説明

球状半導体の製造方法および球状半導体の製造装置

【課題】 所定形状の球状半導体を低コストで製造することが可能な、球状半導体の製造装置を提供する。
【解決手段】 球状半導体の形成材料を含む液滴2を吐出する液滴吐出装置10と、吐出された液滴2を加熱することにより空中で硬化させる硬化装置30と、硬化装置30により形成された非晶質の球状半導体4にレーザ光を照射するレーザ照射装置52を備え、結晶質の球状半導体6を形成する結晶化装置50と、を有する構成とした。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、球状半導体の製造方法および球状半導体の製造装置に関するものである。
【背景技術】
【0002】
近年、直径1mm程度の球状のシリコンボールの表面に素子や回路等を形成した球状半導体が注目されている。球状半導体は、シリコンの単位体積あたりの表面積が最も大きくなるため、電子機器の小型化に寄与することができるからである。
【0003】
特許文献1には、球状半導体の製造方法が記載されている。この製造方法では、固体のシリコン粒を予熱ゾーンから超高温ゾーンに導入する。シリコン粒は、超高温ゾーンを通る際に溶融し、表面張力によって球形になる。これにより、粒状単結晶体が生成されるようになっている。
【特許文献1】特表2001−501779号公報
【発明の開示】
【発明が解決しようとする課題】
【0004】
しかしながら、特許文献1に記載された方法では、シリコンの融点以上の高温が必要になる。この場合、加熱装置の導入および運転に多くのコストが必要になる。また、特許文献1に記載された方法では、原料となるシリコン粒の質量がばらつくため、製造される球状半導体のサイズがばらつくという問題がある。
【0005】
本発明は、上記問題点を解決するためになされたものであって、寸法精度に優れた球状半導体を低コストで製造することが可能な、球状半導体の製造方法および球状半導体の製造装置の提供を目的とする。
【課題を解決するための手段】
【0006】
上記目的を達成するため、本発明に係る球状半導体の製造方法は、球状半導体の形成材料を含む液滴を吐出する液滴吐出工程と、吐出された前記液滴を空中で硬化させる硬化工程と、を有することを特徴とする。
液滴吐出方式によれば、所定量の液滴を正確に吐出することができるので、所定サイズの球状半導体を形成することができる。また、表面張力により球形となった液滴を空中で硬化させる工程を有するので、真球に近い球状半導体を形成することができる。したがって、寸法精度に優れた球状半導体を製造することができる。
【0007】
また前記球状半導体の形成材料は、一般式SinXm(ここで、nは5以上の整数を表し、mはnまたは2n−2または2nの整数を表し、Xは水素原子および/またはハロゲン原子を表す。)で表される環系を有するケイ素化合物であることが望ましい。
この構成によれば、上記の環系を有するケイ素化合物は極性溶媒等に溶解させることができるので、常温(室温)で球状の液滴を形成することができる。当該液滴を硬化させることによって球状半導体を製造することができるので、高温の加熱装置が不要になり、低コストで球状半導体を製造することができる。
【0008】
また前記硬化工程は、前記液滴を加熱することによって行うことが望ましい。
この構成によれば、簡単に液滴を硬化させることができるので、低コストで球状半導体を製造することができる。
【0009】
なお前記硬化工程では、前記液滴を400℃以上で加熱すればよい。
この構成によれば、比較的低温で液滴を硬化させることができるので、高温の加熱装置が不要になり、低コストで球状半導体を製造することができる。
【0010】
また前記硬化工程では、前記液滴の加熱温度を、前記液滴の通過経路に沿って上昇させることが望ましい。
この構成によれば、液滴の突沸を防止しつつ液滴を硬化させることができる。
【0011】
また前記硬化工程は、前記液滴にレーザ光を照射することによって行ってもよい。
また前記硬化工程では、前記液滴に照射するレーザ光のエネルギー密度を、前記液滴の通過経路に沿って上昇させることが望ましい。
この構成によっても、液滴の突沸を防止しつつ液滴を硬化させることができる。
【0012】
また、前記硬化工程により形成された非晶質の球状半導体にレーザ光を照射することにより、結晶質の球状半導体を形成する結晶化工程を有することが望ましい。
この構成によれば、材料液の吐出から連続して結晶質の球状半導体を形成することができる。
【0013】
また前記レーザ光は、可視光波長のレーザ光であることが望ましい。
可視光波長のレーザ光は、紫外光波長のレーザ光より液滴に対する進入長が深いので、レーザ光を液滴全体に吸収させることができる。
【0014】
また前記レーザ光の照射は、前記液滴の吐出と同期させて行うことが望ましい。
この構成によれば、レーザ光を効率よく液滴に吸収させることができるので、低コストで球状半導体を製造することができる。
【0015】
また前記レーザ光の照射方向は、前記液滴または前記非晶質の球状半導体の通過経路と略平行であることが望ましい。
この構成によれば、少数のレーザ照射装置により、液滴または非晶質の球状半導体に対して、長時間にわたってレーザ光を照射することが可能になる。したがって、レーザ照射装置の台数を削減することが可能になり、低コストで球状半導体を製造することができる。
【0016】
一方、本発明に係る球状半導体の製造装置は、球状半導体の形成材料を含む液滴を吐出する液滴吐出装置と、吐出された前記液滴を空中で硬化させる硬化装置と、を有することを特徴とする。
液滴吐出装置によれば、所定量の液滴を正確に吐出することができるので、所定サイズの球状半導体を形成することができる。また、表面張力により球形となった液滴を空中で硬化させる硬化装置を有するので、真球に近い球状半導体を形成することができる。したがって、寸法精度に優れた球状半導体を製造することができる。
【0017】
また、前記硬化装置により硬化された非晶質の球状半導体にレーザ光を照射することにより、結晶質の球状半導体を形成する結晶化装置を有することが望ましい。
この構成によれば、材料液の吐出から連続して結晶質の球状半導体を形成することができる。
【発明を実施するための最良の形態】
【0018】
以下、本発明の実施形態につき、図面を参照して説明する。なお、以下の説明に用いる各図面では、各部材を認識可能な大きさとするため、各部材の縮尺を適宜変更している。
図1は、本実施形態に係る球状半導体の製造装置の全体図である。本発明に係る球状半導体の製造装置1は、球状半導体の形成材料を含む液滴2を吐出する液滴吐出装置10と、吐出された液滴2を空中で硬化させ、非晶質の球状半導体(以下「非晶質体」という。)4を形成する硬化装置30と、その非晶質体4にレーザ光を照射して結晶質の球状半導体(以下「結晶質体」という。)6を形成する結晶化装置50と、を有するものである。
【0019】
(液滴吐出装置)
本実施形態に係る球状半導体の製造装置1の最上部には、液滴吐出装置10が配置されている。
図2は液滴吐出装置の説明図であり、図2(a)は斜視図であり、図2(b)は正面断面図である。図2(a)に示す液滴吐出装置10では、対向配置されたノズルプレート12と振動板13とが、仕切部材(リザーバプレート)14を介して接合されている。この仕切部材14を整形することにより、ノズルプレート12と振動板13との間には、複数の液室15およびリザーバ16が形成されている。各液室15は、連通路17を介してリザーバ16に連結されている。このリザーバ16および各液室15の内部には、球状半導体の形成材料を含む液状体が充填されるようになっている。
【0020】
各液室15に対応して、ノズルプレート12にはノズル18が穿設されている。また各液室15に対応して、振動板13の外側には圧電素子(ピエゾ素子)20が装着されている。図2(b)に示すように、圧電素子20は、チタン酸ジルコニウム酸鉛(PZT)等からなる圧電材料を、一対の電極21で挟持したものである。この一対の電極21に交流電圧を印加すると、圧電材料が収縮および膨張を繰り返す。圧電材料が収縮すると、振動板13が液室15の外側に湾曲し、液室15の内圧が低下する。これにより、リザーバから液室15に液状体が流入する。次に圧電材料が膨張すると、振動板13が液室15の内側に湾曲して、液室15の内圧が増加する。このようにして、ノズル18から液滴2が吐出されるようになっている。
【0021】
なお、液滴吐出装置10の液滴吐出方式は、圧電素子20を用いたピエゾジェットタイプ以外の方式でもよく、例えばエネルギー発生素子として電気熱変換体を用いた方式を採用してもよい。
【0022】
(硬化装置)
図1に戻り、上述した液滴吐出装置10の下方には、吐出された液滴2を空中で硬化させて非晶質体4を形成する硬化装置30が配置されている。硬化装置30は、高さ3〜5m程度の筒状に形成され、その上端面および下端面が矩形状や円形状等に開口されている。これにより、液滴吐出装置10から吐出された液滴が、硬化装置30の内部を通過して落下するようになっている。
【0023】
図3は、硬化装置の側面断面図である。本実施形態における硬化装置30の内壁には、落下中の液滴を加熱する加熱装置32,34,36が装着されている。この加熱装置として、各種ヒータや各種ランプ等を採用することが可能である。各加熱装置は、硬化装置30の全周に装着されていてもよく、周上の一部に配置されていてもよい。
【0024】
硬化装置30の高さ方向には、複数の加熱装置が配置されている。各加熱装置は、液滴2の通過経路の上流に配置されるほど液滴2の加熱温度が低く設定され、下流に配置されるほど加熱温度が高く設定されている。例えば、硬化装置30の上部に配置された第1加熱装置32は、液滴2を300℃程度に加熱しうるように設定され、硬化装置30の中部に配置された第2加熱装置34は、液滴2を500℃程度に加熱しうるように設定され、硬化装置30の下部に配置された第3加熱装置36は、液滴2を700℃程度に加熱しうるように設定されている。このように、液滴2の通過経路の上流から下流にかけて、液滴2の加熱温度を徐々に上昇させることにより、液滴2の突沸を防止しつつ焼成して硬化させうるようになっている。なお最下部に配置された第3加熱装置36は、液滴2を400℃以上に加熱しうるように設定されている。これにより、後述する液状体からなる液滴2を確実に焼成して、非晶質体4を形成しうるようになっている。
【0025】
図4は、硬化装置の第1変形例の側面断面図である。この第1変形例では、上述した加熱装置に代えて、落下中の液滴2にレーザを照射するレーザ照射装置42,44,46が装着されている。レーザ照射装置として、可視光波長のレーザ光を照射しうるものを採用することが望ましい。可視光レーザより波長の長い赤外レーザは液滴2に吸収され難く、可視光レーザより波長の短い紫外レーザは液滴2の表面のみに吸収されるのに対して、可視光レーザは進入長が深く、液滴2の全体に吸収されるからである。可視光レーザとして、安価なYAG2倍波等を採用すればよい。なおレーザ照射装置は、硬化装置30の内壁から中心軸に向かって略垂直にレーザを照射しうるように配置されている。
【0026】
硬化装置30の高さ方向には、複数のレーザ照射装置が配置されている。各レーザ照射装置は、液滴2の通過経路の上流に配置されるほど、液滴2に照射されるレーザ光のエネルギー密度が低くなるように設定され、下流に配置されるほどエネルギー密度が低くなるように設定されている。例えば、硬化装置30の上部に配置された第1レーザ照射装置42は、エネルギー密度が200mJ/cm2程度となるように設定され、中部に配置された第2レーザ照射装置44は、エネルギー密度が300mJ/cm2程度となるように設定され、下部に配置された第3レーザ照射装置46は、エネルギー密度が400mJ/cm2程度となるように設定されている。このように、液滴2の通過経路の上流から下流にかけて、液滴に照射されるレーザ光のエネルギー密度を徐々に上昇させることにより、液滴2を突沸させることなく硬化させて、非晶質体4を形成しうるようになっている。
【0027】
図5は、硬化装置の第2変形例の側面断面図である。レーザ光は、レーザ照射装置48から所定の角度範囲に放射されるので、レーザ照射装置48の近くにおいてエネルギー密度が高くなり、レーザ照射装置48から離れるにしたがってエネルギー密度が低くなる性質を有する。そこで第2変形例では、レーザ光を、液滴2の通過経路と略平行に下流から上流に向かって照射しうるように、レーザ照射装置48が配置されている。これにより、液滴2の通過経路の上流から下流にかけて、液滴に照射されるレーザ光のエネルギー密度が高くなる状態を実現することが可能になる。したがって、液滴2を突沸させることなく硬化させて、非晶質体4を形成することができる。また第2変形例では、少数のレーザ照射装置により、落下中の液滴2に対して、長時間にわたってレーザ光を照射することができる。したがって、第1変形例に比べてレーザ照射装置の台数を削減することが可能になり、設備コストを低減することができる。
【0028】
(結晶化装置)
図1に戻り、上述した硬化装置30の下方には、非晶質体4にレーザ光を照射して結晶質体6を形成する結晶化装置50が配置されている。結晶化装置50は、1個または複数個のレーザ照射装置52を備えている。そのレーザ照射装置52として、硬化装置30の第1変形例と同様のレーザ照射装置を採用することが可能である。レーザ照射装置52は、非晶質体4の通過経路の側方に配置され、非晶質体4の通過経路に向かって略垂直にレーザ光を照射しうるようになっている。そして、非晶質体4に照射されるレーザ光のエネルギー密度が、600mJ/cm2程度となるように設定されている。なお、非晶質体4の直径の大きさに対応させて、エネルギー密度を大きくすることが望ましい。
【0029】
図6は、結晶化装置の第1変形例の側面図である。この第1変形例では、レーザ光を、非晶質体4の通過経路と略平行に下流から上流に向かって照射しうるように、レーザ照射装置52が配置されている。この構成によれば、1個のレーザ照射装置52により、落下中の非晶質体4に対して、長時間にわたってレーザ光を照射することが可能になる。したがって、レーザ照射装置の台数を削減することが可能になり、設備コストを低減することができる。なおレーザ照射装置52の直上には、石英等のレーザ光透過材料からなる案内板54が配置されている。この案内板54は、レーザ光の光軸からレーザ照射装置の外側に向かって下降する傾斜面を備えている。この傾斜面により、レーザ照射装置52に向かって落下する非晶質体4をレーザ照射装置52の外側に案内することが可能になり、レーザ照射装置52と非晶質体4との衝突を回避しうるようになっている。
【0030】
図1に戻り、結晶化装置50の下方には、結晶質体6の受け皿60が配置されている。なお、結晶質体6を冷却するため、受け皿60の内部に水等の冷媒を充填してもよい。
以上に詳述した球状半導体の製造装置1は、その全体が真空や不活性ガス雰囲気下に保持されている。特に、真空下に保持することにより、真球に近い球状半導体を製造することができる。
【0031】
(球状半導体の製造方法)
次に、本実施形態に係る球状半導体の製造装置を使用した球状半導体の製造方法について説明する。図1に示すように、本実施形態に係る球状半導体の製造方法は、半導体の形成材料を含む液滴2を吐出する工程と、吐出された液滴2を空中で硬化させ非晶質体4を形成する工程と、硬化した非晶質体4にレーザを照射して結晶質体6を形成する工程とを有するものである。
【0032】
まず、半導体の形成材料を含む液状体を調整する。ケイ素からなる半導体の形成材料として、一般式SinXm(ここで、nは5以上の整数であり、mはnまたは2n−2または2nの整数であり、Xは水素原子および/またはハロゲン原子である。)で表される環系を有するケイ素化合物を採用する。このケイ素化合物を、室温での蒸気圧が0.001〜200mmHgの極性溶媒等に溶解して、濃度1〜80重量%程度の溶液を調整する。このケイ素化合物溶液の粘度は通常1〜100mPa・sであるが、必要に応じて液滴吐出装置10により吐出可能な粘度に調整する。この液状体については後に詳述する。
【0033】
次に、調整した液状体を液滴吐出装置10に充填し、液滴吐出装置10から液滴2を吐出する(液滴吐出工程)。吐出された液滴2は、表面張力によって球形となる。ここで、図2に示す一対の電極21に入力する電圧波形を調整することにより、液滴2の吐出量を調整することができる。これにより、直径10μmないし100μm程度の微小な液滴2を吐出することが可能になる。
【0034】
次に図1に戻り、吐出された液滴2を空中で硬化させる(硬化工程)。吐出された液滴2は自由落下して、硬化装置30の上部開口からその内部に進入する。図3に示す硬化装置30では、まず第1加熱装置32により、液滴2を300℃程度に加熱する。次に第2加熱装置34および第3加熱装置36により、液滴2を500℃〜700℃に加熱する。このように、液滴2を徐々に加熱することにより、液滴2の突沸を防止しつつシリコンの非晶質体4を形成することができる。上述したケイ素化合物は、400℃以上の加熱により熱分解するので、非晶質体4を確実に形成することができる。
【0035】
なお、図4および図5に示す硬化装置30を採用した場合にも、上記と同様に非晶質体を形成することができる。この場合、レーザ照射装置をパルス発振させ、液滴2の吐出と同期させることにより、レーザ光を効率的に吸収させることができる。
【0036】
次に図1に戻り、硬化した非晶質体4にレーザ光を照射して結晶質体6を形成する(結晶化工程)。非晶質体4は自由落下して、結晶化装置50に進入する。結晶化装置50では、エネルギー密度が600mJ/cm2程度のレーザ光を非晶質体4に照射する。レーザ光を照射することにより、非晶質体4が加熱されて溶解する。これを冷却すると、結晶化が起こり、結晶質体6が形成される。この場合にも、レーザ照射装置をパルス発振させ、液滴2の吐出と同期させることにより、レーザ光を効率的に吸収させることができる。なお図6に示す結晶化装置50を採用した場合にも、上記と同様に結晶質体6を形成することができる。
【0037】
図1に戻り、結晶化装置50を通過した結晶質体6は、受け皿60に到達するまでに自然冷却される。なお受け皿60の内部に水等の冷媒を充填して、強制冷却することも可能である。
以上により、球状半導体が形成される。なお液滴吐出装置10から連続して液滴を吐出することにより、複数の球状半導体を連続形成することも可能である。また液滴吐出装置10に形成された複数のノズルから、複数の液滴2を同時に吐出することにより、複数の球状半導体を同時に形成することも可能である。
【0038】
以上に詳述したように、本実施形態に係る球状半導体の製造方法では、半導体の形成材料を含む液滴2を吐出する工程と、吐出された液滴2を空中で硬化させ非晶質体4を形成する工程とを有する構成とした。液滴吐出方式によれば、所定量の液滴を正確に吐出することができるので、所定サイズの球状半導体を形成することができる。例えば、従来の球状半導体が直径1mm程度であったのに対して、本実施形態によれば直径10μm〜100μm程度の微小な球状半導体を形成することが可能になり、球状半導体を用いた電子機器を小型化することができる。また、吐出された液滴2は表面張力によって球形になり、その液滴2を空中で硬化させるので、真球に近い球状半導体を形成することができる。したがって、寸法精度に優れた球状半導体を形成することができる。
さらに、非晶質の球状半導体にレーザを照射して結晶質の球状半導体を形成する工程を付加することにより、材料液の吐出から連続して結晶質の球状半導体を形成することができる。
【0039】
また、半導体の形成材料として、一般式SinXmで表される環系を有するケイ素化合物を採用する構成とした。このケイ素化合物を含む液滴を硬化させれば、球状半導体を製造することができるので、シリコンを融点以上の高温に加熱する装置が不要になり、低コストで球状半導体を製造することができる。
【0040】
(加速度センサ)
次に、上記球状半導体を用いた電子機器について説明する。
図7は、加速度センサの側面断面図である。この加速度センサ80は、中心部に結晶質の球状半導体6を備えている。その表面全体に下地絶縁膜82が形成され、その表面全体に導電性材料からなる下部電極84が形成され、その表面全体に誘電体層86が形成されている。その誘電体層86の表面には、導電性材料からなる上部電極88が形成されている。この上部電極88は、複数に分割された状態で、少なくとも±X方向、±Y方向および±Z方向に配置されている。そして、上部電極88と下部電極84との間に誘電体層86が挟持され、上記各方向にキャパシタが形成されている。なお上部電極88は、バンプ96を介して、基板92の電極94に実装されている。また加速度センサ80の全体が、樹脂98によって封止されている。
【0041】
そして、基板92に外力が作用すると、球状半導体6に慣性力が作用して、球状半導体6がいずれかの方向に移動する。これにより、球状半導体の移動方向に形成されたキャパシタの容量が変化する。この容量変化を検出することにより、基板92の加速度を測定することができるようになっている。
本実施形態に係る球状半導体の製造方法によれば、真球に近い球状半導体を形成することができるので、測定精度に優れた加速度センサを提供することができる。また本実施形態に係る球状半導体の製造方法によれば、微小な球状半導体を形成することができるので、小型の加速度センサを提供することができる。
【0042】
球状半導体を用いた電子機器は、上述した加速度センサに限られない。例えば、球状半導体の表面にトランジスタ等の素子や配線等を形成して、集積回路(IC)を形成することも可能である。また、そのICを実装することにより、液晶プロジェクタ、マルチメディア対応のパーソナルコンピュータ(PC)およびエンジニアリング・ワークステーション(EWS)、ページャ、ワードプロセッサ、テレビ、ビューファインダ型またはモニタ直視型のビデオテープレコーダ、電子手帳、電子卓上計算機、カーナビゲーション装置、POS端末、タッチパネルを備えた装置などの電子機器を形成することも可能である。いずれの電子機器も、本実施形態に係る微小な球状半導体を用いることにより、小型化することが可能になる。
【0043】
(球状半導体の形成材料)
次に、上述した球状半導体の形成材料について、詳細に説明する。
球状シリコンを形成するため、本発明において使用する液体材料は、一般式SinXm(ここで、nは5以上の整数を表し、mはnまたは2n−2または2nの整数を表し、Xは水素原子および/またはハロゲン原子を表す)で表される環系を有するケイ素化合物を含んでいる。特に、上記一般式SinXmのケイ素化合物として、nが5以上20以下であるものが好ましく、nが5又は6であるものがより好ましい。nが5より小さい場合、ケイ素化合物自体が環構造による歪みにより不安定となるため取り扱いが難しくなり、またnが20より大きい場合、ケイ素化合物の凝集力に起因して溶液中での溶解性が低下し、実際に使用可能な溶媒の選択性が狭くなる。
【0044】
上記一般式のケイ素化合物の具体例としては、1個の環系を有するものとして、シクロペンタシラン、シリルシクロペンタシラン、シクロヘキサシラン、シリルシクロヘキサシラン、シクロヘプタシランが、具体的には2個の環系を有するものとして、1、1’−ビスシクロブタシラン、1、1’−ビスシクロペンタシラン、1、1’−ビスシクロヘキサシラン、1、1’−ビスシクロヘプタシラン、1、1’−シクロブタシリルシクロペンタシラン、1、1’−シクロブタシリルシクロヘキサシラン、1、1’−シクロブタシリルシクロヘプタシラン、1、1’−シクロペンタシリルシクロヘキサシラン、1、1’−シクロペンタシリルシクロヘプタシラン、1、1’−シクロヘキサシリルシクロヘプタシラン、スピロ[2、2]ペンタシラン、スピロ[3、3]ヘプタタシラン、スピロ[4、4]ノナシラン、スピロ[4、5]デカシラン、スピロ[4、6]ウンデカシラン、スピロ[5、5]ウンデカシラン、スピロ[5、6]ドデカシラン、スピロ[6、6]トリデカシランが挙げられる。また多環系のものとして、図8に示す化合物1〜化合物5の水素化ケイ素化合物を挙げることができる。
【0045】
また、これらの水素化ケイ素化合物の他に、これらの骨格の水素原子を部分的にSiH3基やハロゲン原子に置換したケイ素化合物を挙げることができる。これらは2種以上を混合して使用することもできる。これらの内、溶媒への溶解性の点で1、1’−ビスシクロペンタシラン、1、1’−ビスシクロヘキサシラン、スピロ[4、4]ノナシラン、スピロ[4、5]デカシラン、スピロ[5、5]ウンデカシラン、スピロ[5、6]ドデカシラン、およびこれらの骨格にSiH3基を有するケイ素化合物が特に好ましい。
【0046】
また、本発明における球状シリコンの形成において使用されるケイ素化合物は、上記一般式SinXmで表される環系を有するケイ素化合物を必須成分とする溶液を用いるが、当該溶液に、n−ペンタシラン、n−ヘキサシラン、n−ヘプタシランなどのケイ素化合物が含まれていていてもよい。
【0047】
また、本発明で使用する上記ケイ素化合物は、通常それぞれの構造単位を有するモノマーを原料として、例えば、以下の方法により製造することができる。
(a)アルカリ金属の存在下にハロシラン類を脱ハロゲン縮重合させる方法(いわゆる「キッピング法」、J.Am.Chem.Soc.,110,124(1988)、Macromolecules,23,3423(1990));
(b)電極還元によりハロシラン類を脱ハロゲン縮重合させる方法(J.Chem.Soc.,Chem.Commun.,1161(1990)、J.Chem.Soc.,Chem.Commun.,897(1992));
(c)金属触媒の存在下にヒドロシラン類を脱水素縮重合させる方法(特開平4−334551号公報):
(d)ビフェニルなどで架橋されたジシレンのアニオン重合による方法(Macromolecules,23,4494(1990)):
(e)フェニル基やアルキル基で置換された環状ケイ素化合物を上記の方法で合成した後、公知の方法(例えば、Z.anorg.allg.Chem.,459,123−130(1979)など)によりヒドロ置換体やハロゲン置換体などに誘導することもできる。これらのハロゲン化シクロシラン化合物は公知の方法(例えば、E.Henggeら Mh.Chem.第106巻、503頁、1975年参照)、(E.Henggeら Z.Anorg.Allg.Chem.第621巻、1517頁、1995年参照)、(P.Boudjoukら J.Chem.Soc.,Chem.Commun.777頁、1984年)で合成することができ、合成条件を最適化することによりクロル体、水素化体および部分クロル化体を使用することができる。
【0048】
本発明の方法では、上記一般式SinXmのケイ素化合物を溶媒に溶解した溶液を使用する。本発明で、上記溶液に使用する溶媒は通常、室温での蒸気圧が0.001〜200mmHgのものを用いる。蒸気圧が200mmHgより高い場合には、溶媒が先に蒸発してしまい良好な半導体を形成することが困難となることがある。一方、蒸気圧が0.001mmHgより低い溶媒の場合、乾燥が遅くなりケイ素化合物中に溶媒が残留し易くなり、後工程の熱および/または光処理後にも良質の球状シリコンが得られ難いことがある。
【0049】
本発明で使用する溶媒としては、ケイ素化合物を溶解し溶媒と反応しないものであれば特に限定されないが、具体例として、n−ヘキサン、n−ヘプタン、n−オクタン、n−デカン、ジシクロペンタン、ベンゼン、トルエン、キシレン、デュレン、インデン、テトラヒドロナフタレン、デカヒドロナフタレン、スクワランなどの炭化水素系溶媒の他、ジプロピルエーテル、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールメチルエチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールメチルエチルエーテル、テトラヒドロフラン、テトラヒドロピラン、1,2−ジメトキシエタン、ビス(2−メトキシエチル)エーテル、p−ジオキサンなどのエーテル系溶、さらにプロピレンカーボネート、γ−ブチロラクトン、N−メチル−2−ピロリドン、ジメチルホルムアミド、アセトニトリル、ジメチルスルホキシド、クロロホルムなどの極性溶媒を挙げることができる。これらのうち、ケイ素化合物及び変性ケイ素化合物との溶解性と該溶液の安定性の点で炭化水素系溶媒、エーテル系溶媒が好ましく、さらに好ましい溶媒としては炭化水素系溶媒を挙げることができる。これらの溶媒は、単独でも、或いは2種以上の混合物としても使用できる。特に炭化水素系溶媒は、ケイ素化合物の溶解性を向上させ、熱処理や光処理時のケイ素化合物の残留を抑制する観点から好適である。
【0050】
本発明における球状シリコンの形成は、ケイ素化合物を溶解した溶液を液滴吐出装置から吐出し、液滴の溶媒を乾燥させてケイ素化合物の球体を形成し、該ケイ素化合物の球体を熱分解および/または光分解して球状の金属シリコンに変換するものである。液滴の吐出は一般には室温以上の温度で行われる。室温以下の温度ではケイ素化合物の溶解性が低下し一部析出する場合がある。また吐出する場合の雰囲気は、窒素やヘリウム、アルゴンなどの不活性ガス、さらに必要に応じて水素などの還元性ガスを混入したもの、または真空中で行なうことが好ましい。
【0051】
本発明では、上記ケイ素化合物を熱及び/又は光処理によって球状シリコンに変換する。本発明において得られる球状シリコンはアモルファス状あるいは多結晶状であるが、熱処理の場合には一般に到達温度が約550℃以下の温度ではアモルファス状、それ以上の温度では多結晶状の球状シリコンが得られる。アモルファス状の球状シリコンを得たい場合は、好ましくは300℃〜550℃、より好ましくは350℃〜500℃で熱処理がなされる。到達温度が300℃未満の場合は、ケイ素化合物の熱分解が十分に進行せず、球状シリコンを形成できない場合がある。上記熱処理を行う場合の雰囲気は、窒素やヘリウム、アルゴンなどの不活性ガス、もしくは不活性ガスに水素などの還元性ガスを混入したもの、または真空中で行うことが好ましい。多結晶状の球状シリコンを得たい場合は、上記で得られたアモルファス状の球状シリコンにレーザを照射して多結晶の球状シリコンに変換することができる。上記レーザを照射する場合の雰囲気は窒素やヘリウム、アルゴンなどの不活性ガス、もしくはこれらの不活性ガスに水素などの還元性ガスを混入したもの、または真空等、酸素を含まない雰囲気とすることが好ましい。
【0052】
一方、光処理については、ケイ素化合物の溶液の液滴に対し、その溶媒除去前及び/又は溶媒除去後に、不活性ガス雰囲気中で行うことができる。溶媒に可溶なケイ素化合物は当該光処理による反応により溶媒不溶性の強靭な物質に変化するだけではなく、光処理後、又はそれと同時に熱処理を行うことにより光学的電気特性に優れた球状シリコンに変換される。
【0053】
本発明において、ケイ素化合物を球状シリコンに変換する際の光処理に使用する光源としては、低圧あるいは高圧の水銀ランプ、重水素ランプあるいはアルゴン、クリプトン、キセノン等の希ガスの放電光の他、YAGレーザ、アルゴンレーザ、炭酸ガスレーザ、XeF、XeCl、XeBr、KrF、KrCl、ArF、ArClなどのエキシマレーザなどを光源として使用することができる。これらの光源は一般には、10〜5000Wの出力のものが用いられるが、通常100〜1000Wで十分である。これらの光源の波長はケイ素化合物が多少でも吸収するものであれば特に限定されないが、特に吸収効率および侵入長の点から400nm〜700nmが特に好ましい。また多結晶の球状シリコンへの変換効率の点でレーザ光の使用が特に好ましい。これらの光処理時の温度は通常室温〜500℃であり、得られる球状シリコンの半導体特性に応じて適宜選ぶことができる。
【0054】
本発明の上記ケイ素化合物溶液の濃度は1〜80重量%程度であり、所望の球状シリコンの直径に応じて調製することができる。80%を超えると析出しやすくなり均一な球状シリコンが得られない。
かくして調製したケイ素化合物溶液の粘度は通常1〜100mPa・sの範囲のものであり、液滴吐出装置や目的の球状シリコンの直径に応じて適宜選択することができる。100mPa・sを超えると均一な球状シリコンを得ることが困難になる。
【0055】
なお、本発明の技術範囲は、上述した実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において、上述した実施形態に種々の変更を加えたものを含む。すなわち、実施形態で挙げた具体的な材料や層構成などはほんの一例に過ぎず、適宜変更が可能である。
【図面の簡単な説明】
【0056】
【図1】実施形態に係る球状半導体の製造装置の全体図である。
【図2】液滴吐出装置の説明図である。
【図3】硬化装置の側面断面図である。
【図4】硬化装置の第1変形例の側面断面図である。
【図5】硬化装置の第2変形例の側面断面図である。
【図6】結晶化装置の第1変形例の側面図である。
【図7】加速度センサの側面断面図である。
【図8】多環系の水酸化ケイ素化合物の構造図である。
【符号の説明】
【0057】
1‥球状半導体の製造装置 2‥液滴 4‥非晶質の球状半導体 6‥結晶質の球状半導体 10‥液滴吐出装置 30‥硬化装置 50‥結晶化装置 52‥レーザ照射装置

【特許請求の範囲】
【請求項1】
球状半導体の形成材料を含む液滴を吐出する液滴吐出工程と、
吐出された前記液滴を空中で硬化させる硬化工程と、
を有することを特徴とする球状半導体の製造方法。
【請求項2】
前記球状半導体の形成材料は、一般式SinXm(ここで、nは5以上の整数を表し、mはnまたは2n−2または2nの整数を表し、Xは水素原子および/またはハロゲン原子を表す。)で表される環系を有するケイ素化合物であることを特徴とする請求項1に記載の球状半導体の製造方法。
【請求項3】
前記硬化工程は、前記液滴を加熱することによって行うことを特徴とする請求項1または請求項2に記載の球状半導体の製造方法。
【請求項4】
前記硬化工程は、前記液滴を400℃以上で加熱することによって行うことを特徴とする請求項1または請求項2に記載の球状半導体の製造方法。
【請求項5】
前記硬化工程は、前記液滴の加熱温度を、前記液滴の通過経路の上流から下流にかけて上昇させることによって行うことを特徴とする請求項1または請求項2に記載の球状半導体の製造方法。
【請求項6】
前記硬化工程は、前記液滴にレーザ光を照射することによって行うことを特徴とする請求項1または請求項2に記載の球状半導体の製造方法。
【請求項7】
前記硬化工程は、前記液滴に照射するレーザ光のエネルギー密度を、前記液滴の通過経路の上流から下流にかけて上昇させることによって行うことを特徴とする請求項1または請求項2に記載の球状半導体の製造方法。
【請求項8】
前記硬化工程により形成された非晶質の球状半導体にレーザ光を照射することにより、結晶質の球状半導体を形成する結晶化工程を有することを特徴とする請求項1ないし請求項7のいずれかに記載の球状半導体の製造方法。
【請求項9】
前記レーザ光は、可視光波長のレーザ光であることを特徴とする請求項6ないし請求項8のいずれかに記載の球状半導体の製造方法。
【請求項10】
前記レーザ光の照射は、前記液滴の吐出と同期させて行うことを特徴とする請求項6ないし請求項9のいずれかに記載の球状半導体の製造方法。
【請求項11】
前記レーザ光の照射方向は、前記液滴または前記非晶質の球状半導体の通過経路と略平行であることを特徴とする請求項6ないし請求項10のいずれかに記載の球状半導体の製造方法。
【請求項12】
球状半導体の形成材料を含む液滴を吐出する液滴吐出装置と、
吐出された前記液滴を空中で硬化させる硬化装置と、
を有することを特徴とする球状半導体の製造装置。
【請求項13】
前記硬化装置により硬化された非晶質の球状半導体にレーザ光を照射することにより、結晶質の球状半導体を形成する結晶化装置を有することを特徴とする請求項12に記載の球状半導体の製造装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate


【公開番号】特開2007−73868(P2007−73868A)
【公開日】平成19年3月22日(2007.3.22)
【国際特許分類】
【出願番号】特願2005−261830(P2005−261830)
【出願日】平成17年9月9日(2005.9.9)
【出願人】(000002369)セイコーエプソン株式会社 (51,324)
【Fターム(参考)】