説明

直接型メタノール燃料電池、燃料液面検出方法、及びメタノール濃度検出方法

【課題】 酸性に変化したメタノール水溶液からなる液体燃料の燃料量を管理可能とした直接型メタノール燃料電池、燃料液面検出方法、及びメタノール濃度検出方法を提供する。
【解決手段】 液体燃料190について、発電開始前の状態にて予めpH値を約2.5〜約3.0に調整した燃料を使用する。よって、発電運転開始直後、及び発電運転期間中における液体燃料の導電性の変化を小さくすることができ、2本の液位電極131のインピーダンス値を測定することで、pH値の変化に起因するインピーダンス値の影響を抑えて液体燃料の液位変化を検出することができる。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、燃料電池、特にメタノール水溶液を直接アノード極に供給して発電を行う直接型メタノール燃料電池(DMFC)、該直接型メタノール燃料電池において適用される燃料液面検出方法、及び上記直接型メタノール燃料電池において適用可能であり上記メタノール水溶液のメタノール濃度を検出するメタノール濃度検出方法に関する。
【背景技術】
【0002】
携帯電話、携帯型情報端末、ノートブック型パーソナルコンピュータ、携帯型オーディオ、及び携帯型ビジュアル機器等の携帯用電子機器用に現在使用されている二次電池は、充電により再利用が可能となるが、充電機器及び充電時間が必要となる。よって、充電動作なしに長時間の連続使用が可能な電池が要望され、このような電池として燃料電池が存在する。
燃料電池における初期の開発段階では、メタノール、硫酸などを液体燃料に用いた酸性電解液型燃料電池が発明されている。(例えば特許文献1及び特許文献2参照。)。
これらの電池では、燃料は、アノライトと呼ばれる、例えば硫酸0.5〜3.0mol%/リットルの酸性電解液の中に供給され、燃料室でメタノールの酸化反応を行うものであった。該電池の欠点は、電解質である硫酸に起因して腐食性が高いことであり、反応による温度上昇を考慮すると、電池の構成材料に耐腐食性材料を使用しなければならないという問題があった。
【0003】
上述の問題点を改善したものとして、燃料を供給し続ける限り半永久的に発電が続行可能な直接型メタノール燃料電池(DMFC)が注目されている。
該直接型メタノール燃料電池の基本的な構成は、メタノール水溶液の液体燃料が供給されるアノード極と、酸化用気体が供給されるカソード極と、アノード極及びカソード極に挟まれて配置される固体高分子電解質膜とを有する。このような直接型メタノール燃料電池では、次式のような反応により発電が行われる。
アノード極 CHOH + HO → 6H + 6e + CO
カソード極 6H + 6e + 3/2O → 3H
即ち、アノード極では、白金、ルテニウムを含む触媒反応で、メタノールと水とが反応し、水素イオン、電子、及び二酸化炭素が生成される。上記電子はアノード極より外部へ電力として出力される。上記水素イオンは、上記電解質膜を通りカソード極へ伝導し、酸素と結合して水となる。このように直接型メタノール燃料電池は、メタノール及び水を消費して発電を行い、メタノールと反応する水の3倍の量の水を化学反応で生成する。よって、直接型メタノール燃料電池の特徴点として、水は供給する必要がなく、基本的にメタノールのみを供給すれば発電が可能であるという点である(例えば、特許文献3参照。)。
【0004】
上記特許文献3の発明では、上記固体高分子電解質膜として水素イオン伝導性膜を含んでなり、具体的には、上記電解質膜は、テトラフルオロエチレンとペルフルオロビニルエーテルスルホン酸のコポリマーである。このような電解質膜を使用することで、従来、硫酸等の酸電解質を含む液体燃料であったのが、酸電解質を含まない液体燃料を用いて発電を行うことが可能となった。従って、接液部分について耐腐食性を考慮した使用材料等における種々の従来の問題は、解決された。
【0005】
一方、直接型メタノール燃料電池では、発電過程において、アノード極にて燃料のメタノールが水と反応して炭酸ガス及び水素イオンを生成するとき、不純物としてホルムアルデヒド、さらに蟻酸が微量ながら生成される。又、カソード極においても、いわゆるクロスオーバー現象で上記電解質膜を通過したメタノールが酸素と反応する際にも、上記不純物が生成され、カソード極にて生成される水の中にもホルムアルデヒド及び蟻酸が微量含まれる。しかしながら、このように生成される蟻酸は、極微量であることから、上述の硫酸に比して問題視する必要もなく、又、発電動作においも特に支障を生じるものではない。
【特許文献1】特開昭58−165274号公報
【特許文献2】特開昭63−136472号公報
【特許文献3】米国特許5599638
【発明の開示】
【発明が解決しようとする課題】
【0006】
一方、直接型メタノール燃料電池において、充電過程無しに半永久的に発電を続行するためには、連続して燃料を供給する必要がある。そのためには、燃料収納タンクにおける燃料量の管理が重要である。液体の残量の検出方法として、一般的に、目視の他、全体重量の測定、基準位置での光透過率の変化、等の方法があるが、これらは構成が複雑になったり、精度が極端に必要であったりして、安価で簡単な回路構成で電気信号に変換できるものではない。
又、直接型メタノール燃料電池では、発電動作に際し上述のように蟻酸が生成され、蟻酸は、メタノール水溶液を中性から酸性に変化させる。
【0007】
従って本発明は、酸性に変化したメタノール水溶液からなる液体燃料を使用して支障なく発電が行われる直接型メタノール燃料電池を提供することを目的とするとともに、さらに酸性に変化したメタノール水溶液からなる液体燃料の燃料量を管理可能とした直接型メタノール燃料電池を提供することを目的とし、又、該直接型メタノール燃料電池において実行される燃料液面検出方法を提供することを目的とする。
【0008】
さらに、直接型メタノール燃料電池による発電において重要な項目として、燃料であるメタノール水溶液の濃度管理がある。即ち、メタノールと水とが触媒によって反応し水素イオンと電子とを生成するには、メタノール水溶液に最適な濃度範囲があり、例えば3〜5重量%程度の水溶液濃度が最適とする例がある。メタノール水溶液の濃度は、誘電率の変化を検出することで測定可能であるが、蟻酸の生成により中性のメタノール水溶液が酸性になったメタノール水溶液では、その導電性の変化が誤差原因となり、正確に上記濃度を測定することはできない。
従って本発明のさらに別の目的としては、直接型メタノール燃料電池において実行可能なメタノール濃度検出方法を提供することである。
【課題を解決するための手段】
【0009】
上記目的を達成するため、本発明は以下のように構成する。
即ち、本発明の第1態様における直接型メタノール燃料電池は、メタノール水溶液の液体燃料が供給されるアノード極、酸化用気体が供給されるカソード極、及び上記アノード極と上記カソード極とに挟まれて配置され水素イオン伝導性膜を含む固体高分子電解質膜を有し、上記アノード極及び上記カソード極における化学反応にて発電を行う直接型メタノール燃料電池において、
上記アノード極へ供給される上記メタノール水溶液は、上記化学反応開始前にて予め、蟻酸を下限が0.05重量%で上限が0.30重量%の濃度にて含むことを特徴とする。
【0010】
上記第1態様において、上記液体燃料におけるメタノール濃度を求めるメタノール濃度決定装置を備えることもできる。
【0011】
さらに、上記メタノール濃度決定装置は、上記液体燃料が供給されるアノード極と、酸化用気体が供給されるカソード極と、水素イオン伝導性膜を含む固体高分子電解質膜と、上記アノード極及び上記カソード極における化学反応にて上記アノード極及び上記カソード極から得られる出力電圧を測定する電圧計とを有し、上記出力電圧とメタノール濃度との関係に基づき上記メタノール濃度を求めるように構成してもよい。
【0012】
又、上記メタノール濃度決定装置は、上記液体燃料に浸漬して設置される送波部及び受波部と、上記受波部に接続され、上記送波部から上記受波部へ上記液体燃料中を伝搬する振動波の伝搬速度を求める伝搬速度決定部とを有し、上記伝搬速度とメタノール濃度との関係に基づき上記メタノール濃度を求めるように構成してもよい。
【0013】
上記第1態様において、上記液体燃料に浸漬して設置される2本の電極と、上記電極に電気的に接続され上記電極間のインピーダンスを測定し上記液体燃料の状態を求めるインピーダンス測定装置とを備えることもできる。
【0014】
上記インピーダンス測定装置で測定可能な対象として、液体燃料の液面レベル検出の他に、液体燃料の温度測定がある。このように、インピーダンス測定装置は、液体燃料に対するセンサ機能を有する。
【0015】
又、本発明の第2態様における直接型メタノール燃料電池は、メタノール水溶液の液体燃料が供給されるアノード極、酸化用気体が供給されるカソード極、及び上記アノード極と上記カソード極とに挟まれて配置され水素イオン伝導性膜を含む固体高分子電解質膜を有し、上記アノード極及び上記カソード極における化学反応にて発電を行う発電部と、
上記アノード極へ供給される上記メタノール水溶液であって、上記化学反応開始前にて予め、蟻酸を下限が0.05重量%で上限が0.30重量%の濃度にて含むメタノール水溶液を収納する燃料タンクと、
上記燃料タンク内における上記液体燃料の液位変化に応じて浸漬量が変化する位置に配置される2本の液位電極、及び上記液位電極に電気的に接続され上記液体燃料の液位に応じた検出値を送出する液位検出回路を有し、上記検出値と上記浸漬量との関係に基づき上記液体燃料の液位を検出する液面検出装置と、
を備えたことを特徴とする。
【0016】
又、本発明の第3態様における燃料液面検出方法は、メタノール水溶液の液体燃料が供給されるアノード極、酸化用気体が供給されるカソード極、及び上記アノード極と上記カソード極とに挟まれて配置され水素イオン伝導性膜を含む固体高分子電解質膜を有し、上記アノード極及び上記カソード極における化学反応にて発電を行う直接型メタノール燃料電池における上記液体燃料の液面検出方法において、
上記アノード極へ供給する上記メタノール水溶液の液体燃料を、上記化学反応開始前にて予め蟻酸を下限が0.05重量%で上限が0.30重量%の濃度にて含むように調整し、
上記調整済の上記液体燃料の液位変化に応じて浸漬量が変化するように2本の液位電極を配置し、
上記液位電極間のインピーダンスと上記浸漬量との関係に基づき上記液体燃料の液位を検出する、
ことを特徴とする。
【0017】
又、本発明の第4態様におけるメタノール濃度検出方法は、メタノール水溶液の液体燃料が供給されるアノード極、酸化用気体が供給されるカソード極、及び水素イオン伝導性膜を含む固体高分子電解質膜を有し、上記アノード極及び上記カソード極における化学反応にて発電を行う直接型メタノール燃料電池における上記液体燃料のメタノール濃度の検出方法であって、
上記アノード極、上記カソード極、及び上記固体高分子電解質膜を有し上記アノード極及び上記カソード極に一定値の負荷が接続され、かつ上記アノード極及び上記カソード極における化学反応にて発電を行う濃度検出器に対して、上記化学反応開始前にて予め、蟻酸を下限が0.05重量%で上限が0.30重量%の濃度にて含むメタノール水溶液の液体燃料を上記濃度検出器のアノード極へ供給し、
上記濃度検出器のアノード極及びカソード極から得られる出力変化により上記メタノール濃度を求めることを特徴とする。
【0018】
さらに又、本発明の第5態様におけるメタノール濃度検出方法は、メタノール水溶液の液体燃料が供給されるアノード極、酸化用気体が供給されるカソード極、及び水素イオン伝導性膜を含む固体高分子電解質膜を有し、上記アノード極及び上記カソード極における化学反応にて発電を行う直接型メタノール燃料電池における上記液体燃料のメタノール濃度の検出方法であって、
上記化学反応開始前にて予め、蟻酸を下限が0.05重量%で上限が0.30重量%の濃度にて含む上記液体燃料を上記アノード極へ供給し、
上記液体燃料中で振動波を伝搬させて上記振動波の伝搬速度を求め、上記伝搬速度とメタノール濃度との関係に基づき上記メタノール濃度を求めることを特徴とする。
【0019】
アノード極及びカソード極に挟まれて配置されテトラフルオロエチレン及びペルフルオロビニルエーテルスルホン酸のコポリマーにてなる水素イオン伝導性膜を含む固体高分子電解質膜を有する発電部を備えた燃料電池では、発電開始前の初期段階において酸電解質を含まないメタノール水溶液を液体燃料としている。これは、上述したように、上述の構成にてなる固体高分子電解質膜を設けることで、酸電解質を含まないメタノール水溶液であっても、支障なく発電が可能となったことに起因する。
一方、上記初期段階において酸電解質を含まないメタノール水溶液であっても、発電を開始するとメタノールが分解し、ホルムアルデヒド、さらには蟻酸が生成され、初期段階で中性であったメタノール水溶液は、徐々に酸性に変化する。しかしながら、発電が長時間に渡ってもメタノール水溶液の導電性又は酸性は、図5に示すように、pH値で約2.5〜約3.0程度で、ほぼ一定に落ち着くことが出願人の実験により明らかになった。
【0020】
そこで本発明は、上述のように、触媒でメタノールが水と反応する過程で副産物として生成される蟻酸を利用するもので、さらに、メタノールの触媒反応と、蟻酸の触媒反応とがある範囲で平衡状態になること、つまり発電動作を続行しても過剰に蟻酸が生成されずほぼ一定濃度にて蟻酸が存在する状態となる現象を利用したものである。具体的には、発電に供する液体燃料に対して、発電開始前において、予め、上記ほぼ一定濃度の蟻酸存在状態つまり液体燃料のpH値で約2.5〜約3.0となるように、蟻酸を混入する。
【0021】
混入する蟻酸量は、液体燃料の導電性を安定させる添加量を下限とし、かつ燃料電池機材に対して腐食等の影響を生じさせない範囲における最大の添加量を上限とする必要がある。実施形態では、メタノール水溶液に対して約0.05〜約0.3重量%の添加量が最適範囲としている。このような添加量範囲を選択した理由を以下に説明する。
即ち、燃料であるメタノール水溶液に蟻酸を微量注入する弊害として、燃料電池接液部に対する蟻酸による腐食作用が懸念される。そこで、0.3重量%、1重量%、10重量%の蟻酸水溶液を作り、その中に、燃料電池の接液部を構成する材料として一般的に使用される鋼材の一部を浸漬して高温下で放置し、浸漬界面での腐食度合いを観察した。その結果、0.3重量%の蟻酸水溶液では、発泡等の異常は生じなかったが、10重量%の蟻酸水溶液では、浸漬から24時間で変色が見られ、又、1重量%の蟻酸水溶液でも96時間で変色が見られた。尚、0.3重量%の蟻酸水溶液では、240時間経過しても変色は見られなかった。
一方、図5から明らかなように、液体燃料におけるpH値が安定する範囲としては、0.05重量%以上の濃度にて蟻酸が存在すればよい。
以上のことから、下限が0.05重量%で上限が0.3重量%の濃度となる蟻酸の注入であれば、液体燃料におけるpH値は安定しており、かつ燃料電池を構成する接液部に実用上、腐食の問題は生じないことが明確になった。勿論、上記濃度で蟻酸を注入した液体燃料にて、従来と変わらない発電動作が続行することも確認している。
【0022】
又、上述したように、メタノールは、アノード極にて水と混合され触媒反応で水素イオン及び電子を生成する。該水素イオンの移動度は、酸性の液体燃料における方が、中性の液体燃料の場合に比べて向上することが知られている。よって、上述のように中性のメタノール水溶液に予め蟻酸を添加することで、発電時の電力向上を図ることができる。このとき、蟻酸の添加量を0〜約0.05重量%未満としたのでは、液体燃料におけるpH値が安定しないことから、発電電力が不安定になる可能性がある。一方、蟻酸の添加量を約0.3重量%を超える量とすると、上述の腐食の問題が生じる懸念がある。よって、上述のように、初期段階において酸電解質を含まないメタノール水溶液に対して約0.05〜約0.3重量%の添加量とすることで、安定した発電電力を得ることができ、かつ腐食の問題も発生せず、かつ中性メタノール水溶液燃料の場合に比べて発電量の向上を図ることができる。
【0023】
一方、上述のように、発電を持続させるためには液体燃料を発電部へ連続して供給する必要があり、そのためには液体燃料の残量管理が必要となる。そこで、上記燃料電池における液体燃料の液位つまり残量の検知装置として、2本の液位電極を、液体燃料の液位変化に応じて浸漬量が変化する位置に配置し、液位検出回路にて、上記液位電極間のインピーダンス値と上記浸漬量との関係に基づき液体燃料の液位を検出するようにした。
液体燃料の液位の変化と、上記液位電極によるインピーダンス値の変化との関係は、液体燃料の導電性、具体的にはpH値が一定又はほぼ一定である状態では、相関関係を呈する。よって、発電動作の初期段階つまり液体燃料が未だほぼ中性の状態でほぼ一定であるときには、インピーダンス値の変化に基づき液体燃料の液位を検出することが可能である。
【0024】
具体的に説明する。蟻酸を含まないメタノール水溶液に2本の液位電極を浸すと、該液位電極は、インピーダンスとして静電容量を検出するように動作する。上記液位検出回路は、液位電極における容量と、液位電極と直列接続され上記液位検出回路に設けられた固定抵抗とにより微分された、図6の(b)に示す検出電圧波形201を出力する。尚、図6の(a)は、上記液位電極におけるインピーダンスを測定するため、上記液位検出回路に備わる発振器が発振する駆動電圧波形を示している。
液位電極の浸漬量に応じて上記液位電極の静電容量値は増加する。よって、上記微分の時定数が増加することから、検出電圧波形201のピーク−ピーク値202は増加する。即ち、液位電極の浸漬量が増加すると、ピーク−ピーク値202である検出電圧が上昇する。図7に、液体燃料のpH値が6.5における、上記検出電圧と液位電極の浸漬量との関係を示す。図7からも判るように、液体燃料への液位電極の浸漬量が増えると、上記検出電圧も増加する。このように上記液位電極は、液位を検知するセンサーとして動作しているのが判る。尚、空気中での誘電率を1とすれば、メタノール水溶液の誘電率は約80倍であり、上記液位電極の露出部分が中性のメタノール水溶液に全て浸漬したときには、一例として約20pFの静電容量を示す。
【0025】
しかしながら、発電が進むにつれて上述のように蟻酸が生成され、液体燃料の液性は図5に示すように急激に酸性へ変化する。上記インピーダンス値は、液体燃料のpH値にも影響されることから、蟻酸濃度の増加に伴い液体燃料のpH値が急激に変化する領域210では、上記検出電圧値の変化が液体燃料の液位変化に起因するのか、液体燃料のpH値の変化に起因するのか判断できなくなる。よって、pH値が急激に変化する領域210では、上記液位電極及び上記液位検出回路を有する液面検出装置を使用するには、例えば、液体燃料のpH値を別途測定しつつ、該測定値に基づき、液位電極による検出出力値に補正をかける方法等の工夫を要する。
【0026】
図8には、液体燃料のpH値が4.5、3.7、及び3.4の場合について、上記検出電圧と液位電極の浸漬量との関係を示している。
このように液体燃料が酸性にある状態では、上記液位検出回路から出力される上記検出電圧の波形が中性の場合と異なる。即ち、液体燃料のpH値が約4以下になると、上記液位電極におけるインピーダンスは、静電容量成分の状態から実効抵抗成分の状態と見なせるように変化する。これは、液体燃料のpH値が下がるとイオン導電性が増し、平行2線からなる液位電極の静電容量にパラレルに抵抗成分が接続したのと同じ効果となり、又、静電容量に比べても十分に小さい実効抵抗とみなせるからである。よって、上記液位検出回路から出力される上記検出電圧の波形は、図6の(c)に示すような矩形波形状となる。又、図8に示すように、pH値が小さくなるほど、液位電極の浸漬量に対する検出電圧の変化は大きくなる。
上述したように、又、図5に示すように、発電動作に伴い蟻酸が生成されていくが、蟻酸は、メタノールの分解における副産物であるために、一方的に蟻酸が増加することはない。よって、液体燃料のpH値も、約3前後で落ち着く。
したがって、図5に示す、pH値や導電性が緩やかに変化する微少変化領域211では、再び、上記液面検出装置にて液体燃料の液位変化が検出可能となる。
【0027】
以上の説明から、上記液面検出装置が液体燃料の液位変化を検出可能なのは、液体燃料のpH値や導電性に変化がない、又はほぼ無い状態であり、又、液体燃料であるメタノール水溶液のpH値は、発電時間によらず、ほぼpH値2.5程度までしか低下せず、かつほぼpH3〜2.5において微少変化領域211となる。
上述のように、液体燃料のpH値の別途測定により検出出力値に補正をかける方法もあるが、実用性及びコスト面から不適である。
そこで、本発明では、発電動作により、元々、メタノール水溶液のpHがpH3前後になり、かつ該値近辺でほぼ一定になることを利用する。即ち、本発明では、発電開始前の新メタノール水溶液つまり蟻酸等の酸電解質を含まない液体燃料に対して、意図的に蟻酸を加えて上記微少変化領域211を作成し、液体燃料のpH値を予め約pH2.5〜3.0に設定した、pH調整済の液体燃料を使用する。これにより、発電開始から、及びその後に渡り、液体燃料の導電性やpH値の変化にほとんど影響されることなく、上記液面検出装置にて液体燃料の液位を検出可能とするものである。尚、液体燃料のpH値が約2.5〜約3.0になる蟻酸の添加量は、約0.05〜約0.30重量%である。又、pH調整を行うために添加する酸電解質として、メタノール水溶液の分解により元々生成される物質という観点から蟻酸が一つの選択枝となるが、pH値を調整できればよいことから蟻酸に限定するものではない。
【0028】
液体燃料への蟻酸の添加方法の一例を説明する。例えば、水475gに対してメタノールを25g混ぜ合わせて5重量%のメタノール水溶液を作成し、そこに蟻酸0.09gを滴下する。これにより、メタノール水溶液のpH値は、約3.6になる。蟻酸を倍の0.18gを滴下すると、pH値は約3.2であり、蟻酸によるpH調整は比較的容易であることがわかる。
【0029】
又、出願人の実験により、上述のような極微量の蟻酸添加では、液体燃料のpH値は変化するが、酸による腐食等の弊害は、生じなかった。
又、蟻酸を添加したpH値2.8の液体燃料を用いて発電を行っても、従来通りの発電特性が得られ、何ら支障をきたすことは無かった。さらに、10時間発電継続後、96時間発電継続後においても、pH値は2.7付近で安定していた。
【0030】
又、図5に示すように上記微少変化領域211においても、液体燃料のpH値は、若干変化する。よって、液位電極による液面検出においても導電性やpH値の変化が影響し若干の誤差が生じる可能性がある。そこで、上記pH値の変化の補正を行うために、液位電極に加えて基準電極を設け、かつ上記液位検出回路は補正回路部を有するように構成してもよい。ここで、上記基準電極は、液体燃料の液位変化にかかわらず完全に液体燃料中に水没する位置に設置され、上記液位電極と同一構成にてなる。上記補正回路部は、上記基準電極におけるインピーダンス値を基準として、液体燃料のpH変化に起因した上記液位電極における液面検出誤差の補正を行う。よって、液体燃料内のpH値が均一であり上記液位電極と基準電極との各配置位置において液体燃料のpH値に相違がない条件の下では、基準電極をさらに設けることで、より正確に液体燃料の液位を検出することができる。
尚、微少ではあるが、上述のように液体燃料内には蟻酸が含まれることから、上記液位電極及び基準電極は、耐食性を有する材料、例えば白金又は金が好ましい。又、白金又は金のメッキを施しても良い。
又、上述の説明では、液体燃料としてメタノール水溶液を例に採っているが、これに限定されるものではなく、メタノール原液を用いることもできる。
【0031】
又、上述のように蟻酸を予め混入させてpH値を調整した液体燃料に対して、電極を用いてインピーダンス値を測定するインピーダンス測定装置を設けることで、上述のように液体燃料の液面を検出すること以外にも、液体燃料の状態を検出するセンサ機能として作用させることも可能である。上記センサ機能の一例として、上記液体燃料の温度測定がある。
【発明の効果】
【0032】
上述した、本発明の第1態様の直接型メタノール燃料電池によれば、初期段階において酸電解質を含まないメタノール水溶液に対して約0.05〜約0.3重量%の添加量にて蟻酸を添加することで、安定した発電電力を得ることができ、かつ腐食の問題も発生せず、かつ中性メタノール水溶液燃料の場合に比べて発電量の向上を図ることができる。
【0033】
又、上述した本発明の第2態様における直接型メタノール燃料電池、及び第3態様の燃料液面検出方法によれば、発電開始前の状態において予めpH値を約2.5〜約3.0に調整した液体燃料を使用することから、発電運転開始直後、及び発電運転期間中における液体燃料の導電性の変化が小さい。よって、2本の液位電極のインピーダンス値にて容易に燃料液面の検出を行うことができる。上記pH値の調整のため、酸電解質を添加するが、該酸電解質として蟻酸を用いた場合、該蟻酸は、液体燃料としてメタノール水溶液を用いたときに発電動作にて必然的に生じる副産物であることから、予め、蟻酸を添加することに問題は生じない。又、蟻酸の生成は、触媒反応における中間生成物ために、発電続行により蟻酸濃度がさらに増加することは無い。
【0034】
又、上述した本発明の第4態様におけるメタノール濃度検出方法によれば、蟻酸を0.05〜0.30重量%にて添加して予めpH調整を行ったメタノール水溶液を用いることから、発電経過時間にかかわらず液体燃料のpH値はほぼ一定である。又、濃度検出器は、液体燃料にて発電を行うが、一定値の負荷を接続していることから、負荷変動による発電電力の変化は生じない。よって、予め求めた濃度検出器の出力電圧とメタノール濃度との関係に基づき、濃度検出器の出力電圧からメタノール濃度を監視することができる。
【0035】
又、上述した本発明の第5態様におけるメタノール濃度検出方法によれば、第4態様における濃度検出方法に比べて、発電による出力電圧を必要としないことから、濃度測定のために液体燃料を消費することはない。よって、液体燃料をより有効に電力発生用として使用することができる。
【発明を実施するための最良の形態】
【0036】
本発明の実施形態である、直接型メタノール燃料電池、及び該直接型メタノール燃料電池にて行われる燃料液面検出方法、並びに直接型メタノール燃料電池にて実行可能なメタノール濃度検出方法について、図を参照しながら,以下に説明する。尚、各図において、同じ構成部分には同じ符号を付している。
【0037】
第1実施形態;
図1には、上記直接型メタノール燃料電池の一例を示している。該直接型メタノール燃料電池101は、その斜視図を示す図2からも明らかなように、燃料タンク110内に収納されているメタノール水溶液の液体燃料190内に、発電部120を浸漬した形態を採る。尚、図10に示すように、発電部120の形態は、図1の浸漬タイプに限定するものではない。又、直接型メタノール燃料電池101は、図11に示すように、例えばノート型のパーソナルコンピュータ等の携帯用の電子機器220に取り付けられる。
【0038】
上記直接型メタノール燃料電池101は、基本的構成部分として、燃料タンク110、及び発電部120の他に、後述するインピーダンス測定装置の一例に相当する液面検出装置130を備える。本実施形態では、直接型メタノール燃料電池101は、さらに、空気供給部140、燃料供給部150、水回収部160、及び制御装置170を備える。
上記燃料タンク110は、発電部120を収納するタンクであり、液面検出装置130が液体燃料190のインピーダンス値を測定することから、接液部分を非導電性の材料にて形成している。本実施形態では、燃料タンク110は絶縁性の樹脂材、例えばポリプロピレン等にて形成している。
【0039】
燃料タンク110内の液体燃料190は、約5重量%の濃度のメタノール水溶液であるが、上述したように発電開始前の新品の状態において予め上記メタノール水溶液のpH値が約2.5〜約3.0になるように蟻酸を添加したpH調整済液体燃料である。ここで蟻酸の添加量としては、約0.05〜約0.3重量%である。尚、発電効率が最も良いことから本実施形態においてはメタノール濃度を上記約5重量%に設定しているが、該5重量%に限定するものではなく、直接型メタノール燃料電池101の機器構成に応じて変更可能である。
【0040】
発電部120は、基本的構成として、アノード極121と、カソード極122と、アノード極121及びカソード極122に挟まれて配置される固体高分子電解質膜123とを備え、これらにて膜電極接合体(MEA)を形成している。尚、図示では、上述の構成を有する一組の膜電極接合体を示しているが、実際には、複数の膜電極接合体が直列接続されて構成されている。
アノード極121及びカソード極122は、触媒反応層及び電極から構成されており、アノード極121がマイナス電極に、カソード極122がプラス電極に接続される。アノード極121は、上述の浸漬状態により、燃料タンク110内の上記pH調整済の液体燃料190に接触しており、アノード極121には、常時、メタノールが供給される。一方、カソード極122には、空気室142及び空気供給ポンプ141を有する上記空気供給部140が接続されており、空気供給ポンプ141にて大気が吹き込まれる空気室142がカソード極122に面して取り付けられている。該空気室142は、pH調整済の液体燃料190内に浸漬され、図2に示すように空気室142から延在する空気出入口142a、142bが液体燃料190中から外部へ導き出されている。よって、発電部120は液体燃料190に浸漬されているがカソード極122は、液体燃料190に接触しておらず、空気室142内に露出しており、カソード極122には空気が供給される。
【0041】
このように構成されたアノード極121及びカソード極122では、上述した化学反応が起こる。即ち、アノード極121では、白金、ルテニウムを含む触媒反応で、メタノールと水とが反応し、水素イオンと電子と二酸化炭素が生成され、電子はアノード極121より外部に電力として出力され、水素イオンは、固体高分子電解質膜123を通りカソード極122側に伝導する。カソード極122では、水素イオンがカソード極122から電子の供給を受け、空気中の酸素と反応し水が生成される。
【0042】
上記固体高分子電解質膜123は、水素イオン伝導性膜を含むもので、プロトン伝導性カチオン交換膜、例えばペルフルオロ化スルホン酸ポリマーの膜で「ナフィオン」の商標にてなるものが好ましい。該膜は、具体的にはテトラフルオロエチレン及びペルフルオロビニルエーテルスルホン酸のコポリマーにてなる。改質ペルフルオロ化スルホン酸ポリマー、ポリ炭化水素スルホン酸、及び2種以上のプロトン交換膜の複合体の膜も使用可能である。
【0043】
上記液面検出装置130は、液位電極131と液位検出回路132と、制御装置170とを有する。発電動作に直接関係する上記MEAの触媒反応を阻害させないためには、液体燃料190中から不要な金属イオンを取り除くことが重要であることから、液位電極131は、白金又は金等の材料にてなる。このような液位電極131は、図3に示すように、白金又は金等の材料にてなる2つの棒状の電極131−1、131−2を、適宜な隙間を隔てて互いに平行に配置して構成される。本実施形態において、各電極131−1、131−2は、直径Dが0.3mm、長さLが18mmの線材であり、2mmの間隔Sにて互いに平行に配置している。尚、電極131−1、131−2における直径D、長さL、間隔S、及び形状は、発電部120の形態等に応じて適切なものが選択される。又、各電極131−1、131−2に接続されるリード線は、メタノール水溶液190に浸漬したときに液位検出回路132の出力値に影響を与えないように、テフロン(登録商標)絶縁膜にて被覆してある。又、該被覆により、メタノール水溶液190に含まれる蟻酸による腐食を防止する効果もある。又、液位電極131の材質は、上記蟻酸への耐腐食性から選択され、上記白金、金に限定するものではなく、酸電解質に腐食しない材質であればよく、例えば炭素棒も使用可能である。又、素材そのものが白金や金である必要もなく、電極表面を白金又は金等の材料にてメッキした構成でもよい。
【0044】
このような液位電極131は、燃料タンク110内における液体燃料190の液位変化に応じて、液位電極131の浸漬量が変化する位置に配置される。具体的には、重力方向に沿って各電極131−1、131−2を延在させ、かつ、例えば、発電部120の上端120aが図1に示すように液体燃料190に完全に浸漬した状態において液体燃料190の液面が電極131−1、131−2のほぼ中央部分に位置し、かつ発電部120の上端120aが液体燃料190から露出を開始する時点にて電極131−1、131−2の下部131aが未だ液体燃料190に浸漬しているような状態に配置される。
【0045】
液位検出回路132は、基本的構成として図4に示すように、液位電極131のインピーダンス値を測定するための駆動電源として発振器1321と、液位電極131及び上記発振器1321に直列接続された抵抗1322とを有し、液位電極131及び抵抗1322における分圧を検出値とした検出出力1323としたものである。尚、本実施形態では、一例として、発振器1321は約350kHzにて発振した、図6の(a)に示す矩形波を発し、抵抗1322は10kΩである。尚、液位検出回路132を構成する各素子は、液位電極131の直径D、長さL、隙間Sの各値に応じて、適切な検出出力1323が得られるように設計される。又、本実施形態では、上述のように約350kHzの矩形波を用いたが、矩形波に限らず、正弦波であっても同様の効果が得られることは明白である。又、周波数は、液体燃料の電気分解等、余分な成分を発生させないために、交流であれば100kHz以上の高周波が好ましい。
又、上述したように、メタノール水溶液190のpH値が上述の約3前後であれば、液位電極131は静電容量として作用するよりも実効抵抗として作用することから、発振器1321に代えて、単に、例えば5Vにてなる直流電源を設けても良い。液位検出回路132におけるこのような回路変更は、当業者が容易想到な範囲で可能である。
液位検出回路132の検出出力1323は、制御装置170へ供給される。制御装置170は、例えば図8に示すような、検出出力1323と液位電極131の浸漬量との関係情報を格納しており、液位検出回路132から供給される検出出力1323を上記浸漬量に変換する。尚、制御装置170にて、このような変換機能を有する部分を変換部171とする。
【0046】
上記燃料供給部150は、原液のメタノール191を収納する原液タンク151と、吐出側を上記燃料タンク110に接続した燃料供給ポンプ153と、原液タンク151及び後述の水タンク162に接続され原液メタノール191又は水192を燃料供給ポンプ153へ送出する切替弁152と、燃料タンク110内の液体燃料190に浸漬され該液体燃料190のメタノール濃度を測定する濃度センサ154とを有する。ここで、上記原液メタノール191は、上述したように、発電開始前の新品の状態において予めメタノールのpH値が約2.5〜約3.0になるように蟻酸を、約0.05〜約0.3重量%にて添加したpH調整済の原液メタノール191である。
切替弁152、燃料供給ポンプ153、及び濃度センサ154は、制御装置170に接続されている。上述のように本実施形態では、液体燃料190のメタノール濃度は約5重量%であることから、制御装置170は、濃度センサ154が検出したメタノール濃度に基づいて、該メタノール濃度が約5重量%になるように切替弁152を原液タンク151側又は水タンク162側に切り換え、燃料供給ポンプ153を作動させる。よって、燃料タンク110内には、原液メタノール191又は水192が供給され、液体燃料190におけるメタノール濃度が約5重量%に調整される。
【0047】
上記水回収部160は、上記空気室142の空気出口142bに接続されカソード極122にて生成された水分を凝縮させ空気と水とに区別する凝縮器161と、凝縮器161に接続され分離された水192を回収する水タンク162とを有する。水タンク162に回収された水192は、上述のように切替弁152に供給される。
【0048】
以上のように構成された直接型メタノール燃料電池101における動作を、液面検出装置130を利用した、燃料タンク110内の液体燃料190の液面検出方法を含めて、以下に説明する。
上述のようにpH調整済の原液メタノール191は、原液タンク151から切替弁152によって燃料供給ポンプ153に導かれ、燃料タンク110内へ供給される。約5重量%の濃度にてなり、かつpH調整済のメタノール水溶液にてなる液体燃料190が発電部120のアノード極121に供給される。アノード極121では、上述のようにメタノールとの化学反応が行われる。一方、空気供給ポンプ141にて空気が空気室142へ供給され、発電部120のカソード極122では、空気中の酸素との化学反応が行われる。上述のようにこれらの化学反応にて発電部120にて発電が行われ発電部120から外部へ電力が供給される。尚、発電動作においては、反応熱、及びクロスオーバーによるカソード極122での直接燃焼による温度上昇等により、発電部120全体の温度は、約60℃まで上昇する。又、アノード極121では、化学反応により二酸化炭素が生成され、該二酸化炭素ガスは、燃料タンク110の上部に設けた気液分離膜(不図示)を通して圧力差にて外部へ放出される。
カソード極122で反応した水蒸気を含む排気は、凝縮器161で水192と排気に区分され、排気はそのまま外気へ放出され、水192は水タンク162を経て切替弁152を通り再度燃料タンク110へ供給され、水の再利用が行われる。
【0049】
上述の発電動作が進行することで、燃料タンク110内のメタノールが消費されていく。該メタノール消費によるメタノール濃度変化は、濃度センサ154にて検出され、該検出結果に基づき、上述のように制御装置170にて燃料供給部150が動作制御され、原液メタノール191及び水192が燃料タンク110へ供給される。該液体燃料190の補充動作、さらには水分の蒸散等により、燃料タンク110内の液体燃料190の液位は変化する。よって、発電部120を常に液体燃料190に浸漬させ、かつ適切なメタノール濃度管理を行いながら発電動作を続行するためには、液体燃料190の液位管理が重要となる。
【0050】
上記液位管理は、上述の液面検出装置130及び制御装置170にて行われる。
上述のように、液面検出装置130の液位電極131は、発電部120に対して適切な位置に配置されており、かつ制御装置170の変換部171は、液位検出回路132からの検出出力1323と液位電極131の浸漬量との関係情報を有していることから、制御装置170は、発電部120の上端120aが液体燃料190に完全に浸漬している状態において、上記検出出力1323に基づき、上液面レベル131bと下液面レベル131cとの間で液位制御を行う。尚、図1において、上液面レベル131b及び下液面レベル131cは説明上図示したもので、設定位置は設定可能である。但し、上述のように液位が発電部120の上端120a以下になるのはまずいので、下液面レベル131cは、少なくとも上記上端120aよりも僅かに上側に設定される。
【0051】
上述したように、原液メタノール191及び液体燃料190は、発電開始前の初期状態において既に、液面検出装置130が液体燃料190のpH値の変化を検知するのではなく液体燃料190の液面の変化を検知可能となる上記微少変化領域211を呈するように、液体燃料190のpH値又は導電率を調整されている。従って、液面検出装置130は、発電開始当初から発電続行中においても、特に上述のpH値急激変化領域210においても、液体燃料190のpH値や導電性の変化に影響されることなく、確実にかつ正確に液体燃料190の液位を検出することができる。
【0052】
又、上記pH調整済の液体燃料190であっても、発電動作の継続による若干の蟻酸生成により、液体燃料190のpH値は僅かに変化する。上述のように液面検出装置130は、僅かなpH値の変化に影響されずに、液位変化を検知可能であるが、より精度良く液位検出を行うため、直接型メタノール燃料電池101の変形例として、図9に示す直接型メタノール燃料電池102を構成することができる。尚、図9では、図1に示す空気供給部140、燃料供給部150、及び水回収部160に関する構成の図示を省略している。
【0053】
直接型メタノール燃料電池102は、直接型メタノール燃料電池101の構成に、さらに基準電極133を加えるとともに、上記液位検出回路132は、補正回路部134を有した構成である。ここで、基準電極133は、上記液面検出装置130に含まれ、液体燃料190の液位変化にかかわらず燃料タンク110内にて完全に液体燃料190中に水没する位置に設置され、上記液位電極131と同一の構成にてなる電極である。又、基準電極133は、補正回路部134に接続される。上記補正回路部134は、基準電極133におけるインピーダンス値を基準として、液体燃料190のpH値の変化に起因した液位電極131における液面検出誤差の補正を行う回路である。補正回路部134の具体的な回路構成は、一例として、図4に示す液位検出回路132の回路構成とほぼ同様の構成を採ることができる。即ち、補正回路部134は、図12に示すように、交流又は矩形波を出力する外部電圧源1341を液位電極131及び基準電極133に接続し、これらの分圧電圧を制御装置170へ出力する構成である。該構成において、基準電極133は完全に液体燃料190中に水没させているので、その抵抗値は、液体燃料190のpH値の変化と共に変動する。又、液位電極131のインピーダンス値は、液体燃料190の液位変化及びpH値の変化にて変動する。よって、液位電極131と基準電極133との分圧電圧値を検出すれば、液体燃料190のpH値の変化に起因するインピーダンス値の変化は基準電極133の抵抗値にて相殺されていることから、pH値の変化に無関係に液位のみを検出することになる。
【0054】
このように構成される直接型メタノール燃料電池102では、燃料タンク110内における液体燃料190のpH値がほぼ均一であるとき、つまり基準電極133及び液位電極131部分での液体燃料190のpH値や導電性がほぼ均一であるときには、pH値に対する基準電極133と液位電極131との相対的な出力値は変化せず一定である。よって、液位検出回路132は、液体燃料190のpH値変化を相殺した、液位変化のみによる液位電極131の出力変化のみを出力することになる。このように、直接型メタノール燃料電池102は、液体燃料190のpH値の変化を補正することができ、より正確な液位情報を提供することができる。又、燃料電池は、発電動作により発熱することから、液体燃料の温度も変動する。液体燃料の温度変化により、pH値も変化するが、上記補正回路部134の構成を採ることで、液体燃料190の温度変化に対しても安定した検出が可能となる。
【0055】
尚、以上の説明では、図1に示すような、液体燃料190内に発電部120を浸漬するタイプの燃料電池を例に採った。しかしながら、液面検出装置130が適用可能な燃料電池は図1のタイプに限定されず、例えば、図10に示すような、pH値調整済の液体燃料190が、当該液体燃料190を収納した中間タンク251から発電部252のアノード極121に供給される構成を有する直接型メタノール燃料電池250であってもよい。尚、図10において、符号253は中間タンク251と発電部252との間で液体燃料190の循環を行うためのポンプであり、符号254は原液タンク151から中間タンク251へpH値調整済の原液メタノール191を供給するためのポンプであり、符号255は、水タンク162から中間タンク251へ水192を供給するためのポンプである。
【0056】
第2実施形態;
上述の説明では、燃料電池で重要である燃料供給の観点から、安価で高精度のレベルセンサーの構成について説明をしたが、例えば蟻酸を予め混入させることで予めpH値を調整した液体燃料を用いる方法は、直接、発電電圧の安定化にも効果がある。以下に詳しく説明する。
直接型メタノール燃料電池では、上述したように、又、図13に示すように、発電電力が良好となる最適なメタノール濃度が存在することから、発電動作期間におけるメタノール水溶液の濃度管理は、重要な課題の一つである。よって、まず、メタノール水溶液の濃度管理について説明する。
【0057】
メタノール水溶液の濃度管理方法としては、比重計などを用いてメタノール水溶液の密度よりメタノール濃度を測定することは可能であるが、モバイル機器に設けた燃料電池における濃度測定方法としては好ましくない。そこで、燃料電池の発電電力とメタノール濃度との関係を利用し、発電電力からメタノール濃度を測定する方法が考えられる。但し、燃料電池の一般的特性として、燃料電池に接続される負荷の変動に応じて、発電電力が変化してしまう。よって、メタノール濃度検出のために、単純に発電電力を用いることはできず、負荷を一定に保った状態で、発電電力を検出する必要がある。
又、上述したように、発電動作時間の経過により、液体燃料のpH値は変化するが、図14に示すように、出願人の実験によれば、液体燃料の液性が中性のときよりも酸性側のときの方が発電電力は向上する。尚、液体燃料の酸性度は、第1実施形態で述べたように、発電時間の経過とともにpH値でほぼ3付近に落ち着く。又、pH値が3付近で一定となった後では、燃料電池の出力電力は、ほぼ一定となるために、液体燃料の濃度変化に対して、一定負荷に供給する電力が最大となるように制御していく方法が非常に有効であることが判る。
そのためには、直接型メタノール燃料電池に用いる燃料として、中性のメタノール水溶液ではなく、上述の第1実施形態のように蟻酸を注入し、pH値を予め調節した液体燃料を用い、該液体燃料のメタノール濃度を検出することで、発電初期段階から継続運転以後も安定した濃度管理をすることが可能であることが判る。ここで、蟻酸の注入量は、第1実施形態で説明した、0.05重量%以上である。
【0058】
上述のようにメタノール水溶液の濃度を管理して、第1実施形態で説明したように、中性のメタノール水溶液に0.05〜0.30重量%にて蟻酸を予め混入させた液体燃料によれば、実際に以下のように電力向上が見られる。即ち、蟻酸を混入しない場合、48mW/cmの電力密度であるのに対して、蟻酸を0.05重量%を混入した場合には、約52mW/cmの電力密度となり、約1割の電力向上が見られた。更に0.3重量%を混入した場合には、約54mW/cmの電力密度、そして0.5重量%では、54mW/cmの電力密度であった。このように、蟻酸を混入しない場合に比べて、0.05〜0.30重量%にて蟻酸を注入した液体燃料では、得られる電力が向上することが認められた。
【0059】
このように、燃料電池発電効率を一定に保つのは非常に重要であって、変動要因の一つであるメタノール水溶液のpH値を管理することは肝心である。第1実施形態にて説明したように、中性のメタノール水溶液に予め蟻酸を0.05〜0.3重量%を混入することで、発電時間経過にかかわらずpH値をほぼ一定にすることができる。よって、第2実施形態においても、中性のメタノール水溶液に予め蟻酸を0.05〜0.3重量%を混入した燃料電池用燃料は、発電効率の点においても効果を奏する。
【0060】
図15には、中性のメタノール水溶液に予め蟻酸を0.05〜0.3重量%を混入した燃料電池用燃料を使用した直接型メタノール燃料電池260において、メタノール水溶液の濃度検出器270を備えた構成が示されている。ここで、濃度検出器270は、発電部120と同一構成にてなり発電を行う濃度検出用発電部271と、該濃度検出用発電部271に接続される、一定値の負荷としての抵抗272と、濃度検出用発電部271の出力を測定し制御装置170へ送出する電圧計273とを有する。尚、濃度検出用発電部271には、発電部120に供給されるのと同一のメタノール水溶液が供給される。又、濃度検出器270、及び制御装置170に備わる変換部172にて、メタノール濃度決定装置の一例を構成する。上記変換部172は、濃度検出用発電部271の発電電力と、メタノール濃度との関係情報を格納し、電圧計273から供給される出力値をメタノール濃度に変換する機能を有する。
【0061】
予めpH調整を行ったメタノール水溶液を用いることから、上述のように発電経過時間にかかわらず液体燃料のpH値はほぼ2.5〜3で一定である。よって、該構成によれば、制御装置170は、電圧計273から供給される濃度検出用発電部271の出力電圧とメタノール濃度との関係に基づき、濃度検出用発電部271の出力電圧からメタノール濃度を監視することができる。
尚、図15に示す直接型メタノール燃料電池260は、直接型メタノール燃料電池101をベースにした構成例であるが、図9に示す直接型メタノール燃料電池102、及び
図10に示す直接型メタノール燃料電池250に対して、濃度検出器270を設けた構成を採ることもできる。
【0062】
上記メタノール濃度決定装置の他の構成例について、図16を参照して以下に説明する。
図16に示すメタノール濃度決定装置は、メタノール水溶液の密度変化つまり濃度変化をメタノール水溶液中における振動波の伝搬速度の変化にて検出する装置である。尚、本実施形態では、振動波として音波を用いる。一般的に音波の伝搬速度Cは、
C=√(K/ρ) で表される。ここで、K:体積弾性率、ρ:音波が伝搬する物質の密度 である。
又、一例として、メタノール濃度が0重量%のときに伝搬速度Cが約1495m/sでありメタノール濃度が10重量%のときには伝搬速度Cが約1537m/sであるような、速度−濃度関係に基づいて、液体燃料190中を伝搬する音波の伝搬速度Cを測定することで、液体燃料190の密度、ひいては液体燃料190のメタノール濃度を求めることができる。
【0063】
一方、上述のように、直接型メタノール燃料電池では発電動作により蟻酸が生成される。メタノールの密度が0.79g/ccであるのに対し、蟻酸の密度は1.22g/ccであることから、メタノール水溶液中における蟻酸の有無及びその量は、メタノール水溶液の密度に大きく影響する。一方、上述したように、発電動作を続行しても蟻酸は増加し続けることはなく、ほぼ一定濃度に落ち着く。この現象を、音波の伝搬速度の変化にてメタノール水溶液の濃度変化を検出する当該メタノール濃度決定装置においても利用する。即ち、発電開始からの経過時間にかかわらずメタノール水溶液中の蟻酸濃度がほぼ一定状態を維持するように、既に説明したように、発電開始前の状態のメタノール水溶液において蟻酸濃度が約0.05〜約0.3重量%となるように蟻酸を混入している。このように蟻酸濃度を予め調整しておくことで、蟻酸の影響を極力低減可能な状態にて上記伝搬速度Cを測定することで液体燃料190のメタノール濃度を求めることができる。
尚、振動波を利用してメタノール水溶液におけるメタノール濃度の変化を検出する方法においては、蟻酸濃度の影響を低減し検出精度をより向上させるため、下限が約0.1重量%、上限が約0.3重量%の濃度にて蟻酸が含まれるように、最も好ましくは約0.3重量%の濃度にて蟻酸が含まれるように濃度調整するのが好ましい。
【0064】
図16には、中性のメタノール水溶液に、予め蟻酸濃度が0.1〜0.3重量%となるように蟻酸を混入した燃料電池用燃料を使用した直接型メタノール燃料電池280において、濃度検出装置290を備えた構成が示されている。尚、濃度検出装置290は、メタノール濃度決定装置の一例に相当する。濃度検出装置290は、送波部291と、受波部292と、伝搬速度決定部293とを有する。伝搬速度決定部293は、送波部291に接続されるパルス電圧印加装置2931と、受波部292に接続される受波回路2932と、伝搬時間比較回路2933と、制御装置170に含まれる変換部2934とを有する。
【0065】
送波部291及び受波部292は、例えば一対の圧電素子にて構成され、パルス電圧印加装置2931にて送波部291にパルス電圧が印加されることで、送波部291は、振動し液体燃料190中に振動波としての音波を発する。又、パルス電圧印加装置2931は、送波部291へのパルス電圧の印加と同時に伝搬時間比較回路2933へ、送波した旨の信号を送出する。受波部292は、送波部291が発した上記音波を受信し、受信回路2932は、伝搬時間比較回路2933へ受信した旨の信号を送出する。伝搬時間比較回路2933は、パルス電圧印加装置2931及び受信回路2932からの各信号の時間差を求め、さらに、上記時間差及び電極間の距離に基づいて、送波部291から受波部292への上記音波の伝搬速度を求める。そしてこの伝搬速度値を変換部2934へ送出する。変換部2934は、伝搬速度とメタノール濃度との上述したような速度−濃度関係情報を格納しており、上記関係情報に基づきメタノール濃度を求める。尚、伝搬時間比較回路2933は、上記時間差の情報を変換部2934へ送出し、変換部2934は、時間差とメタノール濃度との関係情報に基づきメタノール濃度を求めてもよい。又、変換方法は、上記関係情報を利用する方法に限定されず、例えば演算式にて求める方法等、公知の方法が利用可能である。
【0066】
又、液体燃料190の密度は、液体燃料190の温度によっても変化することから、より正確に濃度を求める場合には、液体燃料190の温度を測定し、変換部2934にて温度パラメータを考慮して濃度を求めることもできる。
【0067】
上述したように振動波を利用したメタノール濃度決定装置によれば、濃度検出器270を用いた場合に比べて、発電部120と同一構成にてなり発電を行う濃度検出用発電部271を備える必要がないことから、構造を簡素化することができ、コスト削減、省スペース化を図ることが可能となる。又、濃度検出用発電部271における液体燃料190の消費が無いことから、液体燃料をより有効的に電力発生用として使用することができる。
【0068】
第3実施形態;
上記第1実施形態において説明した液面検出装置130は、インピーダンス測定装置の一構成例であるが、インピーダンス測定装置は、上記液体燃料190に浸漬した2本の電極間のインピーダンスを測定することで、上述の液面測定のみならず、さらに以下に説明するように、直接型メタノール燃料電池における液体燃料190の状態を決定する、換言すると、液体燃料190に対するセンサ機能を有することもできる。
【0069】
図17には、インピーダンス測定装置の他の構成例に相当する温度測定装置310を備えた直接型メタノール燃料電池300を示している。温度測定装置310は、絶縁体であるメタノール水溶液に一定量の蟻酸を混入させることで、メタノール水溶液に導電性が生じる性質を利用し、酸性電解質が一定濃度で存在する場合には、導電性が温度特性を有する性質を利用して、温度センサを構成する。尚、メタノール水溶液は、上述の実施形態と同様に、下限が0.05重量%で上限が0.30重量%の濃度にて蟻酸を含む、メタノール濃度が約5重量%の液体である。
【0070】
温度測定装置310は、電極131と、発振器1311と、抵抗1312とを有する。燃料タンク110内には、液体燃料190に浸漬するように、電極131−1、131−2が適宜な隙間を隔てて互いに平行に配置される。これらの電極131−1、131−2に、基準抵抗1312を介して発振器1311から出力される電圧V1を印加する。尚、本実施形態では、発振器1311は正弦波を送出する。そして、電極131−1、131−2と基準抵抗1312とで分圧される基準抵抗1312の電圧V2を測定し、電極131−1、131−2間の高周波における等価抵抗を求める。一実施例として、470Ωの基準抵抗を用いて、発振器1311は500kHz、5Vp−pの正弦波を発生し、該発振器1311の出力を電極131−1、131−2に印加する。その後、液体燃料190の温度が27℃、40℃、及び50℃のときの電極131−1、131−2間の高周波における等価抵抗を求めた。その結果、液体燃料190の温度及び等価抵抗値は、27℃では369Ω、40℃では313Ω、50℃では288Ωとなった。
このように、電極間の高周波における等価抵抗値と液体燃料190の温度とに相関関係が成立することから、電極間の高周波におけるインピーダンスを測定することにより、液体燃料190の温度を推定することが可能であり、温度測定装置310は、良好な温度センサとして機能する。
【0071】
尚、上述した各実施形態、及び変形例を、適宜組み合わせた構成を採ることも可能である。
【産業上の利用可能性】
【0072】
本発明は、直接型メタノール燃料電池に適用可能である。
【図面の簡単な説明】
【0073】
【図1】本発明の実施形態の直接型メタノール燃料電池の構成を示す図。
【図2】図1に示す燃料タンク及び発電部の斜視図。
【図3】図1に示す液位電極の斜視図。
【図4】図1に示す液位検出回路における回路構成の一例を示す図。
【図5】メタノール水溶液における蟻酸の添加量とpH値との関係を示すグラフ。
【図6】図1に示す液面検出装置における各波形であり、(a)は、図1に示す液面検出装置における発振器の出力波形を示す図、(b)は、図1に示す液面検出装置における液位検出装置の出力波形を示す図、(c)は、図1に示す液面検出装置における液位検出回路の出力波形を示す図。
【図7】メタノール水溶液のpH値が6.5において、図1に示す液位電極の浸漬量と液位電極の出力値との関係を示すグラフ。
【図8】メタノール水溶液のpH値が4.5、3.7、3.4において、図1に示す液位電極の浸漬量と液位電極の出力値との関係を示すグラフ。
【図9】図1に示す直接型メタノール燃料電池の変形例を示す斜視図。
【図10】図1に示す液位検出回路が適用可能な燃料電池を示す図。
【図11】図1に示す直接型メタノール燃料電池を取り付け可能な携帯用電子機器の一例を示した斜視図。
【図12】図9に示す補正回路部の構成を示す図。
【図13】燃料電池発電電力とメタノール濃度との関係を示すグラフ。
【図14】メタノール水溶液におけるpH値と、燃料電池の発電電力との関係を示すグラフ。
【図15】本発明の第2実施形態の、濃度検出器を備えた直接型メタノール燃料電池を示す図。
【図16】図15に示す濃度検出器の一変形例を有する直接型メタノール燃料電池を示す図。
【図17】本発明の第3実施形態の、インピーダンス測定装置を備えた直接型メタノール燃料電池を示す図。
【符号の説明】
【0074】
101,102…直接型メタノール燃料電池、
110…燃料タンク、121…アノード極、122…カソード極、
123…固体高分子電解質膜、130…液面検出装置、131…液位電極、
132…液位検出回路、133…基準電極、134…補正回路部、
151…原液タンク、190…液体燃料、
270…濃度検出器、290…メタノール濃度決定装置、291…送波部、
292…受波部、293…伝搬速度決定部。

【特許請求の範囲】
【請求項1】
メタノール水溶液の液体燃料(190)が供給されるアノード極(121)、酸化用気体が供給されるカソード極(122)、及び上記アノード極と上記カソード極とに挟まれて配置され水素イオン伝導性膜を含む固体高分子電解質膜(123)を有し、上記アノード極及び上記カソード極における化学反応にて発電を行う直接型メタノール燃料電池において、
上記アノード極へ供給される上記メタノール水溶液は、上記化学反応開始前にて予め、蟻酸を下限が0.05重量%で上限が0.30重量%の濃度にて含むことを特徴とする直接型メタノール燃料電池。
【請求項2】
上記液体燃料におけるメタノール濃度を求めるメタノール濃度決定装置(270,172、290)を備えた、請求項1記載の直接型メタノール燃料電池。
【請求項3】
上記メタノール濃度決定装置は、上記液体燃料が供給されるアノード極(121)と、酸化用気体が供給されるカソード極(122)と、水素イオン伝導性膜を含む固体高分子電解質膜(123)と、上記アノード極及び上記カソード極における化学反応にて上記アノード極及び上記カソード極から得られる出力電圧を測定する電圧計(273)とを有し、上記出力電圧とメタノール濃度との関係に基づき上記メタノール濃度を求める、請求項2記載の直接型メタノール燃料電池。
【請求項4】
上記メタノール濃度決定装置は、上記液体燃料に浸漬して設置される送波部(291)及び受波部(292)と、上記受波部に接続され、上記送波部から上記受波部へ上記液体燃料中を伝搬する振動波の伝搬速度を求める伝搬速度決定部(293)とを有し、上記伝搬速度とメタノール濃度との関係に基づき上記メタノール濃度を求める、請求項2記載の直接型メタノール燃料電池。
【請求項5】
上記液体燃料に浸漬して設置される2本の電極(131)と、上記電極に電気的に接続され上記電極間のインピーダンスを測定し上記液体燃料の状態を求めるインピーダンス測定装置(130、310)とを備えた、請求項1記載の直接型メタノール燃料電池。
【請求項6】
メタノール水溶液の液体燃料(190)が供給されるアノード極(121)、酸化用気体が供給されるカソード極(122)、及び上記アノード極と上記カソード極とに挟まれて配置され水素イオン伝導性膜を含む固体高分子電解質膜(123)を有し、上記アノード極及び上記カソード極における化学反応にて発電を行う発電部(120)と、
上記アノード極へ供給される上記メタノール水溶液であって、上記化学反応開始前にて予め、蟻酸を下限が0.05重量%で上限が0.30重量%の濃度にて含むメタノール水溶液を収納する燃料タンク(110、151)と、
上記燃料タンク内における上記液体燃料の液位変化に応じて浸漬量が変化する位置に配置される2本の液位電極(131)、及び上記液位電極に電気的に接続され上記液体燃料の液位に応じた検出値を送出する液位検出回路(132)を有し、上記検出値と上記浸漬量との関係に基づき上記液体燃料の液位を検出する液面検出装置(130、170)と、
を備えたことを特徴とする直接型メタノール燃料電池。
【請求項7】
上記液面検出装置は、
上記液体燃料の液位変化にかかわらず上記燃料タンク内にて完全に上記メタノール水溶液中に水没する位置に設置され、上記液位電極と同一構成にてなる基準電極(133)をさらに有し、上記液位検出回路は、上記基準電極におけるインピーダンス値を基準として、上記メタノール水溶液の導電性変化に起因した上記液位電極における液面検出誤差の補正を行う補正回路部(134)をさらに有する、請求項6記載の直接型メタノール燃料電池。
【請求項8】
メタノール水溶液の液体燃料(190)が供給されるアノード極(121)、酸化用気体が供給されるカソード極(122)、及び上記アノード極と上記カソード極とに挟まれて配置され水素イオン伝導性膜を含む固体高分子電解質膜(123)を有し、上記アノード極及び上記カソード極における化学反応にて発電を行う直接型メタノール燃料電池における上記液体燃料の液面検出方法において、
上記アノード極へ供給する上記メタノール水溶液の液体燃料を、上記化学反応開始前にて予め蟻酸を下限が0.05重量%で上限が0.30重量%の濃度にて含むように調整し、
上記調整済の上記液体燃料の液位変化に応じて浸漬量が変化するように2本の液位電極(131)を配置し、
上記液位電極間のインピーダンスと上記浸漬量との関係に基づき上記液体燃料の液位を検出する、
ことを特徴とする燃料液面検出方法。
【請求項9】
メタノール水溶液の液体燃料(190)が供給されるアノード極(121)、酸化用気体が供給されるカソード極(122)、及び水素イオン伝導性膜を含む固体高分子電解質膜(123)を有し、上記アノード極及び上記カソード極における化学反応にて発電を行う直接型メタノール燃料電池における上記液体燃料のメタノール濃度の検出方法であって、
上記アノード極、上記カソード極、及び上記固体高分子電解質膜を有し上記アノード極及び上記カソード極に一定値の負荷が接続され、かつ上記アノード極及び上記カソード極における化学反応にて発電を行う濃度検出器(270)に対して、上記化学反応開始前にて予め、蟻酸を下限が0.05重量%で上限が0.30重量%の濃度にて含むメタノール水溶液の液体燃料を上記濃度検出器のアノード極へ供給し、
上記濃度検出器のアノード極及びカソード極から得られる出力変化により上記メタノール濃度を求めることを特徴とするメタノール濃度検出方法。
【請求項10】
メタノール水溶液の液体燃料(190)が供給されるアノード極(121)、酸化用気体が供給されるカソード極(122)、及び水素イオン伝導性膜を含む固体高分子電解質膜(123)を有し、上記アノード極及び上記カソード極における化学反応にて発電を行う直接型メタノール燃料電池における上記液体燃料のメタノール濃度の検出方法であって、
上記化学反応開始前にて予め、蟻酸を下限が0.05重量%で上限が0.30重量%の濃度にて含む上記液体燃料を上記アノード極へ供給し、
上記液体燃料中で振動波を伝搬させて上記振動波の伝搬速度を求め、上記伝搬速度とメタノール濃度との関係に基づき上記メタノール濃度を求めることを特徴とするメタノール濃度検出方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate


【公開番号】特開2006−114487(P2006−114487A)
【公開日】平成18年4月27日(2006.4.27)
【国際特許分類】
【出願番号】特願2005−228262(P2005−228262)
【出願日】平成17年8月5日(2005.8.5)
【出願人】(000005821)松下電器産業株式会社 (73,050)
【Fターム(参考)】