のセンサ室には、スロットル装置のスロットル弁の開度を検知するポジションセンサを収容保持するポジションセンサ室と、吸気管を通じた吸気圧力を検知するための吸気圧センサを収容保持する圧力センサ室と、吸気管を通じて吸引される空気の温度を検知する温度センサを収容保持する温度センサ室と、が含まれている。センサモジュールユニットは、吸気流量を制御する(検出する)上において必要な各種データを、上記した3つのセンサによって検出している。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】特開2007−270617号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
ところで、上記したように、特許文献1に示されるセンサモジュールユニットは、3つの物理量を検出するために、3つのセンサを用いている。そのため、部品点数が多い、という問題があった。
【0005】
そこで、本発明は上記問題点に鑑み、部品点数が削減された流量検出装置を提供することを目的とする。
【課題を解決するための手段】
【0006】
上記した目的を達成するために、請求項1に記載の発明は、管の内部を流れる流体の流量を検出する流量検出装置であって、圧電材料から成る、管内の弁体に設けられたセンサチップと、センサチップに駆動信号を供給し、且つ、センサチップの検出信号を処理する、管の外部に設けられた処理手段と、を有し、センサチップは、弁体への固定面とは異なり、流体に晒されるセンサ面に、駆動信号を受けて表面弾性波を発生し、且つ、センサ面を伝播する表面弾性波を検出信号に変換する弾性波部と、弾性波部によって発生された表面弾性波を、弾性波部に反射する反射部と、駆動信号を受信するとともに、検出信号を送信する内部通信部と、を有し、処理手段は、駆動信号を生成する生成部と、駆動信号を送信するとともに、検出信号を受信する外部通信部と、駆動信号と検出信号とに基づいて、流体の圧力、温度、弁体の開度、及び、流体の流量を算出する算出部と、を有することを特徴とする。
【0007】
このように本発明によれば、センサチップと、処理手段とが、流体の温度、圧力、及び、弁体の開度を検出するセンサとしての機能を果たしており、3つの物理量を2つの部材によって検出している。したがって、上記した3つの物理量を検出するために、3つの部材を用いる構成と比べて、部品点数が削減される。
【0008】
また、本発明では、管内の弁体にセンサチップが設けられ、センサ面で発生した表面弾性波が、内部通信部を介して外部通信部に検出信号として送信され、この検出信号とセンサチップの駆動信号とに基づいて、流体の温度と圧力とが算出部で算出される。これによれば、温度計を差し込むための孔や、圧力センサを差し込むための孔を管に形成しなくともよいので、コストが削減される。また、管内を流れている流体が、外部へ漏れることが抑止される。更に言えば、流量検出装置の構造が簡素化される。
【0009】
なお、流体の温度及び圧力は、表面弾性波の周波数変化によって検出され、弁体の開度は、駆動信号と検出信号の送受信時間、若しくは、検出信号の信号強度の変化量によって検出される。これらの理由は、説明の都合上、請求項2,7,9〜11の作用効果で具体的に記載した。
【0010】
請求項2に記載のように、弾性波部は、第1弾性波部と、第2弾性波部と、を有し、反射部は、第1反射部と、第2反射部と、を有し、内部通信部は、第1内部通信部と、第2内部通信部と、を有し、センサチップには、厚さが局所的に薄くなった薄肉部が形成され、第1弾性波部と第1反射部とが、薄肉部を介して、センサ面側で所定距離離れて形成され、第2弾性波部と第2反射部とが、薄肉部を避けて、センサ面側で所定距離離れて形成され、第1弾性波部が、第1内部通信部と電気的に接続され、第2弾性波部が、第2内部通信部と電気的に接続された構成が好適である。
【0011】
このように、センサチップに薄肉部が形成され、薄肉部が流体の圧力によって歪み易くなっている。そのため、第1弾性波部と第1反射部との間(薄肉部)を伝播する第1表面弾性波の周波数が、流体の圧力によって変動し易くなっている。これに対して、第2弾性波部と第2反射部との間には、薄肉部が形成されていないので、両者の間を伝播する第2表面弾性波の周波数が、流体の圧力によって変動し難くなっている。これにより、算出部にて、第1表面弾性波の周波数(第1内部通信部が外部通信部に送信した検出信号の周波数)と、第2表面弾性波の周波数(第2内部通信部が外部通信部に送信した検出信号の周波数)との差異を算出することで、流体の圧力を検出することが可能となっている。
【0012】
また、センサチップは圧電材料によって形成されており、圧電材料は温度が上昇すると伸びる性質を有する。上記したように、第2弾性波部と第2反射部との間には、薄肉部が形成されていないので、両者の間のセンサ面は、流体の圧力に依存し難く、流体の温度に依存するようになっている。これにより、算出部にて、外部通信部が第2内部通信部に送信した駆動信号の周波数と、第2内部通信部が外部通信部に送信した検出信号の周波数(第2表面弾性波の周波数)との差異を算出することで、流体の温度を検出することが可能となっている。
【0013】
請求項3に記載のように、第1弾性波部と第1反射部との間の距離と、第2弾性波部と第2反射部との間の距離とが異なる構成が良い。これによれば、第1表面弾性波を含む検出信号が、第1内部通信部から外部通信部に伝播されるタイミングと、第2表面弾性波を含む検出信号が、第2内部通信部から外部通信部に伝播するタイミングとが異なるので、これら2つの検出信号が外部通信部で混線することが抑制される。
【0014】
請求項4に記載のように、センサチップには、センサ面を2つに分かつ溝が形成されており、溝によって分かれたセンサ面の一方の領域に、第1弾性波部と、第1反射部と、第1内部通信部とが形成され、他方の領域に、第2弾性波部と、第2反射部と、第2内部通信部とが形成された構成が良い。これによれば、第1表面弾性波が第2反射部に伝播すること、及び、第2表面弾性波が第1反射部に伝播することが抑制される。
【0015】
流体の圧力を演算する構成としては、請求項5に記載のように、算出部が、センサ面における第1弾性波部と第1反射部との間を伝播する第1表面弾性波の周波数と、第2弾性波部と第2反射部との間を伝播する第2表面弾性波の周波数との差異と、第1表面弾性波の圧力特性との関係が記憶された第1記憶部と、該第1記憶部から、第1表面弾性波の周波数と第2表面弾性波の周波数との差異に対応する、第1表面弾性波の圧力特性を取り出して、流体の圧力を演算する第1演算部と、を有する構成を採用することができる。
【0016】
流体の温度を演算する構成としては、請求項6に記載のように、算出部が、センサ面における第2弾性波部と第2反射部との間を伝播する第2表面弾性波の周波数と、駆動信号の周波数との差異と、第2表面弾性波の温度特性との関係が記憶された第2記憶部と、該第2記憶部から、第2表面弾性波の周波数と駆動信号の周波数との差異に対応する、第2表面弾性波の温度特性を取り出して、流体の温度を演算する第2演算部と、を有する構成を採用することができる。
【0017】
請求項7に記載のように、反射部は、第3反射部を有し、該第3反射部は、第2弾性波部と第2反射部との間に形成された構成が良い。
【0018】
これによれば、第2弾性波部との距離が異なる反射部それぞれから、第2弾性波部に表面弾性波が反射される。この結果、第2弾性波部にて、第2弾性波部と反射部との間を伝播する複数の表面弾性波を検出することができるので、流体の温度や圧力の検出精度が向上される。
【0019】
ところで、生成部から駆動信号が送信され、算出部にて検出信号が受信されるまでの送受信時間は、生成部と外部通信部、内部通信部と弾性波部、及び、外部通信部と算出部との距離が無視できるとすると、外部通信部と内部通信部(センサチップ)との相対距離と、弾性波部と反射部との距離に依存する。そして、外部通信部と内部通信部との送受信時間は、外部通信部と内部通信部との相対距離に依存する。
【0020】
これに対して、本発明では、第2弾性波部と第2反射部との距離と、第2弾性波部と第3反射部との距離が異なっている。したがって、生成部から送信された信号が第2反射部にて反射され、算出部にて受信される時間Tと、生成部から送信された信号が第3反射部にて反射され、算出部にて受信される時間Tとは、第2反射部と第3反射部との距離L分だけ異なることとなる。これにより、第3反射部と第2弾性波部との距離Lが、距離Lに等しい場合、時間TとTとは、距離L分だけ異なることとなる。以上により、時間TからT−T引いた値2T−Tは、外部通信部と内部通信部(センサチップ)との相対距離Lのみに依存する。これは、上記した外部通信部と内部通信部との送受信時間に相当する。相対距離Lは、弁体の開度を調整するべく、弁体が回転した場合に変動する。したがって、上記した計算によって算出された、外部通信部と内部通信部との送受信時間に基づいて、相対距離Lを求めることで、弁体の開度を検出することができる。なお、距離Lが距離Lと等しくない場合、T−(L/L)(T−T)という計算にて得られた値が、外部通信部と内部通信部との送受信時間に相当する。
【0021】
請求項8に記載の発明は、請求項7に記載の発明の作用効果と同等なので、その記載を省略する。
【0022】
弁体の開度を演算する構成としては、請求項9に記載のように、算出部は、外部通信部と内部通信部との送受信時間と、弁体の開度との関係が記憶された第3記憶部と、該第3記憶部から、送受信時間に対応する、弁体の開度を取り出して、弁体の開度を演算する第3演算部と、を有する構成を採用することができる。
【0023】
流量を調整するために、弁体が開度を調整した場合、弁体に設けられたセンサチップと処理手段との相対距離が変動する。この結果、外部通信部と内部通信部との送受信時間が変動する。そのため、この送受信時間に基づいて、弁体の開度を検出することができる。
【0024】
また、弁体の開度を演算する構成としては、請求項10に記載のように、算出部が、生成部から駆動信号が送信され、算出部にて検出信号が受信されるまでの送受信時間と、弁体の開度との関係が記憶された第3記憶部と、該第3記憶部から、送受信時間に対応する、弁体の開度を取り出して、弁体の開度を演算する第3演算部と、を有する構成を採用することができる。
【0025】
上記したように、弁体が開度を調整した場合、センサチップと処理手段との相対距離が変動する。この結果、生成部から駆動信号が送信され、算出部にて検出信号が受信されるまでの送受信時間が変動する。そのため、この送受信時間に基づいて、弁体の開度を検出することができる。
【0026】
また、弁体の開度を演算する構成としては、請求項11に記載のように、算出部が、検出信号の信号強度と、弁体の開度との関係が記憶された第4記憶部と、該第4記憶部から、検出信号の信号強度に対応する、弁体の開度を取り出して、弁体の開度を演算する第4演算部と、を有する構成を採用することもできる。
【0027】
上記したように、弁体が開度を調整した場合、センサチップと処理手段(外部通信部)との相対距離が変動する。この結果、外部通信部の受信面積が変動し、外部通信部にて受信される検出信号の信号強度が変動する。そのため、この信号強度の変化量に基づいて、弁体の開度を検出することができる。
【0028】
請求項12に記載のように、弾性波部は、第4弾性波部を有し、反射部は、第4反射部を有し、内部通信部は、第4内部通信部を有し、センサチップに感湿膜が形成され、第4弾性波部と第4反射部とが、感湿膜を介して、センサ面側で所定距離離れて形成され、第4弾性波部が、第4内部通信部と電気的に接続された構成が良い。
【0029】
例えば、管内を空気が通り、その空気がガソリン等の燃料と混合されて、その混合された気体がエンジンに供給される場合、エンジンの燃焼を制御するに当たり、空気に含まれる水分量(湿度)を予め知っておくことが望ましい。
【0030】
これに対して、請求項12に記載の発明では、センサチップに感湿膜が形成されている。感湿膜に水分が吸湿されると、感湿膜が重くなり、感湿膜を伝播する表面弾性波の周波数が変化する。このように、本発明では、感湿膜を伝播する表面弾性波の周波数変化を検出することで、流体に含まれる湿度を検出することができるので、エンジン制御に必要な水分量を予め知っておくことができる。
【0031】
請求項13に記載のように、弾性波部は、第5弾性波部を有し、反射部は、第5反射部を有し、内部通信部は、第5内部通信部を有し、センサチップに流体成分吸着膜が形成され、第5弾性波部と第5反射部とが、流体成分吸着膜を介して、センサ面側で所定距離離れて形成され、第5弾性波部が、第5内部通信部と電気的に接続された構成が良い。
【0032】
例えば、排気ガスを再利用する車両において、管内を排気ガスが流動し、その排気ガスがエンジンに供給される場合、エンジンの燃焼を制御するに当たり、排気ガスに含まれる成分を予め知っておくことが望ましい。
【0033】
これに対して、請求項13に記載の発明では、センサチップに流体成分吸着膜が形成されている。流体成分吸着膜に流体の成分が吸着されると、流体成分吸着膜が重くなり、流体成分吸着膜を伝播する表面弾性波の周波数が変化する。このように、本発明では、流体成分吸着膜を伝播する表面弾性波の周波数変化を検出することで、流体に含まれる排気ガスの成分を検出することができるので、排気ガスに含まれる成分を予め知っておくことができる。
【0034】
請求項14〜25に記載の発明は、請求項1〜13いずれかに記載の発明の作用効果と同等なので、その記載を省略する。
【0035】
請求項26に記載のように、弁体によって、管が上流側と下流側とに分断され、弁体が一方向に回転することで、管の上流側と下流側とが連通されるようになっており、弁体が一方向に回転した状態において、弁体における管の上流側の部位に、センサチップが設けられ、管の下流側における、センサチップ側の外壁に、外部通信部が設けられた構成が良い。
【0036】
これによれば、弁体によって管が上流と下流とに分断された状態(弁体の開度が全閉の状態)から、弁体が一方向に回転して、弁体の開度が大きくなるにつれて、センサチップが外部通信部から遠ざかる。この結果、弁体の開度が大きくなり始める時の、上記した送受信時間、及び、検出信号の信号強度の変化量が大きくなる。これにより、弁体の開度が大きくなり始める時の、弁体の開度の検出精度が向上される。
【0037】
請求項27に記載のように、処理手段は、管の下流側における、センサチップ側の外壁に設置された第1処理手段と、管の上流側における、センサチップ側の外壁とは反対側の外壁に設置された第2処理手段と、を有する構成が良い。
【0038】
これによれば、弁体の開度が全開の状態から、弁体が他方向に回転することで、弁体の開度が小さくなるにつれて、センサチップが第2処理手段の外部通信部から遠ざかる。この結果、弁体の開度が小さくなり始める時の、上記した送受信時間、及び、信号強度の変化量が大きくなる。これにより、弁体の開度が小さくなり始める時の、弁体の開度の検出精度が向上される。
【0039】
請求項28に記載のように、管の外壁に、複数の処理手段が設置された構成が良い。これによれば、上記した送受信時間、及び、信号強度の変化量を複数検出することができるので、弁体の開度の検出精度が向上される。
【0040】
請求項29に記載のように、管を流れる流体の流動方向と鉛直方向とが交差し、弁体によって管が上流側と下流側とに分断された状態から、弁体が軸心を中心として一方向に回転することで、管の上流側と下流側とが連通されるようになっており、弁体によって管が上流側と下流側とに分断された状態において、弁体における軸心よりも鉛直上方に位置する部位に、センサチップが設けられた構成が良い。これによれば、流体に含まれる水分によって、管の内壁面に結露が生じた場合に、この結露がセンサチップに付着することが抑制される。これにより、結露によって、表面弾性波の周波数が変動することが抑制される。
【図面の簡単な説明】
【0041】
【図1】第1実施形態に係る流量検出装置の概略構成を示す断面図である。
【図2】第1実施形態に係るセンサチップの概略構成を示す斜視図であり、(a)は上面側、(b)は下面側を示す。
【図3】回路基板の概略構成を示すブロック図である。
【図4】センサチップの変形例を示す斜視図であり、(a)は上面側、(b)は下面側を示す。
【図5】センサチップの変形例を示す斜視図であり、(a)は上面側、(b)は下面側を示す。
【図6】センサチップの変形例を示す斜視図であり、(a)は上面側、(b)は下面側を示す。
【図7】第2実施形態に係るセンサチップの概略構成を示す斜視図であり、(a)は上面側、(b)は下面側を示す。
【図8】センサチップの変形例を示す斜視図であり、(a)は上面側、(b)は下面側を示す。
【図9】センサチップの変形例を示す斜視図であり、(a)は上面側、(b)は下面側を示す。
【図10】センサチップの変形例を示す斜視図であり、(a)は上面側、(b)は下面側を示す。
【図11】外部アンテナの配置を説明するための断面図である。
【発明を実施するための形態】
【0042】
以下、本発明にかかる流量検出装置が、エンジンに空気を供給するための吸気管に設置された場合の実施形態を図に基づいて説明する。
(第1実施形態)
図1は、第1実施形態に係る流量検出装置の概略構成を示す断面図である。図2は、第1実施形態に係るセンサチップの概略構成を示す斜視図であり、(a)は上面側、(b)は下面側を示す。図3は、回路基板の概略構成を示すブロック図である。なお、図1では、空気の流動方向を白抜き矢印、鉛直方向を黒塗り矢印で示す。流動方向と鉛直方向とは交差している。
【0043】
図1に示すように、流量検出装置100は、要部として、センサチップ10と、処理手段50と、を有する。センサチップ10は、吸気管80内の弁体81に設けられ、処理手段50は、吸気管80の外壁80aに設けられており、センサチップ10と処理手段50とが、互いに無線接続されている。
【0044】
弁体81は、吸気管80の上流と下流との境に位置し、弁体81の開閉度合いによって、上流から下流に流れる流体(空気)の流量が調整されるようになっている。この流量は、空気の温度や空気の圧力(流速)、及び、弁体81の開度によって決定され、これら3つの物理量が、流量検出装置100によって検出される。
【0045】
なお、弁体81は、流動方向と鉛直方向とによって規定される平面に交差する方向に、自身の中心を貫く軸心82を回転軸として、時計回り、若しくは、反時計回りに0°〜90°回転可能となっている。弁体81が時計回りに回転することで、弁体81の開度が大きくなり、反時計回りに回転することで、弁体81の開度が小さくなる。回転角度が0°の時に、弁対81の開度がゼロ(全閉)となり、90°の時に、弁体81の開度が最大(全開)となる。なお、図1では、弁体81が全閉している状態を破線で示す。また、上記した時計回りが、特許請求の範囲に記載の一方向に相当し、反時計回りが、特許請求の範囲に記載の他方向に相当する。
【0046】
センサチップ10は、圧電材料から成り、上面10aに、弾性波部20と、反射部30と、内部アンテナ40とが形成されている。そして、センサチップ10は、上面10aが空気に晒されるように、下面10bを弁体81への固定面として、弁体81に固定されている。これにより、センサチップ10の上面10aに、上流から下流に流れ込む空気が当たるようになっている。なお、センサチップ10の固定される部位は、弁体81の開度がゼロの状態において、下流側に面する面81aにおける、軸心82の鉛直上方の部位となっている。この部位は、図1に示すように、弁体81が時計回りに回転すると、吸気管80の上流側に位置する。したがって、弁体81が時計回りに回転すると、センサチップ10が上流側に位置する。上面10aは、特許請求の範囲に記載のセンサ面に相当する。
【0047】
図2に示すように、上面10aには溝13が形成されており、この溝13によって、上面10aが第1領域11と第2領域12とに分けられている。これにより、第1領域11で発生した表面弾性波が第2領域12に伝播することが抑制され、第2領域12で発生した表面弾性波が第1領域11に伝播することが抑制されている。
【0048】
また、第1領域11側には、厚さが局所的に薄くなった薄肉部14が形成されており、第2領域12側の部位の厚さは一定となっている。これにより、第1領域11側の上面10aは、空気の圧力(流速)によって歪み易く、第2領域12側の上面10aは、空気の圧力(流速)によって歪み難くなっている。なお、圧電材料は温度が上昇すると伸びる性質を有するので、第1領域11側、及び、第2領域12側それぞれの上面10aは、温度の上昇によって伸びる。以上により、第1領域11側の上面10aの形状は、空気の圧力と温度とに依存し、第2領域12側の上面10aの形状は、空気の温度に依存するようになっている。
【0049】
弾性波部20は、櫛歯電極であり、センサチップ10に形成された配線(図示略)を介して、内部アンテナ40と電気的に接続されている。内部アンテナ40を介して、処理手段50から弾性波部20に、交流信号である駆動信号Sdrが供給されると、対向する電極間に極性が異なる電圧が周期的に発生する。この結果、上面10aが振動し、上面10aに表面弾性波が発生する。また、弾性波部20に表面弾性波が送信されると、対向する電極間距離が周期的に変動して、対向する電極間の静電容量が周期的に変動する。この結果、表面弾性波が、交流信号である検出信号Sdtに変換される。この検出信号Sdtが、内部アンテナ40を介して、処理手段50に送信される。なお、本実施形態の弾性波部20は、第1弾性波部21と、第2弾性波部22と、を有し、第1弾性波部21は第1領域11に形成され、第2弾性波部22は第2領域12に形成されている。
【0050】
反射部30は、上面10aを局所的に押さえつけることで、表面弾性波を、弾性波部20に反射するものである。反射部30は、例えば、アルミニウムなどから形成される。本実施形態の反射部30は、第1反射部31と、第2反射部32と、第3反射部33と、を有し、第1反射部31は第1領域11に形成され、第2反射部32及び第3反射部33は第2領域12に形成されている。第1反射部31は、薄肉部14を介して、距離L+Lだけ第1弾性波部21と離れており、第2反射部32は、薄肉部14を避けて、距離L+Lだけ第2弾性波部22と離れている。また、第3反射部33は、第2弾性波部22と第2反射部32との間に形成され、薄肉部14を避けて、距離Lだけ第2弾性波部22と離れている。本実施形態では、距離Lと距離Lとが等しくなっている。
【0051】
上記した距離関係のために、第1弾性波部21にて発生した第1表面弾性波Wが、上面10aにおける第1弾性波部21と第1反射部31との間(薄肉部14)を伝播した後、第1反射部31にて反射され、反射された第1表面弾性波Wが第1弾性波部21にて受信されるまでの時間T、及び、第2弾性波部22にて発生した第2表面弾性波Wが、上面10aにおける第2弾性波部22と第2反射部32との間を伝播した後、第2反射部32にて反射され、反射された第2表面弾性波Wが第2弾性波部22にて受信されるまでの時間Tそれぞれは、距離L+Lに依存し、その値が等しくなる。これに対して、第2弾性波部22にて発生し、上面10aにおける第2弾性波部22と第3反射部33との間を伝播する第3表面弾性波Wが、第3反射部33にて反射され、反射された第3表面弾性波Wが第2弾性波部22にて受信されるまでの時間Tは、距離Lに依存し、時間T(T)と距離L分だけ異なる。上記したように、距離Lと距離Lとは等しいので、時間Tと時間Tとは、距離L分だけ異なっている。なお、距離L(L)は、常温常圧時の表面弾性波W〜Wの波長の整数倍となっている。
【0052】
内部アンテナ40は、駆動信号Sdrを受信するとともに、検出信号Sdtを送信するものである。本実施形態の内部アンテナ40は、第1内部アンテナ41と、第2内部アンテナ42と、を有し、第1内部アンテナ41は第1領域11に形成され、第2内部アンテナ42は第2領域12に形成されている。内部アンテナ40は、特許請求の範囲に記載の内部通信部に相当する。
【0053】
処理手段50は、図1に示すように、回路基板51と、コネクタケース52と、を有し、吸気管80の下流側における、センサチップ10側(弁体81の鉛直上方)の外壁80aに設けられている。これにより、弁体81の開度が大きくなる(弁体81が時計回りに回転する)につれて、処理手段50とセンサチップ10とが離れるようになっている。
【0054】
図1及び図3に示すように、回路基板51には、生成部53と、外部アンテナ54と、算出部55とが形成されている。この回路基板51は、コネクタケース52のコネクタピン56を介して、外部素子と電気的に接続可能と成っている。生成部53は、センサチップ10の駆動信号Sdrを生成するものであり、外部アンテナ54は、駆動信号Sdrを送信するとともに、検出信号Sdtを受信するものである。また、算出部55は、空気の圧力、温度、弁体81の開度、及び、空気の流量を算出するものである。外部アンテナ54は、特許請求の範囲に記載の外部通信部に相当する。
【0055】
生成部53にて生成された駆動信号Sdrは、算出部55と外部アンテナ54とに供給される。外部アンテナ54に供給された駆動信号Sdrは、外部アンテナ54にて電波信号に変換され、この電波信号に変換された駆動信号Sdrが内部アンテナ40に供給される。内部アンテナ40に供給された駆動信号Sdrは、内部アンテナ40にて電波信号から電気信号に変換され、変換された駆動信号Sdrが、弾性波部20に供給される。この結果、駆動信号Sdrの周波数に依存する表面弾性波W〜Wが上面10aで発生し、この表面弾性波W〜Wが、弾性波部20から遠ざかるように、上面10aを伝播する。この伝播した表面弾性波W〜Wの一部は、反射部30にて反射され、この反射された表面弾性波W〜Wの一部、すなわち、上面10aの状態に依存する表面弾性波W〜W(検出信号Sdt)の一部が、弾性波部20にて電気信号に変換される。この電気信号に変換された検出信号Sdtが、内部アンテナ40にて電波信号に変換され、この電波信号に変換された検出信号Sdtが、外部アンテナ54に伝達される。外部アンテナ54に伝達された検出信号Sdtは、外部アンテナ54にて電波信号から電気信号に変換され、変換された検出信号Sdtが、算出部55に伝達される。算出部55は、先ず、駆動信号Sdrと検出信号Sdtとに基づいて、空気の圧力、温度、及び、弁体81の開度を算出し、その後、算出された空気の圧力、温度、及び、弁体81の開度に基づいて、空気の流量を算出する。
【0056】
図3に示すように、本実施形態に係る算出部55は、3つの記憶部57a〜57cと、演算部58と、を有する。第1記憶部57aには、第1表面弾性波Wの周波数fと、第2表面弾性波Wの周波数fとの差異f−fと、第1表面弾性波Wの圧力特性Pとの関係が記憶されており、第2記憶部57bには、第2表面弾性波Wの周波数fと、駆動信号Sdrの周波数fdrとの差異fdr−fと、第2表面弾性波Wの温度特性Tとの関係が記憶されている。また、第3記憶部57cには、外部アンテナ54と内部アンテナ40との送受信時間Ttr1と、弁体81の開度との関係が記憶されている。
【0057】
上記したように、センサチップ10の第1領域11には薄肉部14が形成されているので、第1領域11側の上面10aは、空気の圧力によって歪み易くなっている。そのため、第1領域11側の上面10aを伝播する第1表面弾性波Wの周波数fが、流体の圧力によって変動し易くなっている。これに対して、第2領域12には薄肉部14が形成されていないので、第2領域12側の上面10aは、空気の圧力によって歪み難くなっている。そのため、第2領域12側の上面10aを伝播する第2表面弾性波Wの周波数f、及び、第3表面弾性波Wの周波数fは、空気の圧力によって変動し難くなっている。これにより、第1表面弾性波Wの周波数fと、第2表面弾性波Wの周波数fとの差異f−fを算出することで、空気の圧力を検出することが可能となっている。演算部58は、差異f−fを算出した後に、この差異f−fに対応する圧力特性Pを第1記憶部57aから取り出して、空気の圧力を演算する。なお、第3表面弾性波Wは、第2表面弾性波Wと同様に第2領域12を伝播するので、その周波数fは、第2表面弾性波Wの周波数fと同等であることが期待される。したがって、演算部58は、差異f−fを算出した後に、この差異f−fに対応する圧力特性Pを第1記憶部57aから取り出して、空気の圧力を演算しても良い。
【0058】
また、上記したように、第2領域12には薄肉部14が形成されておらず、圧電材料は温度が上昇すると伸びる性質を有するので、第2領域12側の上面10aの形状は、空気の温度に依存するようになっている。これにより、第2表面弾性波Wの周波数fと、駆動信号Sdrの周波数fdrとの差異fdr−fを算出することで、空気の温度を検出することが可能となっている。演算部58は、差異fdr−fに対応する温度特性Tを第2記憶部57bから取り出して、空気の温度を演算する。なお、上記したように、第3表面弾性波Wの周波数fは、第2表面弾性波Wの周波数fと同等であることが期待されるので、演算部58は、差異fdr−fを算出した後に、この差異fdr−fに対応する温度特性Tを第2記憶部57bから取り出して、空気の温度を演算しても良い。
【0059】
流量を調整するために、弁体81が開度を調整した場合、弁体81に設けられたセンサチップ10と処理手段50との相対距離Lが変動する。この結果、外部アンテナ54と内部アンテナ40との送受信時間Ttr1が変動する。これにより、この送受信時間Ttr1に基づいて、弁体81の開度を検出することができる。演算部58は、駆動信号Sdrの送信時間と検出信号Sdtの受信時間とに基づいて、送受信時間Ttr1を算出した後、送受信時間Ttr1に対応する弁体81の開度を第3記憶部57cから取り出して、弁体81の開度を演算する。
【0060】
最後に、演算部58は、算出された空気の圧力、温度、及び、弁体81の開度に基づいて、空気の流量を算出する。本実施形態に係る演算部58は、特許請求の範囲に記載の第1演算部〜第3演算部の機能を含んでいる。
【0061】
なお、上記した送受信時間Ttr1は、センサチップ10と処理手段50との相対距離Lに依存し、以下に示す計算を行うことで、算出される。
【0062】
本実施形態では、第2弾性波部22と第2反射部32との距離がL+Lとなっている。したがって、生成部53と外部アンテナ54、内部アンテナ40と弾性波部20、及び、外部アンテナ54と算出部55との距離が無視できるとすると、生成部53から送信された信号が第2反射部32にて反射され、算出部55にて受信される時間Tは、距離L+(L+L)に依存する。これに対して、第2弾性波部22と第3反射部33との距離はLとなっているので、生成部53から送信された信号が第3反射部33にて反射され、算出部55にて受信される時間Tは、距離L+Lに依存する。したがって、時間TとTとは、距離L分だけ異なることとなる。本実施形態では、距離Lと距離Lとが等しくなっているので、時間TとTとは、距離L分だけ異なることとなる。以上により、距離L+Lに依存する時間Tから、距離Lに依存するT−Tを引いた値、2T−Tは、外部アンテナ54と内部アンテナ40(センサチップ10)との相対距離Lのみに依存することとなる。この値が、上記した送受信時間Ttr1に相当する。なお、距離Lが距離Lと等しくない場合、T−(L/L)(T−T)という計算にて得られた値が、送受信時間Ttr1に相当する。
【0063】
次に、本実施形態に係る流量検出装置100の作用効果を説明する。上記したように、センサチップ10と、処理手段50とが、空気の温度、圧力、及び、弁体の開度を検出するセンサとしての機能を果たしており、3つの物理量を2つの部材によって検出している。したがって、上記した3つの物理量を検出するために、3つの部材を用いる構成と比べて、部品点数が削減される。
【0064】
また、本実施形態では、吸気管80内の弁体81にセンサチップ10が設けられ、上面10aで発生した表面弾性波が、内部アンテナ40を介して外部アンテナ54に検出信号Sdtとして送信され、この検出信号Sdtとセンサチップ10の駆動信号Sdrとに基づいて、空気の温度と圧力とが算出部55で算出される。これによれば、温度計を差し込むための孔や、圧力センサを差し込むための孔を吸気管80に形成しなくともよいので、コストが削減される。また、吸気管80内を流れている空気が、外部へ漏れることが抑止される。更に言えば、流量検出装置100の構造が簡素化される。
【0065】
上面10aには溝13が形成されており、この溝13によって、上面10aが第1領域11と第2領域12とに分けられている。これにより、第1表面弾性波Wが第2弾性波部22に伝播することが抑制され、第2表面弾性波W及び第3表面弾性波Wが第1弾性波部21に伝播することが抑制される。
【0066】
第3反射部33が、第2弾性波部22と第2反射部32との間に形成されている。これによれば、第2弾性波部22との距離が異なる反射部32,33それぞれから、第2弾性波部22に表面弾性波W、Wが反射される。この結果、第2弾性波部22にて、複数の表面弾性波W、W(複数の検出信号Sdt)を検出することができるので、流体の温度や圧力の検出精度が向上される。
【0067】
センサチップ10は、弁体81の面81aにおける、軸心82の鉛直上方の部位に設けられており、処理手段50(外部アンテナ54)は、吸気管80の下流側における、センサチップ10側(弁体81の鉛直上方)の外壁80aに設けられている。これにより、弁体81の開度が大きくなる(弁体81が時計回りに回転する)につれて、処理手段50とセンサチップ10とが離れるようになっている。これにより、送受信時間Ttr1の変化量が大きくなるので、弁体81の開度が大きくなり始める時の検出精度が向上される。また、上記したように、センサチップ10は、弁体81の面81aにおける、軸心82の鉛直上方の部位に設けられている。したがって、空気に含まれる水分によって、吸気管80の内壁面に結露が生じた場合に、この結露がセンサチップ10に付着することが抑制される。これにより、結露によって、表面弾性波の周波数が変動することが抑制される。
【0068】
第1実施形態では、外部アンテナ54と内部アンテナ40との送受信時間Ttr1に基づいて、弁体81の開度を検出する例を示した。しかしながら、生成部53から駆動信号Sdrが送信され、算出部55にて検出信号Sdtが受信されるまでの送受信時間Ttr2に基づいて、弁体81の開度を検出しても良い。この送受信時間Ttr2は、生成部53と外部アンテナ54、内部アンテナ40と弾性波部20、及び、外部アンテナ54と算出部55との距離が無視できるとすると、外部アンテナ54と内部アンテナ40(センサチップ10)との相対距離Lと、弾性波部20と反射部30との距離に依存する。上記したように、弁体81の開度は、相対距離Lに依存するが、弾性波部20と反射部30との距離は一定なので、送受信時間Ttr2に基づいて弁体81の開度を検出することもできる。この場合、第3記憶部57cには、送受信時間Ttr2と、弁体81の開度との関係が記憶されている。そして、第3記憶部57cが、特許請求の範囲に記載の第4記憶部に相当し、演算部58が、特許請求の範囲に記載の第4演算部の機能を含んでいる。なお、この方法によって、弁体81の開度を検出する場合、第3反射部33を除去することができる。
【0069】
また、詳しい構成は省略するが、弁体81が開度を調整して、相対距離Lが変動すると、駆動信号Sdrと検出信号Sdtとの位相差が変動するので、この位相差に基づいて、弁体81の開度を検出しても良い。
【0070】
更に言えば、弁体81が開度を調整して、相対距離Lが変動すると、外部アンテナ54の受信面積が変動するので、外部アンテナ54にて受信される検出信号Sdtの信号強度が変動する。したがって、上記した送受信時間ではなく、検出信号Sdtの信号強度に基づいて、弁体81の開度を検出しても良い。この場合、第3記憶部57cには、検出信号Sdtの信号強度と、弁体81の開度との関係が記憶されている。そして、第3記憶部57cが、特許請求の範囲に記載の第5記憶部に相当し、演算部58が、特許請求の範囲に記載の第5演算部の機能を含んでいる。なお、この方法によって、弁体81の開度を検出する場合、第3反射部33を除去することができる。
【0071】
第1実施形態では、センサチップ10の上面10aに、第1弾性波部21と第2弾性波部22とが形成され、第1内部アンテナ41と第2内部アンテナ42とが形成された例を示した。しかしながら、図4に示す構成を採用することで、第1実施形態に係る流量検出装置100の作用効果を実現しつつ、第2弾性波部22と第2内部アンテナ42とを省略することができる。これにより、部品点数を削減することができる。
【0072】
なお、図4では、第1弾性波部21を介して、第1反射部31と第2反射部32とが、上面10aで所定距離離れて形成され、第1弾性波部21と第2反射部32との間に、第3反射部33が形成されている。また、第1弾性波部21と第1反射部31との距離、第1弾性波部21と第2反射部32との距離、及び、第1弾性波部21と第3反射部33との距離がそれぞれ異なっている。これにより、第1表面弾性波Wを含む検出信号Sdtが第1内部アンテナ41から外部アンテナ54に伝播されるタイミング、第2表面弾性波Wを含む検出信号Sdtが第1内部アンテナ41から外部アンテナ54に伝播するタイミング、及び、第3表面弾性波Wを含む検出信号Sdtが第1内部アンテナ41から外部アンテナ54に伝播するタイミングそれぞれが異なっている。したがって、上記した3つの検出信号Sdtが外部アンテナ54で混線することが抑制される。
【0073】
第1実施形態では、上面10aが、溝13によって領域11,12に分割された例を示した。しかしながら、図5及び図6に示すように、上面10aが、溝13,15によって3つの領域11,12,16に分割された構成を採用することもできる。
【0074】
図5では、第1領域11に、薄肉部14と、第1弾性波部21と、第1反射部31と、第1内部アンテナ41とが形成され、第2領域12に、第2弾性波部22と、第2反射部32と、第2内部アンテナ42とが形成され、第3領域16に、第3弾性波部23と、第3反射部33と、第3内部アンテナ43とが形成されている。
【0075】
図6では、第1領域11に、薄肉部14と、第1弾性波部21と、第1反射部31と、第1内部アンテナ41とが形成され、第2領域12に、第2弾性波部22と、第2反射部32と、第3反射部33と、第2内部アンテナ42とが形成され、第3領域16に、感湿膜70と、第3弾性波部23と、第4反射部34と、第3内部アンテナ43とが形成されている。
【0076】
上記したように、吸気管80内を通る空気は、エンジンに供給される。この吸気管80内を通る空気は、ガソリン等の燃料と混合されて、その混合された気体がエンジンに供給される。この場合、エンジンの燃焼を制御するに当たり、空気に含まれる水分量(湿度)を予め知っておくことが望ましい。それというのも、水分量が多いと、エンジンが燃焼し難くなり、水分量が少ないと、エンジンが燃焼し易くなるからである。
【0077】
これに対して、図6に示す構成では、センサチップ10に感湿膜70が形成されている。感湿膜70に水分が吸湿されると、感湿膜70が重くなり、感湿膜70を伝播する表面弾性波の周波数が変化する。したがって、感湿膜70を伝播する表面弾性波の周波数変化を検出することで、流体に含まれる湿度を検出することができる。これにより、エンジン制御に必要な水分量を予め知っておくことができる。
【0078】
なお、図6では、感湿膜70がセンサチップ10に形成された例を示した。しかしながら、排気ガスを再利用する車両において、吸気管80内を排気ガスが流動し、その排気ガスがエンジンに供給される場合、エンジンの燃焼を制御するに当たり、排気ガスに含まれる成分を予め知っておくことが望ましい。したがって、この場合、感湿膜70の代わりに、流体成分吸着膜をセンサチップ10に形成しておくと良い。流体成分吸着膜に流体の成分が吸着されると、流体成分吸着膜が重くなり、流体成分吸着膜を伝播する表面弾性波の周波数が変化する。したがって、流体成分吸着膜を伝播する表面弾性波の周波数変化を検出することで、流体に含まれる排気ガスの成分を検出することができる。これにより、排気ガスに含まれる成分を予め知っておくことができる。図4〜図6は、センサチップの変形例を示す斜視図であり、(a)は上面側、(b)は下面側を示す。なお、上記した感湿膜70や流体成分吸着膜を伝播する表面弾性波の周波数変化の算出は、算出部55にて行われる。
【0079】
(第2実施形態)
次に、本発明の第2実施形態を、図7に基づいて説明する。図7は、第2実施形態に係るセンサチップの概略構成を示す斜視図であり、(a)は上面側、(b)は下面側を示す。図7は、第1実施形態で示した図2に対応している。
【0080】
第2実施形態に係る流量検出装置100は、第1実施形態によるものと共通するところが多いので、以下、共通部分については詳しい説明は省略し、異なる部分を重点的に説明する。なお、第1実施形態に示した要素と同一の要素には、同一の符号を付与するものとする。
【0081】
第1実施形態では、反射部30が上面10aに形成された例を示した。これに対し、本実施形態では、反射部30の代わりに、受信用弾性波部20bが上面10aに形成された点を特徴とする。
【0082】
弾性波部20は、駆動信号Sdrを受けて表面弾性波を発生する送信用弾性波部20aと、上面10aを伝播する表面弾性波を検出信号Sdtに変換する受信用弾性波部20bと、を有する。本実施形態の送信用弾性波部20aは、第1送信用弾性波部21aと、第2送信用弾性波部22aと、を有し、受信用弾性波部20bは、第1受信用弾性波部21bと、第2受信用弾性波部22bと、を有する。第1弾性波部21a,21bは第1領域11に形成され、第2弾性波部22a,22bは第2領域12に形成されている。
【0083】
内部アンテナ40は、駆動信号Sdrを受信する受信用内部アンテナ40aと、検出信号Sdtを送信する送信用内部アンテナ40bと、を有する。本実施形態の受信用内部アンテナ40aは、第1受信用内部アンテナ41aと、第2受信用内部アンテナ42aと、を有し、送信用内部アンテナ40bは、第1送信用内部アンテナ41bと、第2送信用内部アンテナ42bと、を有する。第1内部アンテナ41a,41bは第1領域11に形成され、第2内部アンテナ42a,42bは第2領域12に形成されている。
【0084】
送信用弾性波部20aは、センサチップ10に形成された配線(図示略)を介して、受信用内部アンテナ40aと電気的に接続され、受信用弾性波部20bは、センサチップ10に形成された配線(図示略)を介して、送信用内部アンテナ40bと電気的に接続されている。受信用内部アンテナ40aを介して、処理手段50から送信用弾性波部20aに、駆動信号Sdrが供給されると、上面10aに表面弾性波が発生し、この表面弾性波が受信用弾性波部20bに伝達される。この結果、受信用弾性波部20bにて表面弾性波が検出信号Sdtに変換され、この検出信号Sdtが、送信用内部アンテナ40bを介して、処理手段50に送信される。処理手段50の算出部55は、先ず、駆動信号Sdrと検出信号Sdtとに基づいて、空気の圧力、温度、及び、弁体81の開度を算出し、その後、算出された空気の圧力、温度、及び、弁体81の開度に基づいて、空気の流量を算出する。
【0085】
以上の構成により、本実施形態に係る流量検出装置100は、第1実施形態に係る流量検出装置100と同等の効果を奏する。すなわち、空気の温度、圧力、及び、弁体の開度を、センサチップ10と処理手段50の2つの部材によって検出しているので、上記した3つの物理量を検出するために、3つの部材を用いる構成と比べて、部品点数が削減される。
【0086】
なお、第2実施形態に係る流量検出装置100の他の作用効果は、第1実施形態の流量検出装置100の作用効果と重複するので、その記載を省略する。
【0087】
ところで、第1実施形態では、外部アンテナ54と内部アンテナ40との送受信時間Ttr1に基づいて、弁体81の開度を検出する例を示した。これに対して、第2実施形態では、生成部53から駆動信号Sdrが送信され、算出部55にて検出信号Sdtが受信されるまでの送受信時間Ttr2に基づいて、弁体81の開度を検出する。第2実施形態の第3記憶部57cには、送受信時間Ttr2と、弁体81の開度との関係が記憶されている。なお、第2実施形態においても、駆動信号Sdrと検出信号Sdtとの位相差に基づいて、弁体81の開度を検出しても良い。又は、検出信号Sdtの信号強度に基づいて、弁体81の開度を検出しても良い。この場合、第3記憶部57cには、検出信号Sdtの信号強度と、弁体81の開度との関係が記憶されている。
【0088】
第2実施形態では、センサチップ10の上面10aに、第1弾性波部21a,21bと第2弾性波部22a,22bとが形成され、第1内部アンテナ41a,41bと第2内部アンテナ42a,42bとが形成された例を示した。しかしながら、図8に示す構成を採用することで、第2実施形態に係る流量検出装置100の作用効果を実現しつつ、第2送信用弾性波部22aと第2受信用内部アンテナ42aとを省略することができる。これにより、部品点数を削減することができる。図8では、第1送信用弾性波部21aを介して、第1受信用弾性波部21bと第2受信用弾性波部22bとが、上面10aで所定距離離れて形成されている。そして、第1送信用弾性波部21aと第1受信用弾性波部21bとの距離と、第1送信用弾性波部21aと第2受信用弾性波部22bとの距離とが異なっている。これにより、第1表面弾性波Wを含む検出信号Sdtが外部アンテナ54に伝播されるタイミングと、第2表面弾性波Wを含む検出信号Sdtが外部アンテナ54に伝播するタイミングとが異なり、2つの検出信号Sdtが外部アンテナ54で混線することが抑制される。図8に示す構成は、第1実施形態で示した図4に示す構成に対応している。
【0089】
第2実施形態では、図7に示すように、上面10aが、溝13によって領域11,12に分割された例を示した。しかしながら、図9及び図10に示すように、上面10aが、溝13,15によって3つの領域11,12,16に分割された構成を採用することもできる。
【0090】
図9では、第1領域11に、薄肉部14と、第1弾性波部21a,21bと、第1内部アンテナ41a,41bとが形成され、第2領域12に、第2弾性波部22a,22bと、第2内部アンテナ42a,42bとが形成され、第3領域16に、第3弾性波部23a,23bと、第3内部アンテナ43a,43bとが形成されている。そして、第1送信用弾性波部21aと第1受信用弾性波部21bとの距離と、第2送信用弾性波部22aと第2受信用弾性波部22bとの距離とが相等しく、これらの距離が、第3送信用弾性波部23aと第3受信用弾性波部23bとの距離と異なっている。この構成は、第1実施形態で示した図5に示す構成に対応しており、図5に示す構成は、第1実施形態で説明した図2に示す構成と同等の構成となっている。したがって、図9に示す構成の場合、外部アンテナ54と内部アンテナ40との送受信時間Ttr1に基づいて、弁体81の開度を演算することができる。この場合、第3記憶部57cには、送受信時間Ttr1と、弁体81の開度との関係が記憶されている。
【0091】
図10では、第1領域11に、薄肉部14と、第1弾性波部21a,21bと、第1内部アンテナ41a,41bとが形成され、第2領域12に、第2弾性波部22a,22bと、第2内部アンテナ42a,42bとが形成され、第3領域16に、感湿膜70と、第3弾性波部23a,23bと、第3内部アンテナ43a,43bとが形成されている。この構成は、第1実施形態で示した図6に示す構成に対応している。したがって、図10に示す構成の場合、エンジン制御に必要な水分量を予め知っておくことができる。なお、排気ガスを再利用する車両において、吸気管80内を排気ガスが流動し、その排気ガスがエンジンに供給される場合、感湿膜70の代わりに、流体成分吸着膜をセンサチップ10に形成することで、流体に含まれる排気ガスの成分を検出することができる。これにより、排気ガスに含まれる成分を予め知っておくことができる。図8〜図10は、センサチップの変形例を示す斜視図であり、(a)は上面側、(b)は下面側を示す。
【0092】
以上、本発明の好ましい実施形態について説明したが、本発明は上記した実施形態になんら制限されることなく、本発明の主旨を逸脱しない範囲において、種々変形して実施することが可能である。
【0093】
第1実施形態では、センサチップ10は、上面10aが空気に晒されるように、下面10bを弁体81への固定面として、弁体81に固定された例を示した。しかしながら、一面が開口されたセンサパッケージに、その開口部から上面10aが露出されるようにセンサチップ10が搭載され、センサチップ10が搭載されたセンサパッケージを、弁体81に固定しても良い。
【0094】
第1実施形態では、吸気管80に1つの処理手段50が設けられた例を示した。しかしながら、吸気管80に、複数の処理手段50を設けても良い。これによれば、上記した送受信時間Ttr1(Ttr2)、位相差、及び、検出信号Sdtの信号強度の変化量を複数検出することができるので、弁体81の開度の検出精度が向上される。
【0095】
第1実施形態では、処理手段50は、吸気管80の下流側における、センサチップ10側(弁体81の鉛直上方)の外壁80aに設けられている例を示した。しかしながら、図11に示すように、もう一つの処理手段50が、吸気管80の上流側における、弁体81の鉛直下方の外壁80aに設けても良い。これによれば、弁体81の開度が全開の状態から、弁体81が反時計回りに回転して、弁体81の開度が小さくなるにつれて、センサチップ10が、新たに設けられた処理手段50から遠ざかる。この結果、弁体81の開度が小さくなり始める時の、上記した送受信時間Ttr1(Ttr2)、及び、信号強度の変化量が大きくなる。これにより、弁体81の開度が小さくなり始める時の、弁体81の開度の検出精度が向上される。図11は、外部アンテナの配置を説明するための断面図である。
【符号の説明】
【0096】
10・・・センサチップ
20・・・弾性波部
30・・・反射部
40・・・内部アンテナ
50・・・処理部
53・・・生成部
54・・・外部アンテナ
55・・・算出部
100・・・流量検出装置

【特許請求の範囲】
【請求項1】
管の内部を流れる流体の流量を検出する流量検出装置であって、
圧電材料から成る、前記管内の弁体に設けられたセンサチップと、
前記センサチップに駆動信号を供給し、且つ、前記センサチップの検出信号を処理する、前記管の外部に設けられた処理手段と、を有し、
前記センサチップは、
前記弁体への固定面とは異なり、前記流体に晒されるセンサ面に、前記駆動信号を受けて表面弾性波を発生し、且つ、前記センサ面を伝播する表面弾性波を前記検出信号に変換する弾性波部と、
前記弾性波部によって発生された表面弾性波を、前記弾性波部に反射する反射部と、
前記駆動信号を受信するとともに、前記検出信号を送信する内部通信部と、を有し、
前記処理手段は、
前記駆動信号を生成する生成部と、
前記駆動信号を送信するとともに、前記検出信号を受信する外部通信部と、
前記駆動信号と前記検出信号とに基づいて、前記流体の圧力、温度、前記弁体の開度、及び、前記流体の流量を算出する算出部と、を有することを特徴とする流量検出装置。
【請求項2】
前記弾性波部は、第1弾性波部と、第2弾性波部と、を有し、
前記反射部は、第1反射部と、第2反射部と、を有し、
前記内部通信部は、第1内部通信部と、第2内部通信部と、を有し、
前記センサチップには、厚さが局所的に薄くなった薄肉部が形成され、
前記第1弾性波部と前記第1反射部とが、前記薄肉部を介して、前記センサ面側で所定距離離れて形成され、
前記第2弾性波部と前記第2反射部とが、前記薄肉部を避けて、前記センサ面側で所定距離離れて形成され、
前記第1弾性波部が、前記第1内部通信部と電気的に接続され、
前記第2弾性波部が、前記第2内部通信部と電気的に接続されていることを特徴とする請求項1に記載の流量検出装置。
【請求項3】
前記第1弾性波部と前記第1反射部との間の距離と、
前記第2弾性波部と前記第2反射部との間の距離とが異なることを特徴とする請求項2に記載の流量検出装置。
【請求項4】
前記センサチップには、前記センサ面を2つに分かつ溝が形成されており、
前記溝によって分かれた前記センサ面の一方の領域に、前記第1弾性波部と、前記第1反射部と、前記第1内部通信部とが形成され、他方の領域に、前記第2弾性波部と、前記第2反射部と、前記第2内部通信部とが形成されていることを特徴とする請求項2又は請求項3に記載の流量検出装置。
【請求項5】
前記算出部は、
前記センサ面における前記第1弾性波部と前記第1反射部との間を伝播する第1表面弾性波の周波数と、前記第2弾性波部と前記第2反射部との間を伝播する第2表面弾性波の周波数との差異と、前記第1表面弾性波の圧力特性との関係が記憶された第1記憶部と、
該第1記憶部から、前記第1表面弾性波の周波数と前記第2表面弾性波の周波数との差異に対応する、前記第1表面弾性波の圧力特性を取り出して、前記流体の圧力を演算する第1演算部と、を有することを特徴とする請求項2〜4いずれか1項に記載の流量検出装置。
【請求項6】
前記算出部は、
前記センサ面における前記第2弾性波部と前記第2反射部との間を伝播する第2表面弾性波の周波数と、前記駆動信号の周波数との差異と、前記第2表面弾性波の温度特性との関係が記憶された第2記憶部と、
該第2記憶部から、前記第2表面弾性波の周波数と前記駆動信号の周波数との差異に対応する、前記第2表面弾性波の温度特性を取り出して、前記流体の温度を演算する第2演算部と、を有することを特徴とする請求項2〜5いずれか1項に記載の流量検出装置。
【請求項7】
前記反射部は、第3反射部を有し、
該第3反射部は、前記第2弾性波部と前記第2反射部との間に形成されていることを特徴とする請求項2〜6いずれか1項に記載の流量検出装置。
【請求項8】
前記弾性波部は、第3弾性波部を有し、
前記反射部は、第3反射部を有し、
前記内部通信部は、第3内部通信部を有し、
前記第3弾性波部と前記第3反射部とが、前記薄肉部を避けて、前記センサ面側で所定距離離れて形成され、
前記第3弾性波部が、前記第3内部通信部と電気的に接続されていることを特徴とする請求項2〜6いずれか1項に記載の流量検出装置。
【請求項9】
前記算出部は、
前記外部通信部と内部通信部との送受信時間と、前記弁体の開度との関係が記憶された第3記憶部と、
該第3記憶部から、前記送受信時間に対応する、前記弁体の開度を取り出して、前記弁体の開度を演算する第3演算部と、を有することを特徴とする請求項7又は請求項8に記載の流量検出装置。
【請求項10】
前記算出部は、
前記生成部から前記駆動信号が送信され、前記算出部にて前記検出信号が受信されるまでの送受信時間と、前記弁体の開度との関係が記憶された第4記憶部と、
該第4記憶部から、前記送受信時間に対応する、前記弁体の開度を取り出して、前記弁体の開度を演算する第4演算部と、を有することを特徴とする請求項1〜8いずれか1項に記載の流量検出装置。
【請求項11】
前記算出部は、
前記検出信号の信号強度と、前記弁体の開度との関係が記憶された第5記憶部と、
該第5記憶部から、前記検出信号の信号強度に対応する、前記弁体の開度を取り出して、前記弁体の開度を演算する第5演算部と、を有することを特徴とする請求項1〜8いずれか1項に記載の流量検出装置。
【請求項12】
前記弾性波部は、第4弾性波部を有し、
前記反射部は、第4反射部を有し、
前記内部通信部は、第4内部通信部を有し、
前記センサチップに感湿膜が形成され、
前記第4弾性波部と前記第4反射部とが、前記感湿膜を介して、前記センサ面側で所定距離離れて形成され、
前記第4弾性波部が、前記第4内部通信部と電気的に接続されていることを特徴とする請求項1〜11いずれか1項に記載の流量検出装置。
【請求項13】
前記弾性波部は、第5弾性波部を有し、
前記反射部は、第5反射部を有し、
前記内部通信部は、第5内部通信部を有し、
前記センサチップに流体成分吸着膜が形成され、
前記第5弾性波部と前記第5反射部とが、前記流体成分吸着膜を介して、前記センサ面側で所定距離離れて形成され、
前記第5弾性波部が、前記第5内部通信部と電気的に接続されていることを特徴とする請求項1〜12いずれか1項に記載の流量検出装置。
【請求項14】
管の内部を流れる流体の流量を検出する流量検出装置であって、
圧電材料から成る、前記管内の弁体に設けられたセンサチップと、
前記センサチップに駆動信号を供給し、且つ、前記センサチップの検出信号を処理する、前記管の外部に設けられた処理手段と、を有し、
前記センサチップは、
前記弁体への固定面とは異なり、前記流体に晒されるセンサ面に、前記駆動信号を受けて表面弾性波を発生する送信用弾性波部と、
前記センサ面を伝播する表面弾性波を前記検出信号に変換する受信用弾性波部と、
前記駆動信号を受信する受信用内部通信部と、
前記検出信号を送信する送信用内部通信部と、を有し、
前記処理手段は、
前記駆動信号を生成する生成部と、
前記駆動信号を送信するとともに、前記検出信号を受信する外部通信部と、
前記駆動信号と前記検出信号とに基づいて、前記流体の圧力、温度、前記弁体の開度、及び、前記流体の流量を算出する算出部と、を有することを特徴とする流量検出装置。
【請求項15】
前記送信用弾性波部は、第1送信用弾性波部と、第2送信用弾性波部と、を有し、
前記受信用弾性波部は、第1受信用弾性波部と、第2受信用弾性波部と、を有し、
前記受信用内部通信部は、第1受信用内部通信部と、第2受信用内部通信部と、を有し、
前記送信用内部通信部は、第1送信用内部通信部と、第2送信用内部通信部と、を有し、
前記センサチップには、厚さが局所的に薄くなった薄肉部が形成され、
前記第1送信用弾性波部と前記第1受信用弾性波部とが、前記薄肉部を介して、前記センサ面側で所定距離離れて形成され、
前記第2送信用弾性波部と前記第2受信用弾性波部とが、前記薄肉部を避けて、前記センサ面側で所定距離離れて形成され、
前記第1送信用弾性波部が、前記第1受信用内部通信部と電気的に接続され、
前記第1受信用弾性波部が、前記第1送信用内部通信部と電気的に接続され、
前記第2送信用弾性波部が、前記第2受信用内部通信部と電気的に接続され、
前記第2受信用弾性波部が、前記第2送信用内部通信部と電気的に接続されていることを特徴とする請求項14に記載の流量検出装置。
【請求項16】
前記第1送信用弾性波部と前記第1受信用弾性波部との間の距離と、
前記第2送信用弾性波部と前記第2受信用弾性波部との間の距離とが異なることを特徴とする請求項15に記載の流量検出装置。
【請求項17】
前記センサチップには、前記センサ面を2つに分かつ溝が形成されており、
前記溝によって分かたれた前記センサ面の一方の領域に、前記第1送信用弾性波部と、前記第1受信用弾性波部と、前記第1送信用内部通信部と、前記第1受信用内部通信部とが形成され、他方の領域に、前記第2送信用弾性波部と、前記第2受信用弾性波部と、前記第2送信用内部通信部と、前記第2受信用内部通信部とが形成されていることを特徴とする請求項15又は請求項16に記載の流量検出装置。
【請求項18】
前記算出部は、
前記センサ面における前記第1送信用弾性波部と前記第1受信用弾性波部との間を伝播する第1表面弾性波の周波数と、前記第2送信用弾性波部と前記第2受信用弾性波部との間を伝播する第2表面弾性波の周波数との差異と、前記第1表面弾性波の圧力特性との関係が記憶された第1記憶部と、
該第1記憶部から、前記第1表面弾性波の周波数と前記第2表面弾性波の周波数との差異に対応する、前記第1表面弾性波の圧力特性を取り出して、前記流体の圧力を演算する第1演算部と、を有することを特徴とする請求項15〜17いずれか1項に記載の流量検出装置。
【請求項19】
前記算出部は、
前記センサ面における前記第2送信用弾性波部と前記第2受信用弾性波部との間を伝播する第2表面弾性波の周波数と、前記駆動信号の周波数との差異と、前記第2表面弾性波の温度特性との関係が記憶された第2記憶部と、
該第2記憶部から、前記第2表面弾性波の周波数と前記駆動信号の周波数との差異に対応する、前記第2表面弾性波の温度特性を取り出して、前記流体の温度を演算する第2演算部と、を有することを特徴とする請求項15〜18いずれか1項に記載の流量検出装置。
【請求項20】
前記送信用弾性波部は、第3送信用弾性波部を有し、
前記受信用弾性波部は、第3受信用弾性波部を有し、
前記受信用内部通信部は、第3受信用内部通信部を有し、
前記送信用内部通信部は、第3送信用内部通信部を有し、
前記第3送信用弾性波部と前記第3受信用弾性波部とが、前記薄肉部を避けて、前記センサ面側で所定距離離れて形成され、
前記第3送信用弾性波部が、前記第3受信用内部通信部と電気的に接続され、
前記第3受信用弾性波部が、前記第3送信用内部通信部と電気的に接続されていることを特徴とする請求項15〜19いずれか1項に記載の流量検出装置。
【請求項21】
前記算出部は、
前記外部通信部と内部通信部との送受信時間と、前記弁体の開度との関係が記憶された第3記憶部と、
該第3記憶部から、前記送受信時間に対応する、前記弁体の開度を取り出して、前記弁体の開度を演算する第3演算部と、を有することを特徴とする請求項20に記載の流量検出装置。
【請求項22】
前記算出部は、
前記生成部から前記駆動信号が送信され、前記算出部にて前記検出信号が受信されるまでの送受信時間と、前記弁体の開度との関係が記憶された第4記憶部と、
該第4記憶部から、前記送受信時間に対応する、前記弁体の開度を取り出して、前記弁体の開度を演算する第4演算部と、を有することを特徴とする請求項14〜20いずれか1項に記載の流量検出装置。
【請求項23】
前記算出部は、
前記検出信号の信号強度と、前記弁体の開度との関係が記憶された第5記憶部と、
該第5記憶部から、前記検出信号の信号強度に対応する、前記弁体の開度を取り出して、前記弁体の開度を演算する第5演算部と、を有することを特徴とする請求項14〜20いずれか1項に記載の流量検出装置。
【請求項24】
前記送信用弾性波部は、第4送信用弾性波部を有し、
前記受信用弾性波部は、第4受信用弾性波部を有し、
前記受信用内部通信部は、第4受信用内部通信部を有し、
前記送信用内部通信部は、第4送信用内部通信部を有し、
前記センサチップに感湿膜が形成され、
前記第4送信用弾性波部と前記第4受信用弾性波部とが、前記感湿膜を介して、前記センサ面側で所定距離離れて形成され、
前記第4送信用弾性波部が、前記第4受信用内部通信部と電気的に接続され、
前記第4受信用弾性波部が、前記第4送信用内部通信部と電気的に接続されていることを特徴とする請求項14〜23いずれか1項に記載の流量検出装置。
【請求項25】
前記送信用弾性波部は、第5送信用弾性波部を有し、
前記受信用弾性波部は、第5受信用弾性波部を有し、
前記受信用内部通信部は、第5受信用内部通信部を有し、
前記送信用内部通信部は、第5送信用内部通信部を有し、
前記センサチップに流体成分吸着膜が形成され、
前記第5送信用弾性波部と前記第5受信用弾性波部とが、前記流体成分吸着膜を介して、前記センサ面側で所定距離離れて形成され、
前記第5送信用弾性波部が、前記第5受信用内部通信部と電気的に接続され、
前記第5受信用弾性波部が、前記第5送信用内部通信部と電気的に接続されていることを特徴とする請求項14〜24いずれか1項に記載の流量検出装置。
【請求項26】
前記弁体によって、前記管が上流側と下流側とに分断され、前記弁体が一方向に回転することで、前記管の上流側と下流側とが連通されるようになっており、
前記弁体が一方向に回転した状態において、前記弁体における前記管の上流側の部位に、前記センサチップが設けられ、
前記管の下流側における、前記センサチップ側の外壁に、前記処理手段が設けられていることを特徴とする請求項1〜25いずれか1項に記載の流量検出装置。
【請求項27】
前記処理手段は、前記管の下流側における、前記センサチップ側の外壁に設置された第1処理手段と、前記管の上流側における、前記センサチップ側の外壁とは反対側の外壁に設置された第2処理手段と、を有することを特徴とする請求項26に記載の流量検出装置。
【請求項28】
前記管の外壁に、複数の処理手段が設置されていることを特徴とする請求項1〜27いずれか1項に記載の流量検出装置。
【請求項29】
前記管を流れる流体の流動方向と鉛直方向とが交差し、前記弁体によって前記管が上流側と下流側とに分断された状態から、前記弁体が軸心を中心として一方向に回転することで、前記管の上流側と下流側とが連通されるようになっており、
前記弁体によって前記管が上流側と下流側とに分断された状態において、前記弁体における前記軸心よりも鉛直上方に位置する部位に、前記センサチップが設けられていることを特徴とする請求項1〜28いずれか1項に記載の流量検出装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate


【公開番号】特開2012−42430(P2012−42430A)
【公開日】平成24年3月1日(2012.3.1)
【国際特許分類】
【出願番号】特願2010−186411(P2010−186411)
【出願日】平成22年8月23日(2010.8.23)
【出願人】(000004260)株式会社デンソー (27,639)
【Fターム(参考)】