説明

液滴吐出ヘッド、液滴吐出装置、液滴吐出ヘッドの製造方法及び液滴吐出装置の製造方法

【課題】同時に複数のノズルを駆動できる多ノズル化した液滴吐出ヘッドにおいて、アク
チュエータの駆動回路の時定数を小さくして、液滴吐出動作の遅れをできるだけ低減した
液滴吐出ヘッド、液滴吐出装置、液滴吐出ヘッドの製造方法及び液滴吐出装置の製造方法
を提供することを目的とする。
【解決手段】液滴吐出ヘッド100は、キャビティ基板3と、振動板8にギャップ18を
隔てて対向し、振動板8を駆動する個別電極17が形成された電極ガラス基板4とを備え
、電極ガラス基板4には、個別電極17に駆動信号を供給するドライバIC15に外部か
ら電力を取り入れるための入力配線20が形成されており、入力配線20の一部を、導電
性酸化物及び金属材料の積層構造としたことを特徴とする。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、インクやその他の液体を吐出する液滴吐出ヘッド、液滴吐出装置、液滴吐出
ヘッドの製造方法及び液滴吐出装置の製造方法に関し、特にアクチュエータ制御用のドラ
イバICをインクジェットヘッド内に埋め込む構造の液滴吐出ヘッド、液滴吐出装置、液
滴吐出ヘッドの製造方法及び液滴吐出装置の製造方法に関する。
【背景技術】
【0002】
液滴を吐出するための装置として、たとえばインクジェット記録装置に搭載されるイン
クジェットヘッドが知られている。一般に、このインクジェットヘッドは、インク滴を吐
出するための複数のノズル孔が形成されたノズル基板と、このノズル基板に接合されノズ
ル孔に連通する吐出室や、リザーバ等のインク流路が形成されたキャビティ基板とを備え
、吐出室に圧力を加えることによりインク滴を選択されたノズル孔より吐出するように構
成されている。このようにインク滴を吐出させる方式としては、静電気力を利用する静電
駆動方式や、圧電素子による圧電方式、発熱素子を利用するバブルジェット(登録商標)
方式等がある。
【0003】
このうち、静電駆動方式のインクジェットヘッドにおいては、吐出室の底部を振動板と
したキャビティ基板と、この振動板に所定のギャップ(空隙)を介して対向する個別電極
を形成した電極ガラス基板とを接合させた構成となっている。インク滴を吐出する際には
、個別電極に駆動電圧を印加してプラスに帯電させ、対応する振動板に駆動電圧を印加し
てマイナスに帯電させる。そうすると、この時に生じる静電引力により振動板が個別電極
側に弾性変形する。そして、この駆動電圧をオフにすると、振動板が復元する。このとき
、吐出室の内部の圧力が急激に上昇し、吐出室内のインクの一部をインク滴としてノズル
孔から吐出させることになる。
【0004】
近年、静電駆動方式のインクジェットヘッドでは、高解像度画像の高速印刷及び多色印
刷を目的として、ノズル密度の高密度化及び多列化が進んでおり、それに伴って1列当た
りのノズル及び吐出室の数が増加し、ノズル列の長尺化が進んでいる。また、インクジェ
ットヘッドの小型化を目的として、アクチュエータ制御用のドライバICをインクジェッ
トヘッド内に埋め込むようにした構造も多くなってきている。このようなインクジェット
ヘッドでは、電極ガラス基板の表面に、アクチュエータ制御用のドライバICを直接実装
するとともに、このドライバICを駆動するための入力信号を供給するための入力配線を
形成するようになっている。
【0005】
そのようなものとして、「間隙を隔てて対向して配置される振動板と対向電極とを備え
た静電アクチュエータにおいて、前記対向電極は、気密封止された状態で前記振動板に対
向している対向電極部と、この対向電極部に連続して気密封止された隙間部分から外部に
引き出されている配線部とを含み、前記対向電極部はITOから形成され、配線部は金属
材料から形成されている静電アクチュエータ」が提案されている(たとえば、特許文献1
参照)。
【0006】
また、「液滴を吐出する複数のノズル孔が形成されたノズル基板と、底壁が振動板を形
成し、前記液滴を溜めておく吐出室となる凹部が形成されたキャビティ基板と、前記振動
板に対向し、前記振動板を駆動する個別電極が形成された電極基板と、前記吐出室に液滴
を供給する共通液滴室となる凹部と、前記共通液滴室から前記吐出室へ液滴を移送するた
めの貫通孔と、前記吐出室から前記ノズル孔へ液滴を移送するノズル連通孔とを有するリ
ザーバ基板と、前記個別電極に駆動信号を供給するドライバICとを備え、前記キャビテ
ィ基板には、第1の穴部が設けられ、前記リザーバ基板には、第2の穴部が設けられてお
り、前記第1の穴部と前記第2の穴部は連通して収容部を形成し、前記ドライバICは前
記収容部に収容されている液滴吐出ヘッド」が提案されている(たとえば、特許文献2参
照)。
【0007】
【特許文献1】特開2001−253079号公報
【特許文献2】特開2006−224564号公報
【発明の開示】
【発明が解決しようとする課題】
【0008】
特許文献1に記載の静電アクチュエータは、アクチュエータの時定数を小さくすること
を目的とし、対向電極部をITO(Indium Tin Oxide:インジウム錫酸
化物)で形成し、配線部を金属材料で形成することにより、動作遅れがなく、耐久性に優
れた静電アクチュエータを実現している。ただし、この静電アクチュエータは、アクチュ
エータ制御用のドライバICをインクジェットヘッド内に埋め込む構造ではなく、このド
ライバICを駆動するための入力信号を供給するための入力配線については考慮されてい
ない。
【0009】
特許文献2に記載の液滴吐出ヘッドは、アクチュエータ制御用のドライバICをインク
ジェットヘッド内に埋め込む構造により、ノズル等を多列化することが可能で、サイズを
小さくした液滴吐出ヘッドを実現している。しかしながら、同時に複数のノズルを駆動す
ることができるため、駆動するノズル数の増加に応じてアクチュエータの駆動回路の時定
数が大きくなり、アクチュエータの動作遅れ、すなわち液滴吐出動作の遅れが生じやすく
なる。特に、アクチュエータを構成している個別電極と、駆動信号を外部からドライバI
Cへ供給する入力配線とを、ITOから形成している場合にはそれが生じやすい。
【0010】
本発明は、上記のような課題を解決するためになされたもので、同時に複数のノズルを
駆動できる多ノズル化した液滴吐出ヘッドにおいて、アクチュエータの駆動回路の時定数
を小さくして、液滴吐出動作の遅れをできるだけ低減した液滴吐出ヘッド、液滴吐出装置
、液滴吐出ヘッドの製造方法及び液滴吐出装置の製造方法を提供することを目的とするも
のである。
【課題を解決するための手段】
【0011】
本発明に係る液滴吐出ヘッドは、液滴を吐出する複数のノズル孔が形成されたノズル基
板と、底壁が振動板を形成し、液滴を溜めて吐出させる圧力室が形成されたキャビティ基
板と、振動板にギャップを隔てて対向して該振動板を駆動する個別電極、及び振動板を駆
動するための電力を外部から取り入れるための入力配線が形成された電極基板とを備え、
個別電極を導電性酸化物で形成するとともに、入力配線の一部を、導電性酸化物及び金属
材料の積層構造としたことを特徴とする。
【0012】
このように入力配線の一部を導電性酸化物及び金属材料の積層構造とすることによって
、全ノズルに共通な配線部の抵抗を低減することが可能となり、同時に駆動するノズル数
を増加させたとしても、等価回路の時定数を小さくでき、液滴吐出動作の遅れを低減でき
るとともに、個別電極を導電性酸化物で形成しているので、耐久性の確保も可能となる。
すなわち、導電性酸化物の有する特性と、金属材料の有する特性とを併せ持たせることが
できるのである。
【0013】
本発明に係る液滴吐出ヘッドは、入力配線を構成する導電性酸化物の一部を露出させて
いることを特徴とする。このように入力配線を構成することで、入力配線の抵抗は、金属
材料が支配的となり低抵抗化が可能となる。
【0014】
本発明に係る液滴吐出ヘッドは、電極基板に、凹部を形成し、導電性酸化物及び金属材
料の積層構造となっている入力配線の少なくとも一部を凹部の内部に形成するとともに、
入力配線の導電性酸化物を露出させた部分の少なくも一部を凹部の外部に形成したことを
特徴とする。したがって、導電性酸化物を露出させた入力配線の一部が電極基板に直接乗
り上げるようになり、キャビティ基板と電極基板との陽極接合時に、容易に等電位を確保
することができる。
【0015】
本発明に係る液滴吐出ヘッドは、入力配線の導電性酸化物を露出させた部分の一部をキ
ャビティ基板に接触させて等電位接点としたことを特徴とする。すなわち、等電位接点を
別途独立に形成することなく、入力配線の形成と同時に等電位接点を形成することができ
、キャビティ基板と電極基板との陽極接合時に、容易に等電位を確保することができる。
【0016】
本発明に係る液滴吐出ヘッドは、導電性酸化物が、ITO、IZO、GZO、AZO、
ATO、In23、ZnO、又は、SnO2 であることを特徴とする。したがって、入力
配線及び個別電極の耐久性を向上させることができる。
【0017】
本発明に係る液滴吐出ヘッドは、金属材料が、Cr、Au、Ag、Cu、Ti、Al、
又はそれらを適宜組み合わせて積層させたものであることを特徴とする。これらの金属材
料は、導電性酸化物よりも抵抗値が小さいという特性を有しているので、入力配線におけ
る抵抗の低減を実現できる。
【0018】
また、本発明に係る液滴吐出装置は、上記の液滴吐出ヘッドを搭載したことを特徴とす
る。したがって、上述の液滴吐出ヘッドの効果をすべて有している。
【0019】
本発明に係る液滴吐出ヘッドの製造方法は、ガラス基板に、個別電極、及び振動板を駆
動するための電力を外部から取り入れるための入力配線の一部を形成するための凹部を形
成し、ガラス基板に個別電極及び入力配線を構成する導電性酸化物を成膜し、入力配線と
なる導電性酸化物を成膜した凹部の少なくとも一部に金属材料を成膜して電極ガラス基板
を形成し、電極ガラス基板にシリコン基板を接合し、シリコン基板に圧力室を形成してキ
ャビティ基板とすることを特徴とする。
【0020】
したがって、製造工程を複雑にすることなく、ガラス基板に個別電極及び入力配線を形
成することができるとともに、入力配線の一部を導電性酸化物及び金属材料の積層構造と
することによって、全ノズルに共通な配線部の抵抗を低減することが可能となり、同時に
駆動するノズル数を増加させたとしても、等価回路の時定数を小さくでき、液滴吐出動作
の遅れを低減できる液滴吐出ヘッドを製造することができる。
【0021】
本発明に係る液滴吐出ヘッドの製造方法は、シリコン基板に絶縁膜を成膜し、入力配線
の導電性酸化物を露出させた部分に対応する絶縁膜を除去して窓部を形成し、窓部を介し
て、導電性酸化物とシリコン基板とを接触させることで等電位接点を確保することを特徴
とする。したがって、容易に等電位接点を形成でき、確実に等電位を確保することができ
る。また、このようにすると、電界が消失し、放電や電界放出を防いで、電極ガラス基板
側の電極とキャビティ基板とに大電流が流れないようにすることができ、電極の溶融を防
止することができる。
【0022】
本発明に係る液滴吐出ヘッドの製造方法は、シリコン基板と電極ガラス基板とを陽極接
合させた後、等電位接点近傍に位置するシリコン基板を除去することを特徴とする。この
ようにすれば、各入力配線の独立化を容易に実現できる。
【0023】
本発明に係る液滴吐出装置の製造方法は、上述の液滴吐出ヘッドの製造方法を含むこと
を特徴としている。したがって、上述の液滴吐出ヘッドの製造方法の効果をすべて有して
いる。
【発明を実施するための最良の形態】
【0024】
以下、図面に基づいて本発明の実施の形態について説明する。
実施の形態1.
図1は、本発明の実施の形態1に係る液滴吐出ヘッド100を分解した状態を示す分解
斜視図である。図2は、液滴吐出ヘッド100が組み立てられた状態の縦断面図であり、
図1におけるA−A’断面を示している。図1及び図2に基づいて、液滴吐出ヘッド10
0の構成について説明する。なお、図1を含め、以下の図面では各構成部材の大きさの関
係が実際のものとは異なる場合がある。
【0025】
この液滴吐出ヘッド100は、静電気力により駆動される静電駆動方式の静電アクチュ
エータの代表として、ノズル基板1の表面側に設けられたノズル孔5から液滴を吐出する
フェイスイジェクトタイプの液滴吐出ヘッドを表している。この図1には、後述する個別
電極17に駆動信号を供給するためのドライバIC15と、このドライバIC15に入力
信号を供給するためのFPC(Flexible Printed Circuit)3
0の一部を含めて示している。
【0026】
図1に示すように、この液滴吐出ヘッド100は、電極ガラス基板4、キャビティ基板
3、リザーバ基板2及びノズル基板1の4つの基板が順に積層されて構成されている。リ
ザーバ基板2の一方の面にはノズル基板1が接合されており、リザーバ基板2の他方の面
にはキャビティ基板3が接合されている。また、キャビティ基板3のリザーバ基板2が接
合された面の反対面には、電極ガラス基板4が接合されている。すなわち、電極ガラス基
板4、キャビティ基板3、リザーバ基板2、ノズル基板1の順で接合されている。
【0027】
[電極ガラス基板4]
電極ガラス基板4は、たとえば、厚さ1mmのホウ珪酸ガラス等のガラスを主要な材料
として形成するとよい。ここでは、電極ガラス基板4がホウ珪酸ガラスで形成されている
場合を例に示すが、たとえば、電極ガラス基板4を単結晶シリコンで形成してもよい。こ
の電極ガラス基板4の表面には、凹部(ガラス溝)12が形成されている。なお、凹部1
2の形成範囲については、図5で詳細に説明する。この凹部12は、たとえばエッチング
により深さ0.3μm(マイクロメートル)で形成するとよい。この凹部12の内部(特
に底部)には、固定電極となる個別電極17が、一定の間隔を有して後述のキャビティ基
板3の各圧力室7底面を形成する振動板8と対向するように作製されている。
【0028】
また、凹部12は、その一部が個別電極17を装着できるように、これらの形状に類似
したやや大きめの形状にパターン形成されている。この個別電極17は、たとえばITO
(Indium Tin Oxide:インジウム錫酸化物)を0.1μmの厚さでスパ
ッタして作製することができる。個別電極17の厚さを0.1μmで作製した場合、電極
ガラス基板4とキャビティ基板3とを接合した後の個別電極17と振動板8との間に形成
されるギャップ18は約0.2μmとなる。このようにITOで個別電極17を作製する
と、ITOが透明なので、放電したかどうかの確認が行いやすいという利点がある。
【0029】
さらに、個別電極17は、その一端(電極ガラス基板4の中心部側である個別電極リー
ド部17a)がドライバIC15と接続されており、そのドライバIC15から個別電極
17に駆動信号が供給されるようになっている。このドライバIC15は、個別電極17
の2つの電極列の間(個別電極17を作製するために電極ガラス基板4の左右に形成した
凹部12の中間部)における凹部12に実装され、左右両方の電極列に接続されるように
なっている。したがって、ドライバIC15から2つの電極列に駆動信号を供給すること
が可能となり、電極列の多列化が容易となる。また、ドライバIC15の設置個数が少な
くなるため、コストを削減することができ、ヘッドの小型化も可能となる。
【0030】
電極ガラス基板4には、FPC30を実装するためのFPC実装部20aが形成されて
いる。FPC実装部20aは、FPC30からドライバIC15を駆動する入力信号を供
給するための入力配線20の一部として形成されており、FPC30とドライバIC15
とを接続するようになっている。この入力配線20は、FPC実装部20aと、FPC実
装部20aを延長するリード部20bと、ドライバIC15の入力端子と接続するドライ
バIC入力端子実装部20cとで構成されている。なお、回路抵抗を小さくする観点から
、ドライバIC15の入力端子は入力配線20と直接接続し、出力端子は個別電極17の
端部と直接接続するのが望ましい。
【0031】
入力配線20は、複数の個別電極17を駆動するための駆動信号(駆動電力)を電極ガ
ラス基板4の外部から取り入れるための配線である。この入力配線20は、金属材料、ま
たは複数の金属材料を積層させて形成されており、その金属材料がITOの一部に積層す
るような構造となっていることを特徴としている(図5で詳細に説明する)。入力配線2
0から取り込まれた駆動信号は、ドライバIC15によって制御されて、ドライバIC1
5から所定の個別電極17へパルス電圧として供給される。すなわち、電極ガラス基板4
の外部からドライバIC15への入力信号は、FPC30→入力配線20のFPC実装部
20a→入力配線20のリード部20b→入力配線20のドライバIC入力端子実装部2
0c→ドライバIC15と入力される。
【0032】
駆動信号が入力されたドライバIC15からの出力信号は、個別電極17のドライバI
C出力端子実装部→個別電極リード部17a→インク滴を吐出させようとしているノズル
孔5に対応した個別電極17に対して印加される。そして、出力信号が印加された個別電
極17に対応する振動板8が駆動することになる。このような信号の流れによって、個別
電極17とそれに対応する振動板8とで形成される液滴吐出用のアクチュエータが駆動さ
れるのである。
【0033】
ここで、液滴吐出ヘッド100の等価回路について簡単に説明する。液滴吐出ヘッド1
00の等価回路の時定数τは、τ=(C1×n)×(R0+R1/n)で求めることがで
きる。この式において、R0は、回路共通部抵抗を表している。すなわち、FPC実装部
20a→リード部20b→ドライバIC入力端子実装部20cの間の抵抗の等価抵抗を表
している。特に、リード部20bの抵抗によって、全体の等価抵抗が最も大きく左右され
ることになる。
【0034】
R1は、回路個別部抵抗を表している。すなわち、ドライバIC15の内部抵抗、及び
個別電極17の出力端子実装部→個別電極リード部17a→個別電極17の間の抵抗の等
価抵抗を表している。C1は、静電アクチュエータの静電容量を表している。すなわち、
個別電極17と振動板8とで構成される静電アクチュエータの静電容量を表している。n
は、駆動アクチュエータの個数(駆動ノズルの個数)を表している。したがって、式で表
したように、時定数τは駆動ノズルの数nの関数として表現することができる。その結果
、R0が大きいと、駆動ノズル数nを増加したときに、時定数τが急激に大きく、つまり
動作遅れが大きくなることになる。
【0035】
この傾向は、入力配線20がITOから形成されている場合は特に顕著となっているの
に対して、入力配線20が金属材料(たとえば、クロム(Cr)や金(Au))から形成
されている場合には、時定数τの増加は極めて小さい。これにより、入力配線20を金属
材料から形成すれば、多ノズルヘッドの同時駆動ノズル数nを増やしても、アクチュエー
タの駆動回路の時定数τの増大が小さくて済み、液滴吐出の動作遅れを回避して応答性を
よくすることができることになる。なお、入力配線20の構成については、図5で詳細に
説明する。
【0036】
なお、電極ガラス基板4とキャビティ基板3とを接合した後に、電極ガラス基板4とキ
ャビティ基板3との間に形成される所定の空隙であるギャップ18を封止するための封止
部14を形成するとよい。また、この実施の形態1では、2つのドライバIC15を液滴
吐出ヘッド100に搭載した場合を例に示しているが、これに限定するものではない。た
とえば、ドライバIC15は、駆動させる個別電極17の個数に応じて搭載する個数を決
定するとよい。
【0037】
電極ガラス基板4とキャビティ基板3とを接合して積層体を形成すると、振動板8と個
別電極17との間には、振動板8を撓ませる(変位させる)ことができる一定のギャップ
(空隙)18が、電極ガラス基板4の凹部12により形成されるようになっている。この
ギャップ18は、たとえば深さ0.2μmとなるように形成するとよい。このギャップ1
8は、凹部12の深さ、個別電極17及び振動板8の厚さにより決まることになる。この
ギャップ18は、液滴吐出ヘッド100の吐出特性に大きく影響するため、厳格な精度管
理が要求される。なお、振動板8は、静電気力で駆動するのでアクチュエータとして機能
するようになっている。
【0038】
このギャップ18は、各振動板8に対向する位置に細長い一定の深さを有するように形
成されている。なお、ギャップ18は、電極ガラス基板4に凹部12を形成する他に、キ
ャビティ基板3となるシリコン基板に凹部を形成したり、スペーサを挟むことによって設
けたりすることも可能である。また、個別電極17は、一定の間隔の隙間をもって振動板
8に対向しており、ギャップ18の底面に沿って電極ガラス基板4の末端まで伸びている
。そして、この末端でドライバIC15と接続されるようになっている。
【0039】
この液滴吐出ヘッド100は、複数の個別電極17が長辺及び短辺を有する長方形状に
形成されており、この個別電極17が、互いの長辺が平行になるように配置されている。
そして、図1では、個別電極17の短辺方向に伸びる2つの電極列を示している。なお、
個別電極17の短辺が長辺に対して斜めに形成されており、個別電極17が細長い平行四
辺形状になっている場合には、長辺方向に直角方向に伸びる電極列を形成するようにすれ
ばよい。なお、電極ガラス基板4には、図示省略の外部のインクタンクから供給される液
体を取り入れる流路となるインク供給孔11aが設けられている。このインク供給孔11
aは、電極ガラス基板4を貫通している。
【0040】
また、ここで示した凹部12の深さやギャップ18の長さ、個別電極17の厚さは一例
であり、ここで示す値に限定するものではない。さらに、個別電極17をITOで作製し
た場合を例に示したが、これに限定するものではなく、導電性酸化物であればよく、たと
えばIZO(インジウム添加酸化亜鉛)、GZO(ガリウム添加酸化亜鉛)、AZO(ア
ルミニウム添加酸化亜鉛)、ATO(アンチモン添加酸化錫)、In23(酸化インジウ
ム)、ZnO(酸化亜鉛)、SnO2 (酸化錫)等の材料がある。
【0041】
[キャビティ基板3]
キャビティ基板3は、たとえば厚さ約50μmの(110)面方位のシリコン単結晶基
板(以下、単にシリコン基板という)を主要な材料として構成されている。このシリコン
基板にドライエッチングまたは異方性ウエットエッチングのいずれかあるいは双方を行い
、底壁が可撓性を有する振動板8となる圧力室(または、吐出室)7が複数形成されてい
る。この圧力室7は、個別電極17の電極列に対応して形成されており、インク等の液滴
が保持されて吐出圧が加えられるようになっている。また、圧力室7は、紙面手前側から
奥側にかけて平行に並んで形成されているものとする。なお、キャビティ基板3の中間部
には、キャビティ基板3を貫通する貫通穴24が形成されている。
【0042】
また、キャビティ基板3の下面(電極ガラス基板4と対向する面)には、振動板8と個
別電極17との間を電気的に絶縁するためのTEOS膜(ここでは、Tetraethy
l orthosilicate Tetraethoxysilane:テトラエトキ
シシラン(珪酸エチル)を用いてできるSiO2 膜をいう)である絶縁膜(図示しない)
をプラズマCVD(Chemical Vapor Deposition:TEOS−
pCVDともいう)法を用いて、0.1μm程度成膜している。これは、振動板8の駆動
時における絶縁破壊及びショートを防止するためと、インク等の液滴によるキャビティ基
板3のエッチングを防止するためのものである。
【0043】
ここでは、絶縁膜がTEOS膜である場合を示しているが、これに限定するものではな
く、絶縁性能が向上する物質であればよい。たとえば、Al23(酸化アルミニウム(ア
ルミナ))を用いてもよい。また、キャビティ基板3の上面にも、図示省略の液体保護膜
となるSiO2 膜(TEOS膜を含む)を、プラズマCVD法又はスパッタリング法によ
り成膜するとよい。液体保護膜を成膜することによって、インク滴で流路が腐食されるの
を防止できるからである。この液体保護膜の応力と絶縁膜の応力とを相殺させ、振動板8
の反りを小さくできるという効果もある。
【0044】
なお、振動板8は、高濃度のボロンドープ層で形成するようにしてもよい。水酸化カリ
ウム水溶液等のアルカリ溶液による単結晶シリコンのエッチングにおけるエッチングレー
トは、ドーパントがボロンの場合、約5×1019atoms/cm3 以上の高濃度の領域
において、非常に小さくなる。このため、振動板8の部分を高濃度のボロンドープ層とし
、アルカリ溶液による異方性エッチングによって圧力室7を形成する際に、ボロンドープ
層が露出してエッチングレートが極端に小さくなる、いわゆるエッチングストップ技術を
用いることにより、振動板8を所望の厚さに形成することができる。
【0045】
また、キャビティ基板3にも、インク供給孔11bが設けられている(電極ガラス基板
4に設けられたインク供給孔11aと連通するようになっている)。さらに、キャビティ
基板3には、外部電極端子としての共通電極端子16が形成されている。この共通電極端
子16は、FPC30と接続され、図示省略の外部の発振回路等から振動板8に個別電極
17と反対の極性の電荷を供給する際の端子となるものである。
【0046】
[リザーバ基板2]
リザーバ基板2は、たとえば単結晶シリコンを主要な材料としており、各圧力室7にイ
ンク等の液滴を供給するための液貯蔵室であるリザーバ10が左右に2つ形成されている
。このリザーバ10は、圧力室7の列毎に共通して利用される。このリザーバ10の底面
には、リザーバ10から圧力室7へ液滴を移送するための供給口9が各圧力室7の位置に
合わせて貫通形成されている。また、リザーバ10の底面には、リザーバ10の底面を貫
通するインク供給孔11cが形成されている。
【0047】
このインク供給孔11cと、キャビティ基板3に形成されたインク供給孔11bと、電
極ガラス基板4に形成されたインク供給孔11aとは、リザーバ基板2、キャビティ基板
3及び電極ガラス基板4が接合された状態において互いに連通しインク供給孔11を形成
するようになっており、外部のインクタンクから液滴が供給されるようになっている。さ
らに、各圧力室7とノズル基板1に設けられたノズル孔5との間の流路となり、圧力室7
で加圧されたインク滴がノズル孔5に移送する流路となる複数のノズル連通孔6が各ノズ
ル孔5に合わせて形成されている。なお、リザーバ基板2の中間部(左右に形成されてい
るリザーバ10の間)には、キャビティ基板3の貫通穴24の形状に対応した貫通穴25
が形成されている。
【0048】
[ノズル基板1]
ノズル基板1は、たとえば厚さ100μmのシリコン基板を主要な材料としており、各
々のノズル連通孔6と連通する複数のノズル孔5が形成されている。そして、各ノズル孔
5は、各ノズル連通孔6から移送された液滴を外部に吐出するようになっている。なお、
ノズル孔5を複数段で形成すると、液滴を吐出する際の直進性の向上が期待できる。ここ
では、ノズル孔5を有するノズル基板1を上面とし、電極ガラス基板4を下面として説明
するが、実際に用いられる場合には、ノズル基板1の方が電極ガラス基板4よりも下面と
なることが多い。
【0049】
なお、電極ガラス基板4、キャビティ基板3、リザーバ基板2及びノズル基板1を接合
するときに、シリコンからなる基板とホウ珪酸ガラスからなる基板とを接合する場合(電
極ガラス基板4とキャビティ基板3とを接合する場合)は陽極接合により、シリコンから
なる基板同士を接合する場合(キャビティ基板3とリザーバ基板2、リザーバ基板2とノ
ズル基板1とを接合する場合)は直接接合によって接合することができる。また、シリコ
ンからなる基板同士は、接着剤を用いて接合することもできる。
【0050】
図2に示すように、この液滴吐出ヘッド100では、ドライバIC15が液滴吐出ヘッ
ド100の内部に埋め込まれ(収容され)ており、上面をノズル基板1、側面をリザーバ
基板2及びキャビティ基板3、下面を電極ガラス基板4によって閉塞されるようになって
いる。つまり、キャビティ基板3の貫通穴24と、リザーバ基板2の貫通穴25とで収容
部26を形成し、この収容部26にドライバIC15が収容されるようになっている。な
お、収容部26は、液滴や外気からドライバIC15を保護するために密閉するのが望ま
しい。
【0051】
また、電極ガラス基板4とキャビティ基板3とを接合した際に形成されるギャップ18
を密閉するために貫通穴24側に封止部14を形成するようになっている。こうすること
で、ギャップ18を気密に封止することができる。なお、封止部14に使用する材料を特
に限定するものではなく、ギャップ18を気密封止できる材料であればよい。たとえば、
水分透過性の低い酸化シリコン(SiO2 )や、酸化アルミニウム(Al23)、酸窒化
シリコン(SiON)、窒化シリコン(SiN)、ポリパラキシリレン等で封止部14を
形成するとよい。
【0052】
ここで、液滴吐出ヘッド100の動作について説明する。リザーバ10には、インク供
給孔11を介して外部からインク等の液滴が供給されている。また、圧力室7には、供給
口9を介してリザーバ10から液滴が供給されている。ドライバIC15には、FPC3
0の入力配線20を介して液滴吐出装置の図示省略の制御部から駆動信号(パルス電圧)
が供給されている。そして、ドライバIC15によって選択された個別電極17には0V
〜40V程度のパルス電圧が印加され、その個別電極17を正に帯電させる。
【0053】
このとき、対応するキャビティ基板3の振動板8には共通電極端子16を介して負の極
性を有する電荷が外部の発振回路等から供給され、正に帯電された個別電極17に対応す
る振動板8を相対的に負に帯電させる。そのため、選択された個別電極17と振動板8と
の間では静電気力が発生することになる。個別電極17と振動板8との間に静電気力が発
生すると、振動板8は、その静電気力によって個別電極17側に引き寄せられて撓むこと
になる。これにより圧力室7の容積は広がる。
【0054】
次に、個別電極17へのパルス電圧の供給を止めると、振動板8と個別電極17との間
の静電気力がなくなり、振動板8は元の状態に復元する。このとき、圧力室7の内部の圧
力が急激に上昇し、圧力室7内の液滴がノズル連通孔6を通過してノズル孔5から吐出さ
れることになる。この液滴が、たとえば記録紙に着弾することによって印刷等が行われる
ようになっている。その後、液滴がリザーバ10から供給口9を通じて圧力室7内に補給
され、初期状態に戻る。このような方法は、引き打ちと呼ばれるものであるが、バネ等を
用いて液滴を吐出する押し打ちと呼ばれる方法もある。
【0055】
なお、液滴吐出ヘッド100のリザーバ10への液滴の供給は、たとえばインク供給孔
11に接続された図示省略の液滴供給管により行われている。また、FPC30が、FP
C30の長手方向が電極列を形成する個別電極17の短辺方向と平行となるようにドライ
バIC15と接続されている。たとえば、個別電極17の短辺が長辺に対して斜めになっ
ており、個別電極17が細長い平行四辺形状になっている場合には、個別電極17の長辺
と直角方向にFPC30を接続すればよい。これにより、複数の電極列を有する液滴吐出
ヘッド100とFPC30とをコンパクトに接続することができる。
【0056】
図3は、液滴吐出ヘッド100が搭載された液滴吐出装置の制御系を示す概略ブロック
図である。なお、この液滴吐出装置が一般的なインクジェットプリンタである場合を例に
説明するものとする。図3に基づいて、液滴吐出ヘッド100が搭載された液滴吐出装置
の制御系について説明する。ただし、液滴吐出ヘッド100が搭載された液滴吐出装置の
制御系を、図3で示す制御系に限定するものではない。
【0057】
インクジェットプリンタは、液滴吐出ヘッド100を駆動制御するための駆動制御装置
41を備えている。この駆動制御装置41は、CPU(中央処理装置)42aを中心に構
成された制御部42を備えている。CPU42aは、パーソナルコンピュータや遠隔制御
装置(リモコン)等の外部装置43から印刷情報が入力されるようになっている。この印
刷情報は、バス43aを介して入力されたり、赤外線信号等の無線信号で入力されたりす
るようになっている。また、CPU42aには、内部バス42bを介してROM44a、
RAM44b及びキャラクタジェネレータ44cが接続されている。
【0058】
制御部42では、RAM44b内の記憶領域を作業領域として用いて、ROM44a内
に格納されている制御プログラムを実行し、キャラクタジェネレータ44cから発生する
キャラクタ情報に基づき、液滴吐出ヘッド100を駆動するための制御信号を生成する。
制御信号は、理論ゲートアレイ45及び駆動パルス発生回路46を介して、印刷情報に対
応した駆動制御信号となって、コネクタ47を経由して液滴吐出ヘッド100に内蔵され
たドライバIC15に供給されるほか、COM発生回路46aに供給される。また、ドラ
イバIC15には、印字用の駆動パルス信号V3、制御信号LP、極性反転制御信号RE
V等(図4参照)も供給されるようになっている。なお、COM発生回路46aは、たと
えば駆動パルスを発生するための図示省略の共通電極ICで構成するとよい。
【0059】
COM発生回路46aでは、供給された上記の各信号に基づき、液滴吐出ヘッド100
の共通電極端子16、すなわち各振動板8に印加すべき駆動信号(駆動電圧パルス)をそ
の図示省略の共通出力端子COMから出力するようになっている。また、ドライバIC1
5では、供給された上記の各信号及び電源回路70から供給される駆動電圧Vpに基づき
、各個別電極17に印加すべき駆動信号(駆動電圧パルス)を、各個別電極17に対応し
た個数の個別出力端子SEGから出力するようになっている。そして、共通出力端子CO
Mの出力と個別出力端子SEGの出力との電位差が、各振動板8とそれに対向する個別電
極17との間に印加される。振動板8の駆動時(液滴の吐出時)には指定された向きの駆
動電位差波形を与え、非駆動時には駆動電位差を与えないようになっている。
【0060】
図4は、ドライバIC15及びCOM発生回路46aの内部構成の一例を示す概略ブロ
ック図である。なお、図4に示すドライバIC15及びCOM発生回路46aは、1組で
64個の個別電極17及び振動板8に駆動信号を供給するものとする。また、ドライバI
C15が、電源回路70から高電圧系の駆動電圧Vp及び論理回路系の駆動電圧Vccが
供給されて動作するCMOSの64ビット出力の高耐圧ドライバである場合を例に示して
いる。
【0061】
ドライバIC15は、供給された駆動制御信号に応じて、駆動電圧パルスとGND電位
の一方を、個別電極17に印加する。ドライバIC15は、64ビットのシフトレジスタ
61を有し、シフトレジスタ61はシリアルデータとして理論ゲートアレイ45より送信
された64ビット長のDI信号入力を、DI信号に同期する基本クロックパルスであるX
SCLパルス信号入力によりデータをシフトアップし、シフトレジスタ61内のレジスタ
に格納するスタティクシフトレジスタとなっている。DI信号は、64個の個別電極17
のそれぞれを選択するための選択情報をオン/オフにより示す制御信号であり、この信号
がシリアルデータとして送信される。
【0062】
また、ドライバIC15は、64ビットのラッチ回路62を有し、ラッチ回路62はシ
フトレジスタ61内に格納された64ビットデータを制御信号(ラッチパルス)LPによ
りラッチしてデータを格納し、格納されたデータを64ビット反転回路63に信号出力す
るスタティクラッチである。ラッチ回路62では、シリアルデータのDI信号が各振動板
8の駆動を行うための64セグメント出力を行うための64ビットのパラレル信号へと変
換される。
【0063】
ビット反転回路63では、ラッチ回路62から入力される信号と、REV信号との排他
的論理和をレベルシフタ64へ出力する。レベルシフタ64は、ビット反転回路63から
の信号の電圧レベルをロジック系の電圧レベル(5Vレベル又は3.3Vレベル)からヘ
ッド駆動系の電圧レベル(0〜45Vレベル)に変換するレベルインターフェイス回路で
ある。SEGドライバ65は、64チャンネルのトランスミッションゲート出力となって
いて、レベルシフタ64の入力によりSEG1〜SEG64のセグメント出力に対して、
駆動電圧パルス入力か又はGND入力のいずれかを出力する。COM発生回路46aに内
蔵されたCOMドライバ66は、REV入力に対して駆動電圧パルスか又はGND入力の
いずれかをCOMへ出力する。
【0064】
XSCL、DI、LP及びREVの各信号は、ロジック系の電圧レベルの信号であり、
理論ゲートアレイ45よりドライバIC15に送信される信号である。このように、ドラ
イバIC15及びCOM発生回路46aを構成することにより、駆動するセグメント数(
振動板8の数)が増加した場合においても容易に液滴吐出ヘッド100の振動板8の駆動
する駆動電圧パルスとGNDとを切り替えることが可能となる。なお、上記の各信号は、
電極ガラス基板4に形成されている入力配線20を介してドライバIC15に供給される
ようになっている。
【0065】
図5は、入力配線20を詳細に説明するための説明図である。図5に基づいて、この実
施の形態1の特徴事項である入力配線20の構成について詳細に説明する。また、図5(
a)が入力配線20を上から見た状態を示す拡大平面図を、図5(b)が図5(a)にお
けるC−C断面を示す縦断面図を、図5(c)が図5(a)におけるD−D断面を示す縦
断面図を、図5(d)が図5(a)におけるE−E断面を示す縦断面図をそれぞれ示して
いる。なお、図5は、図1において示したX部分を拡大して示したものである。
【0066】
図5に示すように、電極ガラス基板4には、複数の入力配線20が形成されている。こ
の各入力配線20は、上記の信号それぞれに対応しており、ドライバIC15に供給され
る信号の数だけ形成されるようになっている。また、電極ガラス基板4には、入力配線2
0を形成するためのガラス溝である凹部12が形成されているが、この凹部12は、図5
(a)に示すように電極ガラス基板4のFPC実装部20a側の端部までは形成されてい
ない。そして、入力配線20は、その一部が金属材料(金属膜82)とITO(ITO膜
81)の積層構造となっている。この金属材料の厚さを特に限定するものではないが、た
とえば0.1〜0.5μm程度で形成するとよい。
【0067】
製造プロセスを考慮すると、入力配線20は、ITOからなる個別電極17の形成時に
、ITOで同時に形成する方が簡単である。しかしながら、ITOは、抵抗値が大きいた
め、多数のノズルを同時駆動させる場合、対応するアクチュエータの時定数(τ)が大き
くなり、応答性が悪くなるという課題がある。上述したように、入力配線20を金属材料
で形成すると、時定数τの増加が極めて小さくなり、多ノズルヘッドの同時駆動ノズル数
nを増やしても液滴吐出の動作遅れを回避して応答性をよくすることができる。すなわち
、入力配線20を金属材料で構成すると、その金属材料の配線抵抗が支配的となり配線抵
抗を下げることが可能となるのである。
【0068】
ただし、入力配線20の全部を金属材料で構成すると、その金属材料で等電位接点33
(図6参照)を形成することになり、放電による変質やマイグレーションによる故障が発
生することになる。その点、ITOは、導電性酸化物であるため放電による変質やマイグ
レーションによる故障等が発生しないという特徴がある。そこで、この実施の形態1では
、金属材料の抵抗値が小さいという特徴と、ITOの導電性酸化物であるという特徴とを
組み合わせて、入力配線20の一部を金属材料とITOとの積層構造としているのである

【0069】
入力配線20は、図5(d)に示すように、下側にITO膜81が成膜され、ITOの
一部の上側に金属膜82が成膜されて構成されている。つまり、入力配線20は、金属膜
82が表層となっている部分(図5(a)で示す(ア))と、ITO膜81が表層となっ
ている部分(図5(a)で示す(イ))とが存在するのである。そして、凹部12が形成
されている部分に対応する入力配線20はITO膜81と金属膜82との積層構造となっ
ており(図5(b))、凹部12が形成されていない部分に対応する入力配線20はIT
O膜81の単層構造となっている(図5(c))。
【0070】
つまり、入力配線20のITO膜81が表層となる部分が、電極ガラス基板4に直接乗
り上がるようになっているのである(図5(c)及び図5(d))。そして、電極ガラス
基板4に乗り上げられたITO膜81が、キャビティ基板3と接触することで、等電位接
点33を形成するようになっている。このようにして形成された電極ガラス基板4は、図
5(b)に示す接合界面31及び図5(c)に示す接合界面32でキャビティ基板3に接
合されるようになっている。なお、キャビティ基板3の等電位接点33に対応する部分か
らは絶縁膜23を除去しておく(図6で詳細に説明する)。
【0071】
入力配線20の一部を金属材料とITOの積層構造とするため、全ノズルに共通な配線
抵抗の低減が可能となり、同時駆動ノズル数が増加しても、等価回路の時定数(τ)を小
さくすることができる。これにより、動作遅れが低減されるため、応答性に優れた吐出性
能を有する液滴吐出ヘッド100を複雑な製造工程を要することなく製造することができ
る。また、個別電極17には、ITOを使用しているため、耐久性の確保も実現できる。
なお、図5では、ITOを例に説明したが、これに限定するものではなく、上述した導電
性酸化物であればITO以外の材料であってもよい。
【0072】
また、金属材料は、抵抗が低いものであればよく、たとえばCrや、Au、Ag(銀)
、Cu(銅)、Ti(チタン)、Al(アルミニウム)、それらを適宜組み合わせ、積層
させて使用することができる。これらの金属材料は、ITOに比べて抵抗値が小さいとい
う特性を有している。したがって、このような金属材料をITOに積層させて入力配線2
0を形成することで、アクチュエータを同時に多数駆動させる場合にも、その動作の応答
遅れを低減することが可能となる。
【0073】
図6は、等電位接点33を説明するための説明図である。図6に基づいて、等電位接点
33について説明する。図6(a)が電極ガラス基板4とキャビティ基板3とを接合させ
た状態の図5(a)におけるC−C断面を、図6(b)が電極ガラス基板4とキャビティ
基板3とを接合させた状態の図5(a)におけるD−D断面をそれぞれ示している。図6
(a)に示すように、入力配線20の金属膜82が表層となる部分に対応するキャビティ
基板3には絶縁膜23が形成されている。
【0074】
一方、図6(b)に示すように、入力配線20のITO膜81が表層となる部分に対応
するキャビティ基板3には、絶縁膜23を除去した窓部34を形成するようになっている
。この入力配線20のITO膜81が表層となる部分には、凹部12が形成されておらず
、ITO膜81が電極ガラス基板4に直接乗り上げるようにして、つまり電極ガラス基板
4の上面よりもせり上がるようにして等電位接点33が形成されている。すなわち、IT
Oで等電位接点33を形成するのである。この等電位接点33は、陽極接合時において、
電極ガラス基板4の電極部とキャビティ基板3とを接触させて等電位状態を確保するため
のものである。
【0075】
図6(b)に示すように、わずかなギャップを介して電極ガラス基板4の電極部とキャ
ビティ基板3との等電位をとる場合において、ITOを等電位接点33とすると、ITO
は導電性酸化物であるため、放電による変質やマイグレーションによる故障等が発生しな
い。一方、金属材料で等電位接点33を形成しようとすると、放電等によるダメージがキ
ャビティ基板3にも影響し、完成度の低い液滴吐出ヘッド100が形成されることになる
。このため、等電位接点33はITOで形成することが望ましい。また、ITOは、表面
に数十nmの結晶性の突起があり、この突起を介して放電を行いやすい構造であることか
らも、等電位接点33はITOで形成することが望ましい。
【0076】
次に、液滴吐出ヘッド100の製造工程について説明する。図7は、この実施の形態1
の特徴部分である電極ガラス基板4の製造工程の一例を示すB−B断面図(図1参照)で
ある。図7に基づいて、個別電極17及び入力配線20の形状パターンに合わせて所定の
深さの凹部12を形成する電極ガラス基板4の製造工程について説明する。なお、実際に
は、シリコンウエハから複数個分の液滴吐出ヘッドの部材を同時形成するのが一般的であ
るが、図7ではその一部分だけを簡略化して示している。また、ここでは、電極ガラス基
板4の製造工程の一例を示すが、これに限定するものではない。
【0077】
まず、所定の厚さ(たとえば、1mmの厚さ)に加工された硼珪酸系のガラス基板4’
を用意する(図7(a))。次に、ガラス基板4’の上面(キャビティ基板3との接合面
)に、たとえばクロム(Cr)からなるエッチングマスク80をスパッタ装置により成膜
する。それから、エッチングマスク80の表面に図示省略のレジストを塗布し、ガラス溝
である凹部12を形成するためのレジストパターニングをフォトリソグラフィー(ステッ
パーやマスクアライナー等)によって行なう。このとき、FPC実装部20a側の端部が
エッチングされないようにエッチングマスク80のパターニングを実行する。そして、エ
ッチングマスク80をエッチングしてパターニングする(図7(b))。
【0078】
次に、ガラス基板4’をたとえばフッ化アンモニウム水溶液に浸し、エッチングして所
定の深さの凹部12を形成する(図7(c))。そして、レジストを有機剥離液等で剥離
後、ガラス基板4’をクロムエッチング液に浸しエッチングマスク80を除去する(図7
(d))。このようにして凹部12が形成できる。なお、凹部12を複数の段差構造とす
る場合には、上記工程を繰り返し行うようにすればよい。そうすれば、ガラス基板4’に
形成する凹部12を容易に複数の段差構造とすることができる。
【0079】
凹部12の形成後、凹部12が形成されたガラス基板4’のパターニング面全面、及び
FPC実装部20aとなる面(凹部12が形成されていない面)にたとえばITO膜81
をスパッタ装置により0.1μm程成膜する(図7(e))。そして、フォトリソグラフ
ィーによって図示省略のレジストをパターニングしてエッチングすることにより、個別電
極17及び入力配線20の部分に対応するITOパターンを形成する(図7(f))。こ
こでは、個別電極17及び入力配線20の材料がITOである場合を例に説明しているが
、他の材料であってもよいことは上述した通りである。
【0080】
それから、入力配線20となるITO膜81上面の一部に金属材料からなる金属膜82
を形成する(図7(g))。この状態を上から見た平面図が図5(a)で示したものであ
る。上述したように、入力配線20の一部がITO膜81と金属膜82との積層構造とし
て形成されているのである。金属膜82の形成は、たとえばスパッタ装置により行なうこ
とができる。金属膜82を構成する金属材料を特に限定するものではなく、上述したよう
な金属材料で金属膜82を構成すればよい。以上のように、ガラス基板4’を加工して電
極ガラス基板4が作製される。
【0081】
その後、図6で示したように、この電極ガラス基板4に、窓部34を形成したキャビテ
ィ基板3を陽極接合する。この窓部34を介してキャビティ基板3とITO膜81とを接
触させる(つまり、等電位接点33を形成する)ことで、陽極接合時において、個別電極
17とキャビティ基板3との等電位を確実に確保することができる。すなわち、ITO膜
81の一部を電極ガラス基板4に直接乗り上げるように成膜することで、等電位接点33
を同時に形成できるという利点があるのである。
【0082】
図8は、キャビティ基板3と電極ガラス基板4との陽極接合後の製造工程の一部を示す
断面図である。図8に基づいて、キャビティ基板3と電極ガラス基板4との陽極接合後の
加工例について説明する。図8(a)が、キャビティ基板3と電極ガラス基板4とを陽極
接合させた直後の状態におけるC−C断面図及びD−D断面図(図5(a)参照)を、図
8(b)が、キャビティ基板3と電極ガラス基板4とを陽極接合させ、FPC実装部20
aを形成した状態におけるC−C断面図及びD−D断面図(図5(a)参照)をそれぞれ
示している。
【0083】
キャビティ基板3と電極ガラス基板4とを陽極接合させた後に、キャビティ基板3にK
OHエッチングを施し、圧力室7、振動板8、貫通穴24及びFPC実装部20aを形成
する。このとき、FPC実装部20aとなる部分は、図8(a)に示すように、振動板8
よりわずかに厚く薄板化する。その後、ドライエッチング(たとえば、RIE(Reac
tive Ion Etching)等)により絶縁膜23及びキャビティ基板3の除去
を行い、FPC実装部20aに対応する部分の入力配線20をむき出しの状態にする。
【0084】
このとき、各入力配線20は、電気的に独立化するようになっている。したがって、陽
極接合後に、キャビティ基板3側の一部を除去することにより、各入力配線20の独立化
を容易に実現できる。その後、キャビティ基板3にリザーバ基板2を、リザーバ基板2に
ノズル基板1をそれぞれエポキシ樹脂等の接着剤を用いて接合することにより液滴吐出ヘ
ッド100が作製される。また、電極ガラス基板4に直接乗り上げたITO膜81によっ
て等電位接点33を形成するので、電界が消失し、放電や電界放出を防いで、電極ガラス
基板4側の電極(入力配線20及び個別電極17)とキャビティ基板3に大電流が流れな
いようにでき、電極ガラス基板4側の電極の溶融を防止することができる。
【0085】
実施の形態2.
図9は、上述した液滴吐出ヘッド100を搭載した液滴吐出装置150の一例を示した
斜視図である。図9に示す液滴吐出装置150は、一般的なインクジェットプリンタであ
る。なお、この液滴吐出装置150は、周知の製造方法によって製造することができる。
上述した液滴吐出ヘッド100は、電極ガラス基板4の凹部12を所定の範囲に形成し、
入力配線20を構成する導電性酸化物の一部を電極ガラス基板4に直接乗り上げるように
したことに特徴を有するものである。
【0086】
なお、液滴吐出ヘッド100は、図9に示す液滴吐出装置150の他に、液滴を種々変
更することで、液晶ディスプレイのカラーフィルタの製造、有機EL表示装置の発光部分
の形成、生体液体の吐出等にも適用することができる。また、液滴吐出ヘッド100は、
圧電駆動方式の液滴吐出装置や、バブルジェット(登録商標)方式の液滴吐出装置にも使
用できる。たとえば、液滴吐出ヘッド100をディスペンサとし、生体分子のマイクロア
レイとなる基板に吐出する用途に用いる場合では、DNA(Deoxyribo Nuc
leic Acids:デオキシリボ核酸)、他の核酸(例えば、Ribo Nucle
ic Acid:リボ核酸、Peptide Nucleic Acids:ペプチド核
酸等)タンパク質等のプローブを含む液体を吐出させるようにしてもよい。
【0087】
なお、本発明の実施の形態に係る液滴吐出ヘッド、液滴吐出装置、液滴吐出ヘッドの製
造方法及び液滴吐出装置の製造方法は、上述の実施の形態で説明した内容に限定されるも
のではなく、本発明の思想の範囲内において変更することができる。また、液滴吐出ヘッ
ド100が電極ガラス基板4、キャビティ基板3、リザーバ基板2及びノズル基板1から
なる4層構造を例に説明したが、これに限定するものではなく、ドライバIC15をヘッ
ド内に備えるような構造のものであれば適用可能である。
【図面の簡単な説明】
【0088】
【図1】実施の形態1に係る液滴吐出ヘッドを分解した状態を示す分解斜視図である。
【図2】液滴吐出ヘッドが組み立てられた状態のA−A’断面図である。
【図3】液滴吐出ヘッドが搭載された液滴吐出装置の制御系を示す概略ブロック図である。
【図4】ドライバIC及びCOM発生回路の内部構成の一例を示す概略ブロック図である。
【図5】入力配線を詳細に説明するための説明図である。
【図6】等電位接点を説明するための説明図である。
【図7】実施の形態1の特徴部分である電極ガラス基板の製造工程の一例を示すB−B断面図である。
【図8】キャビティ基板と電極ガラス基板との陽極接合後の製造工程の一部を示す断面図である。
【図9】液滴吐出ヘッドを搭載した液滴吐出装置の一例を示した斜視図である。
【符号の説明】
【0089】
1 ノズル基板、2 リザーバ基板、3 キャビティ基板、4 電極ガラス基板、4’
ガラス基板、5 ノズル孔、6 ノズル連通孔、7 圧力室、8 振動板、9 供給口
、10 リザーバ、11 インク供給孔、11a インク供給孔、11b インク供給孔
、11c インク供給孔、12 凹部、14 封止部、15 ドライバIC、16 共通
電極端子、17 個別電極、17a 個別電極リード部、18 ギャップ、20 入力配
線、20a 実装部、20b リード部、20c 入力端子実装部、23 絶縁膜、24
貫通穴、25 貫通穴、26 収容部、30 FPC、31 接合界面、32 接合界
面、33 等電位接点、34 窓部、41 駆動制御装置、42 制御部、42a CP
U、42b 内部バス、43 外部装置、43a バス、44a ROM、44b RA
M、44c キャラクタジェネレータ、45 理論ゲートアレイ、46 駆動パルス発生
回路、46a COM発生回路、47 コネクタ、61 シフトレジスタ、62 ラッチ
回路、63 ビット反転回路、64 レベルシフタ、65 SEGドライバ、66 CO
Mドライバ、70 電源回路、80 エッチングマスク、81 ITO膜、82 金属膜
、100 液滴吐出ヘッド、150 液滴吐出装置。

【特許請求の範囲】
【請求項1】
液滴を吐出する複数のノズル孔が形成されたノズル基板と、
底壁が振動板を形成し、前記液滴を溜めて吐出させる圧力室が形成されたキャビティ基
板と、
前記振動板にギャップを隔てて対向して該振動板を駆動する個別電極、及び前記振動板
を駆動するための電力を外部から取り入れるための入力配線が形成された電極基板とを備
え、
前記個別電極を導電性酸化物で形成するとともに、前記入力配線の一部を、前記導電性
酸化物及び金属材料の積層構造とした
ことを特徴とする液滴吐出ヘッド。
【請求項2】
前記入力配線を構成する前記導電性酸化物の一部を露出させている
ことを特徴とする請求項1に記載の液滴吐出ヘッド。
【請求項3】
前記電極基板に、凹部を形成し、
前記導電性酸化物及び前記金属材料の積層構造となっている前記入力配線の少なくとも
一部を前記凹部の内部に形成するとともに、前記入力配線の前記導電性酸化物を露出させ
た部分の少なくも一部を前記凹部の外部に形成した
ことを特徴とする請求項2に記載の液滴吐出ヘッド。
【請求項4】
前記入力配線の前記導電性酸化物を露出させた部分の一部を前記キャビティ基板に接触
させて等電位接点とした
ことを特徴とする請求項2又は3に記載の液滴吐出ヘッド。
【請求項5】
前記導電性酸化物が、
ITO、IZO、GZO、AZO、ATO、In23、ZnO、又は、SnO2 である
ことを特徴とする請求項1〜4のいずれかに記載の液滴吐出ヘッド。
【請求項6】
前記金属材料が、
Cr、Au、Ag、Cu、Ti、Al、又はそれらを適宜組み合わせて積層させたもの
である
ことを特徴とする請求項1〜5のいずれかに記載の液滴吐出ヘッド。
【請求項7】
前記請求項1〜6のいずれかに記載の液滴吐出ヘッドを搭載した
ことを特徴とする液滴吐出装置。
【請求項8】
ガラス基板に、個別電極、及び振動板を駆動するための電力を外部から取り入れるため
の入力配線の一部を形成するための凹部を形成し、
前記ガラス基板に前記個別電極及び前記入力配線を構成する導電性酸化物を成膜し、
前記入力配線となる前記導電性酸化物を成膜した前記凹部の少なくとも一部に金属材料
を成膜して電極ガラス基板を形成し、
前記電極ガラス基板にシリコン基板を接合し、
前記シリコン基板に圧力室を形成してキャビティ基板とする
ことを特徴とする液滴吐出ヘッドの製造方法。
【請求項9】
前記シリコン基板に絶縁膜を成膜し、
前記入力配線の前記導電性酸化物を露出させた部分に対応する前記絶縁膜を除去して窓
部を形成し、
前記窓部を介して、前記導電性酸化物と前記シリコン基板とを接触させることで等電位
接点を確保する
ことを特徴とする請求項8に記載の液滴吐出ヘッドの製造方法。
【請求項10】
前記シリコン基板と前記電極ガラス基板とを陽極接合させた後、
前記等電位接点近傍に位置する前記シリコン基板を除去する
ことを特徴とする請求項9に記載の液滴吐出ヘッドの製造方法。
【請求項11】
前記請求項8〜10のいずれかに記載の液滴吐出ヘッドの製造方法を含む
ことを特徴とする液滴吐出装置の製造方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate


【公開番号】特開2008−307769(P2008−307769A)
【公開日】平成20年12月25日(2008.12.25)
【国際特許分類】
【出願番号】特願2007−157119(P2007−157119)
【出願日】平成19年6月14日(2007.6.14)
【出願人】(000002369)セイコーエプソン株式会社 (51,324)
【Fターム(参考)】