説明

発光装置

【課題】同一基板上に駆動回路と画素部を形成した場合において、さらなる狭額縁化を図ることを課題とする。また、大型基板を用いた多面取りに有利な構造を有する発光装置とし、面取り数を増やして生産性を上げることを課題とする。また、フルカラーの発光装置において、R(赤色)、G(緑色)、B(青色)の発光素子のそれぞれの信頼性が異なっている場合において、3種類の発光素子の信頼性をほぼ同一とすることも課題とする。
【解決手段】本発明は、周辺回路部309と重なる位置に端子電極310を設け、該端子電極と、FPC306とを異方性導電接着材で接続する。加えて、基板301の端面および基板周縁部に接するシール材304でカバー材303を固着する。また、3種類の発光素子の信頼性をほぼ同一とするため、他の発光素子の信頼性に比べて低い発光素子の発光面積のみを拡大する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は陽極と、陰極と、電界を加えることで発光が得られる有機化合物を含む層(以
下、「有機化合物層」、「電界発光層」、または「EL層」と記す)と、を有する有機発
光素子、およびそれを用いた発光装置に関する。例えば、有機発光素子を有する発光装置
を部品として搭載した電子機器に関する。
【0002】
なお、本明細書中における発光装置とは、画像表示デバイス、発光デバイス、もしくは
光源(照明装置含む)を指す。また、発光装置にコネクター、例えばフレキシブルプリン
ト基板(以下、FPCと記す)もしくはTAB(Tape Automated Bonding)テープもしくはT
CP(Tape Carrier Package)が取り付けられたモジュール、TABテープやTCPの先にプリン
ト配線板が設けられたモジュール、または発光素子にCOG(Chip On Glass)方式によりIC
(集積回路)が直接実装されたモジュールも全て発光装置に含むものとする。
【背景技術】
【0003】
近年、発光型の素子としてEL素子を有した発光装置の研究が活発化しており、特に、E
L材料として有機材料を用いた発光装置が注目されている。この発光装置はELディスプ
レイとも呼ばれている。
【0004】
なお、EL素子は、電場を加えることで発生するルミネッセンス(Electro Luminescence
)が得られる有機化合物を含む層(以下、EL層と記す)と、陽極と、陰極とを有する。
【0005】
発光装置は、液晶表示装置と異なり発光型であるため視野角の問題がないという特徴があ
る。即ち、屋外に用いられるディスプレイとしては、液晶ディスプレイよりも適しており
、様々な形での使用が提案されている。
【0006】
EL素子は一対の電極間にEL層が挟まれた構造となっているが、EL層は通常、積層構
造となっている。代表的には、「正孔輸送層/発光層/電子輸送層」という積層構造が挙
げられる。この構造は非常に発光効率が高く、現在、研究開発が進められている発光装置
は殆どこの構造を採用している。EL素子は、一対の電極間に有機化合物層を挟んで電界
を印加することにより、陰極から注入された電子および陽極から注入された正孔が有機化
合物層中の発光中心で再結合して分子励起子を形成し、その分子励起子が基底状態に戻る
際にエネルギーを放出して発光するといわれている。励起状態には一重項励起と三重項励
起が知られ、発光はどちらの励起状態を経ても可能であると考えられている。
【0007】
また、陰極、EL層及び陽極で形成される発光素子をEL素子といい、このEL素子を
用いた発光装置には、互いに直交するように設けられた2種類のストライプ状電極の間に
EL層を形成する方式(単純マトリクス方式)、又はTFTに接続されマトリクス状に配
列された画素電極と対向電極との間にEL層を形成する方式(アクティブマトリクス方式
)の2種類がある。しかし、画素密度が増えた場合には、画素(又は1ドット)毎にスイ
ッチが設けられているアクティブマトリクス方式の方が低電圧駆動できるので有利である
と考えられている。
【0008】
また、EL層を形成するEL材料は極めて劣化しやすく、酸素もしくは水の存在により
容易に酸化もしくは吸湿して劣化するため、発光素子における発光輝度の低下や寿命が短
くなる問題がある。
【0009】
上記のようなEL素子の劣化を防ぐ構造を有する表示装置の開発がなされている。EL
素子を気密性容器に収納し、EL素子を密閉空間に閉じ込め外気から遮断し、さらにその
密閉空間に、EL素子から隔離して乾燥剤をもうける方法がある(例えば、特許文献1参
照。)。
【0010】
また、EL素子の形成された絶縁体の上にシール材を形成し、シール材を用いてカバー
材およびシール材で囲まれた密閉空間を樹脂などから成る充填材で充填し、外部から遮断
する方法もある(例えば、特許文献2参照。)。
【先行技術文献】
【特許文献】
【0011】
【特許文献1】特開平9-148066号公報
【特許文献2】特開平13-203076号公報
【発明の概要】
【発明が解決しようとする課題】
【0012】
発光装置の製造コストの低減を図るために駆動回路を画素部と同一基板上に作り込む開
発が進められている。
【0013】
同一基板上に画素部と、該画素部を制御する駆動回路とを形成した場合、駆動回路をT
AB方式で実装したものと比べて、額縁部と呼ばれる画素領域以外の領域が占める面積が
大きくなる傾向がある。額縁部の面積を小さくするために、駆動回路を構成する回路規模
を小さくする必要に迫られている。特に画面サイズが5インチ以下の小型の表示パネルを
内蔵する携帯電話ではさらなる狭額縁が要求されている。
【0014】
本発明は、さらなる狭額縁化を図ることを課題とする。
【0015】
また、本発明は、発光素子への酸素の到達、もしくは水分の到達を防止する構造とし、
高い信頼性を備えた発光装置およびその作製方法を提供することを課題とする。また、大
型基板を用いた多面取りに有利な構造を有する発光装置とし、面取り数を増やして生産性
を上げることを課題とする。
【課題を解決するための手段】
【0016】
そこで、本発明は、駆動回路部と重なる位置に端子電極を設け、該端子電極と、プリン
ト配線回路とを異方性導電接着材で接続する。即ち、従来では駆動回路の配置スペースと
、端子電極の配置スペースを別々に設けていたが、本発明により、駆動回路の配置スペー
ス上に端子電極を配置することによって、狭額縁化を図っている。
【0017】
また、端子電極は、発光素子の第1の電極と同一工程で形成するため、工程数を増やす
ことなく設けることができる。また、FPCを圧着する際、駆動回路に配置されたTFT
などの回路を破壊しないように、駆動回路のTFTと端子電極との間に絶縁膜または絶縁
膜の積層が設けられている。
【0018】
加えて、本発明は、大型基板を用いた多面取りに有利な構造の発光装置とし、面取り数
を増やして生産性を上げるため、基板を一つの表示パネル毎に分断した後に、基板の端面
および基板周縁部に接するシール材でカバー材を固着する。基板の端面および基板周縁部
に接するシール材でカバー材を固着するため、画素部から基板端面までの距離、即ち額縁
を狭めることができる。
【0019】
加えて、基板の端面は、研磨されている表面に比べて粗く、密着性がよいため、基板周
縁部におけるシール材の幅をさらに狭めることもできる。カバー材と基板との密着性を上
げることは、発光装置の信頼性を向上させることに繋がる。
【0020】
これらの構成により、大型基板を分断するスクライブライン間隔幅を狭めることができ、
一枚あたりの面取り数を増やすことができる。一枚あたりの面取り数を増やすことによっ
て1パネル当たりの製造コストの低減を実現する。
【0021】
本明細書で開示する発明の構成の一つは、基板とカバー材との間に、第1の電極と、該
第1の電極上に有機化合物を含む層と、該有機化合物を含む層上に第2の電極とを有する
発光素子を複数有する画素部と、駆動回路部を備えた発光装置であり、前記駆動回路部上
に前記第1の電極と同じ材料からなる端子電極が設けられ、該端子電極にプリント配線回
路が接続されることを特徴とする発光装置である。
【0022】
また、他の発明の構成の一つは、基板とカバー材との間に、第1の電極と、該第1の電
極上に有機化合物を含む層と、該有機化合物を含む層上に第2の電極とを有する発光素子
を複数有する画素部と、駆動回路部を備えた発光装置であり、
前記駆動回路部上に第1の電極と同じ材料からなる端子電極が設けられ、該端子電極に
プリント配線回路が接続され、前記駆動回路部上にシール材とカバー材の端部が配置され
、前記基板と前記カバー材とは、前記基板の周縁部および端面をシール材で固定され、且
つ、前記カバー材の一部は基板の端面を覆っていることを特徴とする発光装置である。
【0023】
また、上記各構成において、前記シール材で囲まれた密閉空間には乾燥剤が配置されて
いることを特徴の一つとしている。
【0024】
また、フルカラーの発光装置において、R(赤色)、G(緑色)、B(青色)の発光素
子のそれぞれの信頼性が異なっている場合、他の発光素子の信頼性に比べて低い発光素子
の発光面積のみを拡大する。例えば、他の発光素子の信頼性に比べて低い青色の発光素子
の電流密度を下げるために青色の発光面積のみを拡大することによって発光装置の信頼性
を向上させる。なお、青色の発光面積を拡大するために、隔壁の幅も狭くすることが望ま
しい。
【0025】
また、本明細書で開示する発明の構成の一つは、基板と、カバー材との間に、第1の電
極と、該第1の電極上に有機化合物を含む層と、該有機化合物を含む層上に第2の電極と
を有する発光素子を複数有する画素部を備えた発光装置であり、
前記発光素子は、赤色、緑色、青色の3種類の発光素子を有し、青色の発光素子におけ
る第1の電極面積を他の発光素子(即ち、赤色の発光素子または緑色の発光素子)におけ
る第1の電極面積よりも大きくすることを特徴とする発光装置である。
【0026】
また、本明細書で開示する発明の構成の一つは、基板と、カバー材との間に、第1の
電極と、該第1の電極の端部を覆う隔壁と、前記第1の電極上に有機化合物を含む層と、
該有機化合物を含む層上に第2の電極とを有する発光素子を複数有する画素部を備えた発
光装置であり、前記発光素子は、赤色、緑色、青色の3種類の発光素子を有し、青色の発
光素子と赤色の発光素子との間に設けられた隔壁の幅、及び青色の発光素子と緑色の発光
素子との間に設けられた隔壁の幅は、赤色の発光素子と緑色の発光素子との間に設けられ
た隔壁の幅より狭いことを特徴とする発光装置である。
【0027】
上記各構成により、赤色、緑色、青色の3種類の発光素子の信頼性をほぼ同一とするこ
とができ、フルカラー表示において、経時変化による色ずれを防止することができる。
【0028】
また、上記各構成において、前記基板上には、薄膜トランジスタと、該薄膜トランジスタ
を覆う絶縁膜と、該絶縁膜の側面を覆う導電膜(電極パターン)とを有し、前記絶縁膜上
に前記第1の電極が設けられていることも特徴の一つとしている。導電膜(電極パターン
)で絶縁膜の側面を覆うことによって、外部からの水分の侵入を防止し、発光装置の信頼
性を向上させている。なお、導電膜(電極パターン)は、第1の電極と同じ材料で形成さ
れている。
【0029】
また、上記各構成において、前記カバー材の形状は、一部が基板の端面を覆っているこ
とを特徴の一つとしている。なお、本明細書において、覆うとは、基板の端面の一部を覆
っている状態や、基板の端面を包むように完全に覆っている状態を指している。
【発明の効果】
【0030】
本発明の封止構造および素子構造により、発光装置の信頼性を大幅に向上させることが
できる。
【図面の簡単な説明】
【0031】
【図1】発光装置の上面図および断面図を示す図。(実施の形態1)
【図2】多面取りにおける発光装置の作製工程を示す図。(実施の形態1)
【図3】発光装置の端部における断面を示す図。(実施の形態1)
【図4】EL表示装置の断面図。(実施の形態1)
【図5】画素のレイアウトを示す図。(実施の形態2)
【図6】TFTの活性層となる半導体層を作製する工程断面図を示す図である。(実施例1)
【図7】発光装置の上面図(実施例2)
【図8】発光装置の上面図および断面図を示す図。(実施例2)
【図9】本発明のEL表示パネルに適用できる画素の構成を説明する回路図。
【図10】本発明において走査線側駆動回路をTFTで形成する場合の回路構成を説明する図。
【図11】本発明において走査線側駆動回路をTFTで形成する場合の回路構成を説明する図(シフトレジスタ回路)。
【図12】本発明において走査線側駆動回路をTFTで形成する場合の回路構成を説明する図(バッファ回路)。
【図13】電子機器の一例を示す図。
【図14】電子機器の一例を示す図。
【発明を実施するための形態】
【0032】
本発明の実施形態について、以下に説明する。
【0033】
(実施の形態1)
図1(A)及び図1(B)に発光装置とFPCの接続構成、および発光装置の封止構造
の一例を示す。
【0034】
図1(A)は、発光装置を上面から見た図であり、図中鎖線A−Bで切断した断面図が
図1(B)である。
【0035】
図1(A)及び図1(B)に示すように、本発明は、同一基板上に画素部302と周辺
回路部309とを形成し、周辺回路部のTFTの上方に、FPC306を接続する端子電
極310を設けることを特徴としている。周辺回路部309の配置スペース上に端子電極
310を配置することによって、狭額縁化を図っている。
【0036】
加えて、基板の端面および基板周縁部に接するシール材304でカバー材303を固着
するため、画素部302から基板端面までの距離、即ち額縁をさらに狭めることができる
。なお、画素部302には、有機化合物を含む層を有する発光素子がマトリクス状に配置
されている。また、周辺回路部307、308、309はTFTなどで構成されている。
【0037】
ここでは、図1(A)及び図1(B)に示す形状のカバー材303を用いて発光素子を
含む画素部302を封止する。カバー材303の材質は水分に対するバリア性を有してい
れば特に限定されず、例えばW、Ni、Al、またはステンレス等の金属、ガラス、プラ
スチック、セラミックス等、いかなる組成の基材でもよい。また、これらの基材表面に無
機絶縁膜、例えばSiNX膜、SiNXY膜、AlNX膜、またはAlNXY膜をコーティ
ング形成することによってバリア性を持たせたものを用いてもよい。ここではカバー材3
03は金属からなる封止缶とし、発光素子からの発光は透光性を有する基板301を通過
させて取り出される。
【0038】
カバー材303は、基板301の3辺を覆う形状となっており、3辺においては、基板端
面にもシール材304が設けられて、シール材で囲まれた空間を密閉なものとしている。
FPC306を実装するため、残りの一辺においては、基板表面とカバー材とをシール材
で固定しており、上面から見たシール材の幅が他の3辺に比べて太くなっている。3辺に
おいては、基板の端面にシール材304を設けることで、外気とシール材との境界面から
、密閉空間とシール材との境界面までの距離を十分確保している。シール材304で囲ま
れた内側の密閉空間は窒素ガスで充填されており、乾燥剤305によって微量な水分が除
去され、十分乾燥されている。
【0039】
また、基板301の端面は、研磨されている表面に比べて粗く、密着性がよいため、シ
ール材の幅をさらに狭めることもできる。
【0040】
また、基板の端面にシール材304を設けることで、基板301上に画素部302およ
び周辺回路部307、308、309を設けても、画素部302から基板端面までの距離
、即ち額縁を狭めることができる。
【0041】
また、必要であれば、開いているスペース、またはFPC上にICチップ(メモリチッ
プ、CPUチップ、電源回路チップなど)を実装して集積化を図ってもよい。
【0042】
また、図2(A)〜図2(C)に作製工程の手順の一例を示す。
【0043】
まず、大面積を有する基板にTFT及び発光素子を有するパネル領域402を複数設け、
アクティブマトリクス基板401を形成する。(図2(A))なお、パネル領域402と
は少なくとも画素部を含む1つのパネルとなる領域である。
【0044】
次いで、画素部ごとに分断を行って基板404を得た後、一つ一つカバー材403で封止
を行う。(図2(B))また、封止後の基板の断面図を図2(C)に示す。図2(C)に
示すように、基板の端面にもシール材405を設けてカバー材403を固定している。図
2(C)においては、カバー材403の端面と、基板404の裏面と、シール材405の
露呈面(外気側)とがほぼ直線状の外縁を形成している。シール材405で囲まれた内側
の密閉空間は乾燥剤406によって微量な水分が除去され、十分乾燥されている。
【0045】
以上の手順によって、大型基板を用いた多面取りに有利な構造を有する発光装置が得ら
れる。本発明により、基板周縁部におけるシール材の幅を狭めることができ、一枚あたり
の面取り数を増やすことができる。
【0046】
また、図3(A)に本発明の発光装置の端部(カバー材で覆われる基板端部)における
断面図の一例を示す。
【0047】
図3(A)において、基板101上に画素部102および周辺回路部107が設けられ
、カバー材104によって封止されている。図3(A)に示すように基板101の端面お
よび基板周縁部に接するシール材103でカバー材104を固着するため、画素部102
から基板端面までの距離、即ち額縁を狭めることができる。なお、画素部102には、有
機化合物を含む層を有する発光素子がマトリクス状に配置されている。
【0048】
また、発光素子は水分に弱いため、基板101と、カバー材104と、シール材103
とで囲まれた密閉空間106に乾燥剤を配置する。なお、密閉空間106には乾燥した不
活性ガスが充填されている。シール材103で囲まれた内側の密閉空間106は乾燥剤1
05によって微量な水分が除去され、十分乾燥されている。
【0049】
また、乾燥剤105としては、酸化カルシウムや酸化バリウムなどのようなアルカリ土
類金属の酸化物のような化学吸着によって水分を吸収する物質を用いることが可能である
。なお、他の乾燥剤として、ゼオライトやシリカゲル等の物理吸着によって水分を吸着す
る物質を用いてもよい。
【0050】
例えば、トータル2mm幅のシール材の幅(固着させた時の幅)が封止に必要である場
合、基板の厚さt1を0.7mmとすると、基板の端面および基板周縁部を接着すれば、
基板周縁部におけるシール材103の幅w1を1.3mmとすることでトータル2mm幅
を確保することができる。
【0051】
また、基板の端面および基板周縁部に接するシール材103としては、紫外線硬化樹脂
、熱硬化樹脂、シリコーン樹脂、エポキシ樹脂、アクリル樹脂、ポリイミド樹脂、フェノ
ール樹脂、PVC(ポリビニルクロライド)、PVB(ポリビニルブチラル)またはEV
A(エチレンビニルアセテート)を用いることが可能である。また、シール材はフィラー
(棒状またはファイバー状のスペーサ)や球状のスペーサを添加したものであっても良い

【0052】
また、図3(B)に本発明の発光装置の端部における断面図の他の一例を示す。なお、
図3(B)は、図3(A)とカバー材の形状が異なっている。また、図3(A)と同様に
シール材203で囲まれた内側の密閉空間206は乾燥剤205によって微量な水分が除
去され、十分乾燥されている。
【0053】
図3(B)において、基板201上に画素部202および周辺回路部207が設けられ
、カバー材204によって封止されている。カバー材の形状を基板の端面と合わせること
によってシール材203の側面における厚さと基板表面における厚さとが均一になるよう
にしている。駆動回路や保護回路などから構成される周辺回路部207を設けた場合であ
っても画素部202から基板端面までの距離、即ち額縁を狭めることができる。
【0054】
例えば、トータル1.5mm幅のシール材の幅(固着させた時の幅)が封止に必要であ
る場合、基板の厚さt2を0.5mmとすると、基板の端面および基板周縁部を接着すれ
ば、基板周縁部におけるシール材203の幅w2を1mmとすることでトータル1.5m
m幅を確保することができる。
【0055】
また、カバー材の形状は、図3(A)や図3(B)の形状に特に限定されず、基板の端
面を覆う形状であればよい。例えば、端面を包むコの字状の断面形状、即ち基板の裏面側
まで端部がくるようなカバー材としてもよく、その場合、シール材が端面だけでなく基板
裏面の一部とも接触する。
【0056】
なお、基板サイズが、例えば320mm×400mm、370mm×470mm、55
0mm×650mm、600mm×720mm、680mm×880mm、1000mm
×1200mm、1100mm×1250mm、1150mm×1300mmのような大
型基板に対して、効率よく発光装置を作製することを本発明により提供する。本発明にお
いて、大型基板を用いて多面取りを行う場合、画素部ごとに基板を分断した後、カバー材
をシール材で固定する工程順序となる。
【0057】
また、TFTと発光素子の位置関係が分かるように図4に断面構造の一例を示す。
【0058】
図4に示す発光装置の作製手順を簡略に説明する。
【0059】
まず、基板10上に下地絶縁膜を形成した後、各半導体層を形成する。次いで、半導体層
を覆うゲート絶縁膜を形成した後、各ゲート電極を形成する。
【0060】
次いで、nチャネル型TFT36を形成するため、半導体にn型を付与する不純物元素(
代表的にはリン、またはAs)をドープし、pチャネル型TFT35、37を形成するた
め、半導体にp型を付与する不純物元素(代表的にはボロン)をドープしてソース領域お
よびドレイン領域、必要であればLDD領域を適宜形成する。
【0061】
次いで、1層目の層間絶縁膜と2層目の層間絶縁膜11を形成する。1層目の層間絶縁
膜は、PCVD法で得られる無機材料(酸化シリコン、窒化シリコン、酸化窒化シリコン
など)を用いる。2層目の層間絶縁膜11の材料としては、PCVD法や塗布法で得られ
る無機材料(酸化シリコン、窒化シリコン、酸化窒化シリコンなど)を用いることができ
る。ここでは塗布法によって得られるシリコン(Si)と酸素(O)との結合で骨格構造
が構成される絶縁膜を用いる。
【0062】
次いで、マスクを用いて1層目の層間絶縁膜及び2層目の層間絶縁膜11にコンタクト
ホールを形成すると同時に周縁部の層間絶縁膜を除去する。次いで、マスクを除去し、導
電膜(TiN膜、Al(C+Ni)合金膜、TiN膜の順に積層)を形成した後、新たに
マスクを形成し、マスクを用いてエッチングを行い、配線(TFTのソース配線及びドレ
イン配線や、電流供給配線など)を形成する。なお、Al(C+Ni)合金膜は、通電、
或いは熱処理後もITOやITSOとのコンタクト抵抗値に大きな変動がない材料である

【0063】
次いで、マスクを除去し、3層目の層間絶縁膜12を形成する。3層目の層間絶縁膜1
2としては、塗布法によって得られるシリコン(Si)と酸素(O)との結合で骨格構造
が構成される絶縁膜を用いる。
【0064】
次いで、新たなマスクを用いて3層目の層間絶縁膜12にコンタクトホールを形成する
と同時に周縁部の層間絶縁膜を除去する。
【0065】
次いで、マスクを除去し、透明導電膜を成膜した後、新たなマスクを用いてパターニン
グを行って第1の電極13、端子電極27、電極パターン25、26を得る。なお、電極
パターン25は、層間絶縁膜の端面(側面とも呼ぶ)を覆って外部からの水分の侵入を防
止する。また、電極パターン26も同様に外部からの水分の侵入を防止する。透明導電膜
としては、インジウム錫酸化物(ITO)の他、例えば、Si元素を含むインジウム錫酸
化物(ITSO)や酸化インジウムに2〜20%の酸化亜鉛(ZnO)を混合したIZO
(Indium Zinc Oxide)などの透明導電材料を用いることができる。な
お、ITSOは、通電、或いは熱処理によって結晶化しにくく表面の平坦性が高い材料で
ある。
【0066】
次いで、マスクを除去し、新たなマスクを用いて第1の電極13の端部を覆って隔壁1
9を形成する。隔壁19としては、感光性または非感光性の有機材料(ポリイミド、アク
リル、ポリアミド、ポリイミドアミド、レジストまたはベンゾシクロブテン)、またはS
OG膜(例えば、アルキル基を含むSiOx膜)を膜厚0.8μm〜1μmの範囲で用い
る。
【0067】
次いで、有機化合物を含む層14を、蒸着法または塗布法を用いて形成する。
【0068】
なお、発光素子の信頼性を向上させるため、有機化合物を含む層14の形成前に真空加熱
を行って脱気を行うことが好ましい。例えば、有機化合物材料の蒸着を行う前に、基板に
含まれるガスを除去するために減圧雰囲気や不活性雰囲気で200℃〜300℃の加熱処
理を行うことが望ましい。
【0069】
次いで、有機化合物を含む層14の上に第2の電極15、即ち、有機発光素子の陰極を膜
厚10nm〜800nmの範囲で形成する。第2の電極15としては、MgAg、MgI
n、AlLi、CaNなどの合金や、Ca32、または周期表の1族もしくは2族に属す
る元素とアルミニウムとを共蒸着法により形成した膜を用いることができる。また、第2
の電極15として、Al中に0.3atoms%のCと、3atoms%のNiを含有しているAl
(C+Ni)合金膜を用いてもよい。なお、Al(C+Ni)合金膜は、通電、或いは熱
処理後もITOやITSOとのコンタクト抵抗値に大きな変動がない材料である。
【0070】
以上のようにして、発光素子およびTFTが作製される。フルカラー表示を得るためには
、R、G、Bの発光素子を構成する陽極、有機化合物を含む層および陰極の各材料は適宜
選択し、各膜厚も調整する。
【0071】
次いで、発光素子を覆って、水分の侵入を防ぐ保護層16を形成する。保護層16として
は、スパッタ法またはCVD法により得られる窒化珪素膜、酸化珪素膜、酸化窒化珪素膜
(SiNO膜(組成比N>O)またはSiON膜(組成比N<O))、炭素を主成分とす
る薄膜(例えばDLC膜、CN膜)などを用いることができる。
【0072】
次いで、基板を所望のサイズに分断した後、間隔を確保するためのギャップ材(フィラ
ー(ファイバーロッド)、微粒子(真絲球など)など)を含有するシール材28を用い、
乾燥剤18が設けられたカバー材20と基板10とを接着して封止する。シール材28で
囲まれた密閉空間17は、乾燥した不活性気体で充填される。また、カバー材20の端部
は、基板10の側面を覆っている。また、端子電極が設けられている側のカバー材の端部
は、駆動回路部の一部と重なる位置に設けられている。同様にシール材28も駆動回路部
の一部と重なる位置に設けられている。
【0073】
最後にFPC32を異方性導電膜31により公知の方法で端子電極27と貼りつける。
端子電極27は、第1の電極13と同時に形成されたものである。また、端子電極27は
駆動回路部の一部と重なる位置に設けられている。
【0074】
こうして作製されたアクティブマトリクス型発光装置は、カバー材20によって強固に
封止され、発光装置の信頼性を向上させている。
【0075】
また、本発明の発光装置において、画面表示の駆動方法は特に限定されず、例えば、点
順次駆動方法や線順次駆動方法や面順次駆動方法などを用いればよい。代表的には、線順
次駆動方法とし、時分割階調駆動方法や面積階調駆動方法を適宜用いればよい。また、発
光装置のソース線に入力する映像信号は、アナログ信号であってもよいし、デジタル信号
であってもよく、適宜、映像信号に合わせて駆動回路などを設計すればよい。
【0076】
さらに、ビデオ信号がデジタルの発光装置において、画素に入力されるビデオ信号が定
電圧(CV)のものと、定電流(CC)のものとがある。ビデオ信号が定電圧のもの(C
V)には、発光素子に印加される信号の電圧が一定のもの(CVCV)と、発光素子に印
加される信号の電流が一定のもの(CVCC)とがある。また、ビデオ信号が定電流のも
の(CC)には、発光素子に印加される信号の電圧が一定のもの(CCCV)と、発光素
子に印加される信号の電流が一定のもの(CCCC)とがある。
【0077】
また、本発明の発光装置において、静電破壊防止のための保護回路(保護ダイオードな
ど)を設けてもよい。
【0078】
またコントラストを高めるため、偏光板又は円偏光板を設けてもよい。
【0079】
(実施の形態2)
ここでは、フルカラーの発光装置において、R、G、Bの発光素子のそれぞれの信頼性
が異なっている場合、他の発光素子の信頼性に比べて低い発光素子の発光面積のみを拡大
する例を図5に示す。
【0080】
図5は、第1の電極と、該第1の電極上に有機化合物を含む層と、該有機化合物を含む
層上に第2の電極とを有する発光素子を複数配置したレイアウトである。図5にはTFT
および第1の電極が作製されるまでのレイアウトが示されている。
【0081】
また、図5に示した画素レイアウト図と対応する等価回路図は、図9(E)の回路図で
ある。
【0082】
図5において、青色の発光素子の第1の電極801は、緑色の発光素子の第1の電極8
02や赤色の発光素子の第1の電極803よりも面積が大きく設計されている。
【0083】
また、各第1の電極の端部を覆う隔壁の幅を異ならせ、各第1の電極の間隔を異ならせ
ている。青色の発光素子と赤色の発光素子との間に設けられた隔壁の幅、及び青色の発光
素子と緑色の発光素子との間に設けられた隔壁の幅は、赤色の発光素子と緑色の発光素子
との間に設けられた隔壁の幅より狭い。例えば、電極間隔wGBと電極間隔wBRは15μm
とし、wRGは20μmとしている。
【0084】
また、緑色の発光素子の第1の電極802の幅WGと赤色の発光素子の第1の電極80
3の幅WRは同一幅であるが、青色の発光素子の第1の電極801の幅WBは、他の幅より
も広く、結果的に青色の発光素子における1画素当たりの開口率が64%となっている。
赤色の発光素子における1画素当たりの開口率と、緑色の発光素子における1画素当たり
の開口率は共に50%としている。
【0085】
こうして、青色の発光素子の発光面積のみを拡大することによって発光装置の信頼性を
向上させる。
【0086】
なお、発光素子の発光層となる有機化合物を含む層が形成する分子励起子の種類として
は一重項励起状態と三重項励起状態が可能であり、基底状態は通常一重項状態であるため
、一重項励起状態からの発光は蛍光、三重項励起状態からの発光は燐光と呼ばれる。
【0087】
例えば、CBP(4,4’ビス(N−カルバゾリル)ビフェニル)とIr(ppy)3
(トリス(2−フェニルピリジナト−N,C2’)イリジウム)とを共蒸着した膜は、三
重項励起状態からの発光(燐光)を得ることができる有機化合物(トリプレット化合物と
も呼ぶ)である。三重項励起状態からの発光(燐光)は、一重項励起状態からの発光(蛍
光)よりも発光効率が高く、同じ発光輝度を得るにも動作電圧(有機発光素子を発光させ
るに要する電圧)を低くすることが可能である。
【0088】
有機化合物を含む層からの発光とは、どちらの励起状態が寄与する場合も含まれる。更
には、蛍光と燐光を組み合わせて用いてもよく、各RGBの発光特性(発光輝度や寿命等
)により選択することができる。例えば、Gの発光素子のみを燐光を得ることができる有
機化合物(トリプレット化合物)を発光層に用い、Bの発光素子とRの発光素子は蛍光を
得ることができる有機化合物(シングレット化合物)を発光層に用いてもよい。
【0089】
有機化合物を含む層は、第1の電極側から順に、HIL(ホール注入層)、HTL(ホー
ル輸送層)、EML(発光層)、ETL(電子輸送層)、EIL(電子注入層)の順に積
層されている。なお有機化合物を含む層は、積層構造以外に単層構造、又は無機化合物と
の混合構造をとることができる。
【0090】
また、有機化合物を含む層として、フルカラー表示とする場合、赤色(R)、緑色(G)
、青色(B)の発光を示す材料を、それぞれ蒸着マスクを用いた蒸着法、又はインクジェ
ット法などによって選択的に形成すればよい。
【0091】
具体的には、HILとしてCuPc(銅フタロシアニン)やPEDOT(ポリ(エチレ
ンジオキシチオフェン))、HTLとしてα−NPD(4,4’−[N−(1−ナフチル
)−N−フェニルアミノ]−ビフェニル)、ETLとしてBCP(バソキュプロイン)や
Alq3(トリス(8−キノリラト)アルミニウム)、EILとしてBCP:LiやCa
2をそれぞれ用いる。また例えばEMLは、R、G、Bのそれぞれの発光色に対応した
ドーパント(Rの場合DCM((4−ジミア)メチレン−2−メチル−6−(p−ジメチ
ルアミノスチリル)−4H−ピラン)等、Gの場合DMQD(N,N’−ジメチルキナク
リドン)等)をドープしたAlq3を用いればよい。なお、電界発光層は上記積層構造の
材料に限定されない。例えば、CuPcやPEDOTの代わりに酸化モリブデン(MoO
x:x=2〜3)等の酸化物とα−NPDやルブレンを共蒸着して形成し、ホール注入性
を向上させることもできる。このような材料は、有機材料(低分子又は高分子を含む)、
又は有機材料と無機材料の複合材料を用いることができる。
【0092】
また、本実施の形態は実施の形態1と自由に組み合わせることができる。
【0093】
以上の構成でなる本発明について、以下に示す実施例でもってさらに詳細な説明を行う
こととする。
【実施例1】
【0094】
本実施例では、金属元素を添加した結晶化方法を用いた後、オゾン含有水溶液による酸
化処理を行ない、歪みを低減する熱処理を行ない、ゲッタリングを行って半導体層を得る
工程例を図6に示す。
【0095】
図6(A)中、710は、絶縁表面を有する基板、711はブロッキング層となる絶縁
膜、712は非晶質構造を有する半導体膜である。
【0096】
まず、図6(A)に示すように基板710上に酸化シリコン膜、窒化シリコン膜または
酸化窒化シリコン膜(SiOxy)等の絶縁膜から成る下地絶縁膜711を形成する。
【0097】
次いで、下地絶縁膜上に非晶質構造を有する第1の半導体膜712を形成する。第1の
半導体膜712は、シリコンを主成分とする半導体材料を用いる。代表的には、非晶質シ
リコン膜又は非晶質シリコンゲルマニウム膜などが適用され、プラズマCVD法や減圧C
VD法、或いはスパッタ法で10〜100nmの厚さに形成する。後の結晶化で良質な結晶
構造を有する半導体膜を得るためには、非晶質構造を有する第1の半導体膜712の膜中
に含まれる酸素、窒素などの不純物濃度を5×1018/cm3(二次イオン質量分析法(SI
MS)にて測定した原子濃度)以下に低減させておくと良い。これらの不純物は後の結晶
化を妨害する要因となり、また、結晶化後においても捕獲中心や再結合中心の密度を増加
させる要因となる。そのために、高純度の材料ガスを用いることはもとより、内壁の鏡面
処理(研磨処理)を行った反応室や、オイルフリーの真空排気系を備えた超高真空対応の
CVD装置を用いることが望ましい。
【0098】
次いで、非晶質構造を有する第1の半導体膜712を結晶化させる技術としてここでは特
開平8-78329号公報記載の技術を用いて結晶化させる。同公報記載の技術は、非晶質シリ
コン膜(アモルファスシリコン膜とも呼ばれる)に対して結晶化を助長する金属元素を選
択的に添加し、加熱処理を行うことで添加領域を起点として広がる結晶構造を有する半導
体膜を形成するものである。この技術は、結晶化に必要とする加熱温度を低下させる効果
ばかりでなく、結晶方位の配向性を単一方向に高めることが可能である。このような結晶
構造を有する半導体膜でTFTを形成すると、電界効果移動度の向上のみでなく、サブス
レッショルド係数(S値)が小さくなり、飛躍的に電気的特性を向上させることが可能と
なっている。
【0099】
まず、非晶質構造を有する第1の半導体膜712の表面に、結晶化を促進する触媒作用の
ある金属元素(ここでは、ニッケル)を重量換算で1〜100ppm含む酢酸ニッケル溶液
をスピナーで塗布してニッケル含有層713を形成する。(図6(B))塗布によるニッ
ケル含有層713の形成方法以外の他の方法として、スパッタ法、蒸着法、またはプラズ
マ処理により極薄い膜を形成する方法を用いてもよい。また、ここでは、全面に塗布する
例を示したが、マスクを形成して選択的にニッケル含有層を形成してもよい。
【0100】
次いで、加熱処理を行い、結晶化を行う。この場合、結晶化は半導体の結晶化を助長す
る金属元素が接した半導体膜の部分でシリサイドが形成され、それを核として結晶化が進
行する。こうして、図6(C)に示す結晶構造を有する第1の半導体膜714aが形成さ
れる。なお、結晶化後での第1の半導体膜714aに含まれる酸素濃度は、5×1018
cm3以下とすることが望ましい。ここでは、脱水素化のための熱処理(450℃、1時
間)の後、結晶化のための熱処理(550℃〜650℃で4〜24時間)を行う。また、
強光の照射により結晶化を行う場合は、赤外光、可視光、または紫外光のいずれか一つ、
またはそれらの組み合わせを用いることが可能である。なお、必要であれば、強光を照射
する前に非晶質構造を有する第1の半導体膜714aに含有する水素を放出させる熱処理
を行ってもよい。また、熱処理と強光の照射とを同時に行って結晶化を行ってもよい。生
産性を考慮すると、結晶化は強光の照射により結晶化を行うことが望ましい。
【0101】
このようにして得られる第1の半導体膜714aには、金属元素(ここではニッケル)が
残存している。それは膜中において一様に分布していないにしろ、平均的な濃度とすれば
、1×1019/cm3を越える濃度で残存している。勿論、このような状態でもTFTをはじ
め各種半導体素子を形成することが可能であるが、以降に示すゲッタリング方法で当該元
素を除去する。
【0102】
ここで、レーザ光の照射を行う前に結晶化工程で形成される自然酸化膜を除去する。こ
の自然酸化膜にはニッケルが高濃度に含まれているため、除去することが好ましい。
【0103】
次いで、結晶化率(膜の全体積における結晶成分の割合)を高め、結晶粒内に残される
欠陥を補修するために、結晶構造を有する第1の半導体膜に対してレーザ光を照射する。
(図6(D))レーザ光を照射した場合、半導体膜714bに歪みやリッジが形成され、
表面に薄い表面酸化膜(図示しない)が形成される。このレーザ光としてはパルス発振で
あるレーザ光源から出射される波長400nm以下のエキシマレーザ光や、YAGレーザの
第2高調波、第3高調波を用いればよい。また、レーザ光としては連続発振が可能な固体
レーザを用い、基本波の第2高調波〜第4高調波を用いてもよい。代表的には、Nd:Y
VO4レーザ(基本波1064nm)の第2高調波(532nm)や第3高調波(355nm
)を適用すればよい。
【0104】
また、レーザ光による照射でできる表面酸化膜は、オゾン含有水溶液でできる酸化膜よ
り硬いため、エッチングストッパーとなる酸化膜(バリア層)としては優れている。従っ
て、工程数を削減することもできるため、レーザ光による表面酸化膜は特に除去しなくと
もよい。
【0105】
次いで、半導体膜714bの表面に、オゾン含有水溶液でエッチングストッパーとなる
酸化膜(バリア層と呼ばれる)715を1〜10nmの膜厚で形成する。(図6(E))
【0106】
次いで、半導体膜の歪みを低減するための熱処理(半導体膜が瞬間的に400〜100
0℃程度にまで加熱される熱処理)を窒素雰囲気にて行い、半導体膜714cを得る。(
図6(F))
【0107】
次いで、このバリア層715上に希ガス元素を含む第2の半導体膜716aを形成する。
(図6(G))なお、希ガス元素は、He、Ne、Ar、Kr、Xeから選ばれた一種ま
たは複数種とする。中でも安価なガスであるアルゴン(Ar)が量産上、好ましい。上記
第2の半導体膜の形成方法としては、スパッタ法やプラズマCVD法などがあるが、プラズ
マCVD法はガスによる成膜室(チャンバーとも呼ぶ)内のクリーニングが行えるため、
スパッタ法に比べてメンテナンスが少なくて済み、量産には適していると言える。本実施
例では、酸化膜(バリア層)の形成前後に加熱(瞬間的に400〜1000℃程度にまで
加熱)を行って硬い酸化膜とし、プラズマなどのダメージをブロックしている。そして、
第1の半導体膜はブロックしつつ、成膜時のプラズマで酸化膜(バリア層)のみにダメー
ジを意図的に与え、酸化膜(バリア層)に歪みやダングリングボンドを形成することによ
って、歪みを緩和する方向に動く金属元素を効率よく通過させてゲッタリングサイトに移
動および捕獲させることができる。成膜時のプラズマで酸化膜(バリア層)のみにダメー
ジを意図的に与える場合には、プラズマCVD法でRFパワー密度を大きくすることが好
ましい。例えば、RFパワー300W(0.052W/cm2)、或いはRFパワー40
0W(0.069W/cm2)、或いは400W以上とすればよい。
【0108】
次いで、加熱処理を行い、第1の半導体膜中における金属元素(ニッケル)の濃度を低
減、あるいは除去するゲッタリングを行う。(図6(H))ゲッタリングを行う加熱処理
としては、強光を照射する処理、炉を用いた熱処理、または加熱されたガスに基板を投入
し、数分放置した後取りだすことによって加熱を行えばよい。このゲッタリングにより、
図6(H)中の矢印の方向(即ち、基板側から第2の半導体膜表面に向かう方向)に金属
元素が移動し、バリア層715で覆われた第1の半導体膜714dに含まれる金属元素の
除去、または金属元素の濃度の低減が行われる。
【0109】
次いで、バリア層715をエッチングストッパーとして、716bで示した第2の半導体
膜のみを選択的に除去する。次いで、バリア層715を除去する。
【0110】
次いで、第1の半導体膜714dを公知のパターニング技術を用いて所望の形状の半導体
層717を形成する。(図6(I))なお、バリア層を除去した後、レジストからなるマ
スクを形成する前に、オゾン水で表面に薄い酸化膜を形成することが望ましい。
【0111】
なお、必要があれば、パターニングを行う前に、TFTのしきい値を制御するために微
量な不純物元素(ボロンまたはリン)のドーピングを上記酸化膜を介して行う。上記酸化
膜を介してドーピングを行った場合には、酸化膜を除去し、再度オゾン含有水溶液によっ
て酸化膜を形成する。
【0112】
所望の形状の半導体層を形成する工程が終了したら、半導体層の表面をフッ酸を含むエ
ッチャントで洗浄し、ゲート絶縁膜となる珪素を主成分とする絶縁膜を形成する。この表
面洗浄とゲート絶縁膜の形成は、大気にふれさせずに連続的に行うことが望ましい。次い
で、ゲート絶縁膜の表面を洗浄した後、ゲート電極を形成する。次いで、半導体にn型を
付与する不純物元素(P、As等)やp型を付与する不純物元素(B等)を適宜添加して
、ソース領域及びドレイン領域を形成する。添加した後、不純物元素を活性化するために
加熱処理、強光の照射、またはレーザ光の照射を行う。また、活性化と同時にゲート絶縁
膜へのプラズマダメージやゲート絶縁膜と半導体層との界面へのプラズマダメージを回復
することができる。次いで、層間絶縁膜を形成し、水素化を行って、ソース領域、ドレイ
ン領域に達するコンタクトホールを形成し、導電膜を成膜してパターニングを行ってソー
ス電極、またはドレイン電極を形成してTFTを完成させる。なお、ソース電極、ドレイ
ン電極は、Mo、Ta、W、Ti、Al、Cuから選ばれた元素、または前記元素を主成
分とする合金材料若しくは化合物材料の単層、またはこれらの積層で形成する。例えば、
Ti膜と、純Al膜と、Ti膜との3層構造、或いはTi膜と、NiとCを含むAl合金
膜と、Ti膜との3層構造を用いる。さらに後の工程で層間絶縁膜等を形成することを考
慮して、電極断面形状をテーパー形状とすることが好ましい。
【0113】
こうして得られたTFTのチャネル形成領域は、比較的に平坦であり、歪みも低減する
ことができる。そして、この得られたTFTを用いて、画素部や駆動回路を構成し、発光
装置を完成させる。なお、発光装置の作製は、実施の形態1に従って得ることができる。
【0114】
また、必要があればチャネル形成領域とドレイン領域(またはソース領域)との間にL
DD領域を有する低濃度ドレイン(LDD:Lightly Doped Drain)構造としてもよい。
この構造はチャネル形成領域と、高濃度に不純物元素を添加して形成するソース領域また
はドレイン領域との間に低濃度に不純物元素を添加した領域を設けたものであり、この領
域をLDD領域と呼んでいる。さらにゲート絶縁膜を介してLDD領域をゲート電極と重
ねて配置させた、いわゆるGOLD(Gate-drain Overlapped LDD)構造としてもよい。
【0115】
もし、金属元素を添加した結晶化方法を用いた場合、基板内でゲッタリングが十分にさ
れず、ゲッタリングにバラツキが生じると、各々のTFT特性に若干の差、即ちバラツキ
が生じてしまうため、本実施例に示す工程は有用である。有機化合物を含む層を発光層と
する発光装置(EL素子を備えた発光装置)にとって、TFTはアクティブマトリクス駆動
方式を実現する上で、必須の素子となっている。従って、EL素子を用いた発光装置は、少
なくとも、スイッチング素子として機能するTFTと、EL素子に電流を供給するTFTと
が、各画素に設けられることになる。画素の回路構成、及び駆動方法によらず、EL素子と
電気的に接続され、且つ、EL素子に電流を供給するTFTのオン電流(Ion)で画素の輝
度が決定されるため、例えば、全面白表示とした場合、オン電流が一定でなければ輝度に
バラツキが生じてしまうという問題がある。
【0116】
また、図6に示した工程順序に限定されず、例えば、レーザ光を照射した後、半導体膜
の歪みを低減するための熱処理を行い、さらにオゾン含有水溶液で合計1〜10nmの酸
化膜を形成してもよい。また、酸化膜を除去する前に、半導体膜の歪みを低減するための
熱処理を再度行い、その後、形成された酸化膜を除去してもよい。
【0117】
或いは、レーザ光を照射した後、半導体膜のパターニング工程、半導体膜の歪みを低減
するための熱処理工程、オゾン含有水溶液で酸化膜を形成して合計1〜10nmの酸化膜
を形成する工程、酸化膜を除去する工程を順次行ってもよい。なお、工程削減のため酸化
膜を除去せずにゲート絶縁膜を形成してもよい。
【0118】
或いは、レーザ光を照射した後、半導体膜のパターニング工程、オゾン含有水溶液で1
〜10nmの酸化膜を形成する工程、半導体膜の歪みを低減するための熱処理工程、酸化
膜を除去する工程を順次行ってもよい。なお、工程削減のため酸化膜を除去せずにゲート
絶縁膜を形成してもよい。
【0119】
また、本実施例は、実施の形態1、または実施の形態2と自由に組み合わせることがで
きる。
【実施例2】
【0120】
本実施例は、上記実施例によって作製されるEL表示パネルにFPCや、駆動用のICチ
ップを実装する例について説明する。
【0121】
図7に示す図は、FPC1209を4カ所の端子部1208に貼り付けた発光装置の上
面図の一例を示している。基板1210上には発光素子及びTFTを含む画素部1202
と、TFTを含むゲート側駆動回路1203と、TFTを含むソース側駆動回路1201
とが形成されている。本実施例においては、ソース側駆動回路1201と重なる位置に端
子部1208が設けられている。
【0122】
TFTの活性層が結晶構造を有する半導体膜で構成されている場合には同一基板上にこ
れらの回路を形成することができる。従って、システムオンパネル化を実現したEL表示
パネルを作製することができる。
【0123】
また、画素部を挟むように2カ所に設けられた接続領域1207は、発光素子の第2の
電極を下層の配線とコンタクトさせるために設けている。なお、発光素子の第1の電極は
画素部に設けられたTFTと電気的に接続している。
【0124】
また、カバー材1204は、画素部1202および接続領域1207を囲むシール材1
205によって基板1210と固定されている。また、シール材1205はソース側駆動
回路1201と一部重なっている。また、シール材1205に囲まれた領域に乾燥剤を配
置してもよい。
【0125】
また、図8(A)及び図8(B)は、狭額縁化させた小型サイズ(例えば対角1.5イ
ンチ)で好適なCOG方式を採用した例である。
【0126】
図8(A)は、発光装置を上面から見た図であり、図中鎖線A−Bで切断した断面図が
図8(B)である。同一基板上に画素部902と周辺回路部909とを形成し、周辺回路
部のTFTの上方に、FPC906を接続する端子電極910を設けることを特徴として
いる。周辺回路部909の配置スペース上に端子電極910を配置することによって、狭
額縁化を図っている。カバー材903は、基板901の3辺を覆う形状となっており、3
辺においては、基板端面にもシール材904が設けられて、シール材で囲まれた空間を密
閉なものとしている。シール材904で囲まれた内側の密閉空間は窒素ガスで充填されて
おり、乾燥剤905によって微量な水分が除去され、十分乾燥されている。
【0127】
図8(A)及び図8(B)に示す発光装置において、FPC906上にICチップ91
1が実装されている。ICチップ911が実装されている箇所は、周辺回路部909上に
端子電極910が設けられ、その端子電極910はFPC906と異方性導電接着材で実
装されており、さらにその上にICチップ911が積み重ねられている構造となっている

【0128】
また、基板901上にCOG方式でICチップ912が実装されている。なお、ICチ
ップ911、912は、メモリチップ、CPUチップ、電源回路チップなどで代表される
チップを指している。
【0129】
なお、ICチップ911、912の長辺の長さは、画素部の一辺の長さや画素ピッチを
考慮して、長辺が15〜80mm、短辺が1〜6mmの矩形状に形成してもよいし、画素
部902の一辺、又は画素部の一辺と各周辺回路の一辺とを足した長さに形成してもよい

【0130】
また、本実施例は、実施の形態1、実施の形態2、または実施例1と自由に組み合わせ
ることができる。
【実施例3】
【0131】
本実施例ではEL表示パネルの画素の構成について、図9に示す等価回路図を参照して説
明する。
【0132】
図9(A)に示す画素は、列方向に信号線1410及び電源線1411〜1413、行
方向に走査線1414が配置される。また、スイッチング用TFT1401、駆動用TF
T1403、電流制御用TFT1404、容量素子1402及び発光素子1405を有す
る。
【0133】
図9(C)に示す画素は、TFT1403のゲート電極が、行方向に配置された電源線
1413に接続される点が異なっており、それ以外は図9(A)に示す画素と同じ構成で
ある。つまり、図9(A)と図9(C)に示す両画素は、同じ等価回路図を示す。しかし
ながら、行方向に電源線1413が配置される場合(図9(A))と、列方向に電源線1
413が配置される場合(図9(C))では、各電源線は異なるレイヤーの導電体層で形
成される。ここでは、駆動用TFT1403のゲート電極が接続される配線に注目し、こ
れらを作製するレイヤーが異なることを表すために、図9(A)、図9(C)として分け
て記載する。
【0134】
図9(A)、図9(C)に示す画素の特徴として、画素内にTFT1403、1404が
直列に接続されており、TFT1403のチャネル長L3、チャネル幅W3、TFT140
4のチャネル長L4、チャネル幅W4は、L3/W3:L4/W4=5〜6000:1を満たす
ように設定される点が挙げられる。6000:1を満たす場合の一例としては、L3が5
00μm、W3が3μm、L4が3μm、W4が100μmの場合がある。
【0135】
なお、TFT1403は、飽和領域で動作し発光素子1405に流れる電流値を制御す
る役目を有し、TFT1404は線形領域で動作し発光素子1405に対する電流の供給
を制御する役目を有する。両TFTは同じ導電型を有していると作製工程上好ましい。ま
たTFT1403には、エンハンスメント型だけでなく、ディプリーション型のTFTを
用いてもよい。上記構成により、TFT1404が線形領域で動作するために、TFT1
404のVGSの僅かな変動は発光素子1405の電流値に影響を及ぼさない。つまり、発
光素子1405の電流値は、飽和領域で動作するTFT1403により決定される。上記
構成により、TFTの特性バラツキに起因した発光素子の輝度ムラを改善して画質を向上
させた表示装置を提供することができる。
【0136】
図9(A)〜図9(D)に示す画素において、TFT1401は、画素に対するビデオ
信号の入力を制御するものであり、TFT1401がオンして、画素内にビデオ信号が入
力されると、容量素子1402にそのビデオ信号が保持される。なお、図9(A)、図9
(C)には、容量素子1402を設けた構成を示したが、特に限定されず、ビデオ信号を
保持する容量がゲート容量などでまかなうことが可能な場合には、特に容量素子1402
を設けなくてもよい。
【0137】
図9(B)に示す画素は、TFT1406と走査線1415を追加している以外は、図
9(A)に示す画素構成と同じである。同様に、図9(D)に示す画素は、TFT140
6と走査線1415を追加している以外は、図9(C)に示す画素構成と同じである。
【0138】
TFT1406は、新たに配置された走査線1415によりオン又はオフが制御される
。TFT1406がオンになると、容量素子1402に保持された電荷は放電し、TFT
1406がオフする。つまり、TFT1406の配置により、強制的に発光素子1405
に電流が流れない状態を作ることができる。従って、図9(B)、図9(D)の構成は、
全ての画素に対する信号の書き込みを待つことなく、書き込み期間の開始と同時又は直後
に点灯期間を開始することができるため、デューティ比を向上することが可能となる。
【0139】
図9(E)に示す画素は、列方向に信号線1450、電源線1451、1452、行方
向に走査線1453が配置される。また、スイッチング用TFT1441、駆動用TFT
1443、容量素子1442及び発光素子1444を有する。
【0140】
また、図9(E)の回路図は、図5に示した画素レイアウト図と対応している。
【0141】
図9(F)に示す画素は、TFT1445と走査線1454を追加している以外は、図
9(E)に示す画素構成と同じである。なお、図9(F)の構成も、TFT1445の配
置により、デューティ比を向上することが可能となる。
【0142】
また、本実施例は実施の形態1、実施の形態2、実施例1、または実施例2と自由に組
み合わせることができる。
【実施例4】
【0143】
本発明は、結晶構造を有する半導体膜を活性層とするTFTに限らず、非晶質半導体膜
又はセミアモルファス半導体膜を活性層としたTFTを用いることができる。また、TF
T構造に関係なく本発明を適用することが可能であり、例えばボトムゲート型(逆スタガ
型)TFTや順スタガ型TFTに適用することが可能である。
【0144】
非晶質半導体は、プラズマCVD法やスパッタリング法等の方法により形成する。活性
層を非晶質半導体で形成したTFTを用いる場合には、ボトムゲート型TFTを形成し、
走査線側駆動回路及び信号線側駆動回路の両方をドライバICを実装すればよい。
【0145】
セミアモルファス半導体は、プラズマCVD法で300℃以下の温度で形成することが
可能であり、例えば、外寸550×650mmの無アルカリガラス基板であっても、トラン
ジスタを形成するのに必要な膜厚を短時間で形成するという特徴を有する。このような製
造技術の特徴は、大画面の表示装置を作製する上で有効である。また、セミアモルファス
TFTは、セミアモルファス半導体膜(微結晶半導体膜、マイクロクリスタル半導体膜と
も呼ばれる)でチャネル形成領域を構成することにより2〜10cm2/V・secの電
界効果移動度を得ることができる。従って、このTFTを画素のスイッチング用素子や、
走査線側の駆動回路を構成する素子として用いることができる。従って、システムオンパ
ネル化を実現したEL表示パネルや液晶表示パネルを作製することができる。
【0146】
本実施例では、半導体層をセミアモルファス半導体膜で形成することによって、走査線
側の駆動回路と画素部とを同一基板上に形成する例を図10、図11、図12を用いて説
明する。
【0147】
図10は、1〜15cm2/V・secの電界効果移動度が得られるセミアモルファス半
導体膜を使ったnチャネル型のTFTで構成する走査線側駆動回路のブロック図を示して
いる。
【0148】
図10において500で示すブロックが1段分のサンプリングパルスを出力するパルス
出力回路に相当し、シフトレジスタはn個のパルス出力回路により構成される。501は
バッファ回路であり、その先に画素502が接続される。
【0149】
図11は、パルス出力回路500の具体的な構成を示したものであり、nチャネル型の
TFT601〜612で回路が構成されている。このとき、セミアモルファス半導体膜を
使ったnチャネル型のTFTの動作特性を考慮して、TFTのサイズを決定すれば良い。
例えば、チャネル長を8μmとすると、チャネル幅は10〜80μmの範囲で設定するこ
とができる。
【0150】
また、バッファ回路501の具体的な構成を図12に示す。バッファ回路も同様にnチ
ャネル型のTFT620〜636で構成されている。このとき、セミアモルファス半導体
膜を使ったnチャネル型のTFTの動作特性を考慮して、TFTのサイズを決定すれば良
い。例えば、チャネル長を10μmとすると、チャネル幅は10〜1800μmの範囲で
設定することとなる。
【0151】
また、本実施例は実施の形態1、実施の形態2、実施例1、実施例2、または実施例3
と自由に組み合わせることができる。
【実施例5】
【0152】
本発明の発光装置、及び電子機器として、ビデオカメラ、デジタルカメラ、ゴーグル型
ディスプレイ(ヘッドマウントディスプレイ)、ナビゲーションシステム、音響再生装置
(カーオーディオ、オーディオコンポ等)、ノート型パーソナルコンピュータ、ゲーム機
器、携帯情報端末(モバイルコンピュータ、携帯電話、携帯型ゲーム機又は電子書籍等)
、記録媒体を備えた画像再生装置(具体的にはDigital Versatile Disc(DVD)等の記
録媒体を再生し、その画像を表示しうるディスプレイを備えた装置)などが挙げられる。
それら電子機器の具体例を図13、図14に示す。
【0153】
図13(A)、図13(B)はデジタルカメラであり、本体2101、表示部2102
、撮像部2103、操作キー2104、シャッター2106等を含む。本発明により、製
造コストの低減、および高い歩留まりでデジタルカメラが実現できる。
【0154】
図14(A)は22インチ〜50インチの大画面を有する大型の表示装置であり、筐体2
001、支持台2002、表示部2003、スピーカ部2004、撮像部2005、ビデ
オ入力端子2006等を含む。なお、表示装置は、パソコン用、TV放送受信用などの全
ての情報表示用表示装置が含まれる。本発明により、大型表示装置における製造コストの
低減および高い歩留まり、及び高い信頼性を実現することができる。
【0155】
図14(B)はノート型パーソナルコンピュータであり、本体2201、筐体2202
、表示部2203、キーボード2204、外部接続ポート2205、ポインティングマウ
ス2206等を含む。本発明により、ノート型パーソナルコンピュータにおける製造コス
トの低減および高い歩留まり、及び高い信頼性を実現することができる。
【0156】
図14(C)は記録媒体を備えた携帯型の画像再生装置(具体的にはDVD再生装置)
であり、本体2401、筐体2402、表示部A2403、表示部B2404、記録媒体
(DVD等)読み込み部2405、操作キー2406、スピーカー部2407等を含む。
表示部A2403は主として画像情報を表示し、表示部B2404は主として文字情報を
表示する。なお、記録媒体を備えた画像再生装置には家庭用ゲーム機器なども含まれる。
本発明により、画像再生装置における製造コストの低減、高い歩留まり、及び高い信頼性
を実現することができる。
【0157】
また、図14(D)は携帯情報端末の斜視図であり、図14(E)は折りたたんで携帯
電話として使用する状態を示す斜視図である。図14(D)において、使用者はキーボー
ドのように右手指で操作キー2706aを操作し、左手指で操作キー2706bを操作す
る。本発明により、携帯情報端末における製造コストの低減、高い歩留まり、及び高い信
頼性を実現することができる。
【0158】
図14(E)に示すように、折りたたんだ場合には、片手で本体2701を持ち、音声
入力部2704、音声出力部2705、操作キー2706c、アンテナ2708等を使用
する。
【0159】
なお、図14(D)および図14(E)に示した携帯情報端末は、主に画像および文字
を横表示する高画質な表示部2703aと、縦表示する表示部2703bとを備えている

【0160】
以上の様に、本発明を実施、即ち実施の形態1、実施の形態2、実施例1乃至4のいず
れか一の作製方法または構成を用いて、様々な電子機器を完成させることができる。
【産業上の利用可能性】
【0161】
本発明により、さらなる狭額縁化を実現するとともに、一枚あたりの面取り数を増やすこ
とができる。一枚あたりの面取り数を増やすことによって1パネル当たりの製造コストの
低減を実現する。
【符号の説明】
【0162】
301:基板
303:カバー材
304:シール材
306:FPC
309:周辺回路部
310:端子電極

【特許請求の範囲】
【請求項1】
基板とカバー材との間に、第1の電極と、該第1の電極上に有機化合物を含む層と、該有機化合物を含む層上に第2の電極とを有する発光素子を複数有する画素部と、駆動回路部を備えた発光装置であり、
前記駆動回路部上に前記第1の電極と同じ材料からなる端子電極が設けられ、該端子電極にプリント配線回路が接続されることを特徴とする発光装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate


【公開番号】特開2013−55062(P2013−55062A)
【公開日】平成25年3月21日(2013.3.21)
【国際特許分類】
【出願番号】特願2012−242368(P2012−242368)
【出願日】平成24年11月2日(2012.11.2)
【分割の表示】特願2010−233206(P2010−233206)の分割
【原出願日】平成17年4月8日(2005.4.8)
【出願人】(000153878)株式会社半導体エネルギー研究所 (5,264)
【Fターム(参考)】