説明

直流コンセント

【課題】直流コンセントの消費電力の低減と、出力される直流電力の出力電圧の安定化を課題とする。
【解決手段】直流給電系統から供給された直流電力を所望の直流電力に変換するコンセント給電部と、変換された直流電力を外部機器へ出力するソケット部と、コンセント給電部とソケット部とを接続する伝送経路に並列接続された蓄電装置と、伝送経路上においてソケット部から出力される直流電力の出力電流と蓄電装置の出力電圧とを検出する電圧電流検出部とを備え、検出された出力電圧と出力電流とを用いて算出された出力される直流電力が出力電力判定値Paよりも小さく、かつ検出された出力電圧が電池電圧下限値VL以上の場合に、コンセント給電部が、直流電力の変換動作を停止し、かつ蓄電装置から出力される直流電力をソケット部を介して出力することを特徴とする。

【発明の詳細な説明】
【技術分野】
【0001】
この発明は、直流コンセントに関し、特に分散電源や直流給電システムを備える一般家屋および商業施設で用いる直流コンセントに関する。
【背景技術】
【0002】
従来、一般家屋や商業施設に対する給電は、商用電力による交流給電が主体となっている。これに対し、分散電源として太陽電池や燃料電池のような直流発電装置、あるいは鉛蓄電池のような蓄電装置を設備した場合には、得られた直流電力を直流−交流電力変換装置により交流に変換した後、商用電力の交流給電系統に供給していた。
【0003】
一方、近年、オーディオ機器、テレビ、パソコン等の直流負荷が家庭内に普及してきており、太陽電池や燃料電池等の直流発電装置により得られる直流電力をこのような直流負荷へ給電を行う際には、従来の給電システムでは、直流発電により得られた直流電力を交流電力へ変換し、得られた交流電力を直流電力へ変換した後に直流負荷へ給電している。
この直流電力から交流電力への変換および交流電力から直流電力への変換には、変換ロスが発生していた。これに対して、直流発電装置から直流負荷へ給電するシステムとして、直流電力から交流電力への変換を行わずに、直流電力をそのまま直流負荷へ給電する直流配電システムが知られている。
【0004】
たとえば、特許文献1には、直流発電装置と、双方向電力変換装置と、直流電力変換装置とを備え、直流発電装置の出力側の端子に直流電力変換装置の入力端子が接続され、直流電力変換装置の出力端子には直流負荷を接続する多数の直流コンセント(コンセント群)が接続されている直流給電システム(以下、従来形直流給電システムという)が記載されている。
また、この従来の直流給電システムにおいて、蓄電池と電力変換装置を備え、直流発電装置が故障した場合でも、蓄電池の電力を電力変換装置で所望の直流電圧を持つ直流電力に変換して直流コンセントへ配電することにより、非常時にも給電可能にすることが記載されている。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】特開2003−204682号公報
【発明の概要】
【発明が解決しようとする課題】
【0006】
しかしながら、従来形直流給電システムでは、直流電力変換装置の出力電圧と機器の最適入力電圧との間に、例えば、機器の定格電圧を超える、あるいは、機器が動作しない電圧であるような不整合が生じた場合、コンセントの後、更に直流電力変換装置を設ける必要がある。また、コンセント群に複数の負荷が接続された場合に発生する急峻な負荷変動や、直流給電系統の電圧変動により、安定した出力電圧が得られないという問題がある。
また、直流コンセント毎に直流電力変換装置を備え、常に個別に直流コンセントの出力電圧を機器の最適入力電圧に変換するようにした場合、機器が軽負荷であるときにおいては、コンセント毎に設けられた直流電力変換装置の消費電力が機器の消費電力に対して、 割合が大きくなり、直流給電システムの効率が悪くなることが問題となる。
【0007】
また、蓄電池を設けることにより、ダウンさせてはいけないような重要な負荷装置への安全な電力供給が可能となるが、そのような重要負荷装置を接続する直流コンセントは予め固定的に決めておく必要があり、さらにその直流コンセントに固有の電力変換装置が必要となるため、軽負荷時や無負荷時に消費電力が大きくなるという問題がある。
【0008】
そこで、この発明は、以上のような事情を考慮してなされたものであり、直流コンセントそのものに蓄電池を設けることにより、消費電力やコストを低減させることが可能な直流コンセントを提供することを課題とする。
【課題を解決するための手段】
【0009】
この発明は、直流電力源を含む直流給電系統から供給された直流電力を所定の直流電力に変換するコンセント給電部と、前記コンセント給電部によって変換された直流電力を外部機器へ出力するソケット部と、前記コンセント給電部と前記ソケット部とを接続する伝送経路に並列接続された蓄電装置と、前記伝送経路上において、前記ソケット部から出力される直流電力の出力電流と、前記蓄電装置の出力電圧とを検出する電圧電流検出部とを備え、前記電圧電流検出部によって検出された出力電圧と出力電流とを用いて算出された前記ソケット部から出力される直流電力が所定の出力電力判定値Paよりも小さく、かつ前記検出された蓄電装置の出力電圧が所定の電池電圧下限値VL以上の場合に、前記コンセント給電部が、前記直流電力の変換動作を停止し、かつ前記蓄電装置から出力される直流電力を前記ソケット部を介して外部機器へ出力することを特徴とする直流コンセントを提供するものである。
これによれば、蓄電装置を直流コンセントの内部に備え、かつ蓄電装置が十分に充電された状態で電力供給可能な状態であれば、コンセント給電部からの直流電力の供給が停止されるので、直流コンセントの消費電力を低減させることができる。
【0010】
また、前記蓄電装置から出力される直流電力を外部機器へ出力している給電状態において、前記蓄電装置の出力電圧が前記電池電圧下限値VLよりも低くなった場合、前記コンセント給電部が、前記変換された直流電力を前記ソケット部を介して外部機器へ出力し、かつ前記変換された直流電力を用いて前記蓄電装置の充電を行うことを特徴とする。
これによれば、コンセント給電部から供給される直流電力の伝送経路上に、蓄電装置が並列接続されているので、蓄電装置の出力電圧が低下した場合、ソケット部から出力される直流電力の出力電圧が安定したままで、蓄電装置による給電からコンセント給電部による直流電力の給電に切り替えることができる。
【0011】
また、前記電圧電流検出部によって検出された出力電圧と出力電流を用いて算出された前記ソケット部から出力される直流電力が、前記出力電力判定値Pa以上の場合、前記コンセント給電部が、前記変換された直流電力を前記ソケット部を介して出力し、かつ前記変換された直流電力を用いて前記蓄電装置の充電を行うことを特徴とする。
【0012】
さらに、前記コンセント給電部が、前記直流給電系統から供給された直流電力を変換する電力変換部と、前記蓄電装置を動作させる電池電圧上限値VHおよび電池電圧下限値VLと、前記所定の出力電力判定値Paとを記憶する記憶部と、前記電圧電流検出部によって検出された出力電圧と、前記電池電圧上限値VHおよび電池電圧下限値VLとを比較する第1比較部と、前記検出された出力電圧と出力電流によって算出された直流電力と、前記出力電力判定値Paとを比較する第2比較部と、前記第1比較部および第2比較部によって比較された結果に基づいて、前記電力変換部の直流電力の変換動作を制御する電力制御部とを備えたことを特徴とする。
【0013】
また、前記ソケット部は、前記蓄電装置と前記電圧電流検出部とを含み、かつ外部機器を電気的に接続する接続部をさらに備え、前記コンセント給電部は、固定設置される給電ユニット部に備えられ、前記給電ユニット部と前記ソケット部とがコネクタ部によって着脱可能に接続され、前記コネクタ部は、前記コンセント給電部と前記ソケット部とを接続する伝送経路をつなぐ給電コネクタと、前記電圧電流検出部によって検出された出力電圧および出力電流に対応する信号を伝送するフィードバックコネクタとを備えることを特徴とする。
これによれば、ソケット部と給電ユニット部とを容易に分離することができ、ソケット部に備えられた蓄電装置の交換およびメンテナンス作業が容易となる。
【0014】
また、前記ソケット部が、前記接続部から出力可能な直流電圧の設定値を、前記給電ユニット部へ通知するための設定電圧通知部をさらに備え、前記給電ユニット部が、前記設定電圧通知部から通知される設定値を検出する設定電圧検出部をさらに備え、前記設定電圧通知部と前記設定電圧検出部とが前記コネクタ部に備えられていることを特徴とする。
ここで、前記コンセント給電部は、前記設定電圧検出部が検出した直流電圧の設定値に基づいて、前記ソケット部から出力すべき直流電力の出力電圧値を決定し、前記直流給電系統から供給された直流電力を前記出力電圧値を有する直流電力に変換することを特徴とする。
【0015】
さらに、前記コンセント給電部は、前記直流給電系統から供給された直流電力を交流電力に変換する交流印加部と、交流印加部によって生成された交流電力が印加される1次側コイルとを備え、前記ソケット部は、前記1次側コイルと電磁結合され、かつその電磁結合によって交流電力を誘起する2次側コイルと、誘起された交流電力を直流電力に変換する交流直流変換部とを備え、前記電圧電流検出部は、交流直流変換部から出力される直流電力が伝送される伝送経路上に設けられることを特徴とする。
これによれば、ソケット部とコンセント給電部とが電気的に絶縁された状態で接続および分離されるので、ソケット部の装置時と取りはずし時に起こりうる感電の危険性を低減でき、利用者の十分な安全を確保できる。
【発明の効果】
【0016】
この発明によれば、電圧電流検出部によって検出された出力電圧と出力電流とを用いて算出された直流電力が、所定の出力電力判定値Paよりも小さく、かつ検出された蓄電装置の出力電圧が所定の電圧下限値VL以上である場合に、コンセント給電部の直流電力の変換動作を停止しているので、直流コンセントで消費する消費電力を低減させることができる。
また、直流コンセント内部に、コンセント給電部と蓄電装置とを備え、蓄電装置を直流電力の伝送経路に並列接続されるように配置しているので、直流給電系統から供給される直流電力に変動がある場合や、ソケット部に接続される外部機器による負荷の変化に伴う出力電力の急激な変化がある場合でも、出力される直流電圧を安定化させることができる。
【図面の簡単な説明】
【0017】
【図1】この発明の直流コンセントの一実施例の概略構成を示すブロック図である。
【図2】この発明の直流コンセントを有する直流給電システムの全体構成の一実施例のブロック図である。
【図3】この発明の直流コンセントの実施例1の構成ブロック図である。
【図4】この発明の直流コンセントの実施例2の構成ブロック図である。
【図5】この発明の直流コンセントの実施例3の構成ブロック図である。
【図6】この発明の直流コンセントの実施例4の構成ブロック図である。
【図7】この発明の交流印加部の一実施例の回路構成図である。
【図8】この発明のコンセント給電部における制御部の一実施例の構成ブロック図である。
【図9(a)】この発明の直流コンセントの給電ユニット部の一実施例の概略構成図である。
【図9(b)】この発明の直流コンセントのソケット部の一実施例の概略構成図である。
【図9(c)】この発明の給電ユニット部とソケット部とを結合した装着図である。
【図10】この発明のコンセント給電部の給電制御の一実施例のフローチャートである。
【図11】この発明のコンセント給電部の給電時における蓄電装置の電池電圧の変化の一実施例の説明図である。
【図12】この発明のコンセント給電部の給電時における蓄電装置の電池電圧の変化の一実施例の説明図である。
【図13】この発明のコンセント給電部の給電時における蓄電装置の電池電圧の変化の一実施例の説明図である。
【図14】従来技術とこの発明のコンセント出力電圧の変化の比較説明図である。
【発明を実施するための形態】
【0018】
以下、図面を使用して本発明の実施の形態を説明する。なお、以下の実施例の記載によって、この発明が限定されるものではない。
以下の説明では、上記した電力変換部は、主として、図5の交流印加部および1次側コイルからなる部分に相当し、電力制御部と、第1比較部と、第2比較部と、記憶部とからなる部分は、図5の制御部に相当する。
また、図1、図3に示されるように、ソケット部が分離しない実施の形態においては、コンセント給電部は主として、交流印加部および1次側コイル、2次側コイル35と交流直流変換部37を含む構成が用いられる。
また、電圧電流検出部7は、図3などの電流センス部および電圧センス部を含む部分に相当する。
【0019】
<この発明の直流コンセントの概要>
図1に、この発明の直流コンセントの一実施例の概略構成のブロック図を示す。
直流コンセント1は、直流給電系統6から供給される直流電力(たとえば、100W)を、この直流コンセント1に接続された負荷機器112(外部機器)に対し出力する部分であり、接続部5のコネクタ端子には負荷機器112の使用電圧が印加されるように、直流電圧が変換される。
ここで、直流給電系統6とは、直流電力源を含む直流電力の伝送経路を意味し、たとえば、商用電力から供給される交流電力を直流電力に変換した後の給電経路(直流電力の伝送経路)を意味する。
【0020】
図1に示すように、直流コンセント1は、主として、コンセント給電部2,ソケット部3,蓄電装置4,接続部5および電圧電流検出部7とを備える。
接続部5は、外部の機器である直流電圧で動作する負荷機器112のプラグ111を電気的に接続する部分であり、プラグを差し込むための差込口(差込端子とも呼ぶ)に相当する。
負荷機器112のプラグ111を接続部5に差し込むと、その負荷機器112の使用電圧を有する直流電力が、接続部5からプラグ111へ出力される。
プラグ111に入力された直流電力は、プラグから所定の配線を介して負荷機器112の本体に伝送され、その直流電力によって負荷機器112が動作する。
【0021】
接続部5は、ソケット部3の内部に、1つの構成要素として備えられる。
また、接続部5は、1つのプラグを差し込むことができる1つの差込口から構成してもよいが、2つ以上の差込口を備えるものでもよい。
たとえば、並列接続された3つの差込口を備え、コンセント給電部2から供給される直流電力をそれぞれの差込口から出力する。コンセント給電部2は絶縁型DC/DCコンバータ、または非絶縁型DC/DCコンバータで構成される。
ソケット部3は、コンセント給電部2によって変換された直流電力を、接続部5を介して負荷機器へ出力する部分である。
【0022】
また、ソケット部3は、コンセント給電部の出力電圧がソケット部の接続部の出力電圧として出力する場合は、コンセント給電部が絶縁型、非絶縁型に係らず、後述する図3のようにコンセント給電部2に対して、電気的に接続された状態(接触状態)で接続されることが好ましい。絶縁型であれば、コンセント接続部以降の感電の危険性を低減することができる。非絶縁型であれば、直流給電系統に対地に対して絶縁し、感電に対して十分な安全性を持たせることが好ましい。
ただし、ソケット部3は、後述する図5のように、コンセント給電部2を有する給電ユニット部8に対して、2次側鉄心、2次側コイル、交流直流変換部からなる受電部をソケット部に備え、給電ユニット部8と電気的に絶縁された状態(絶縁状態)で分離、接続するようにしてもよい。
このように絶縁状態で接続する場合には、ソケット部3を取りはずし可能なユニットとして構成することができ、1次側の巻き線を共通にし、1次側の巻き線と2次側の巻き線の比で交流直流変換部の出力電圧を調整できる点、2次側コイル、2次側鉄心、交流直流変換部の回路部品構成をコンセントの出力電圧によって最適に設計、変更できる点、ソケット部の取り外しおよび取り付けの際に感電の危険性が低減できる点などの面で有利である。
【0023】
蓄電装置4は、直流電力を供給する直流電源であり、コンセント給電部2から出力される直流電力を補完する目的で設けられるものである。
蓄電装置4としては、主として、二次電池が用いられ、市販されているあらゆる二次電池を用いることができる。たとえば、リチウムイオン二次電池,ニッケル水素二次電池,鉛蓄電池などを用いることができる。
蓄電装置4は、コンセント給電部2から出力される直流電力の伝送経路に対して、並列に接続される。たとえば、図3に示すように、コンセント給電部2とソケット部3とを接続する伝送経路に並列接続される。
コンセント給電部2から供給される直流電力が予め設定された正常値を示している場合は、蓄電装置4から直流電力は出力されず、蓄電装置4は、コンセント給電部2から出力された直流電力を分岐した電力によって充電状態にある。
【0024】
一方、たとえば、コンセント給電部2から供給される直流電力が何らかの原因で低下した場合、所定の直流電力をソケット部3へ出力するために、蓄電装置4から直流電力を供給する。すなわち、蓄電装置4は、接続部5から常に一定の直流電圧を持つ直流電力を供給できるようにするために、一定電圧制御を行うのに用いられる。上記原因としては、たとえば、直流給電系統6の電圧変動が大きい場合(例えば瞬時停電),負荷の急激な変動に対してコンセント給電部の負荷変動応答性が追従できなかった場合などが考えられる。
【0025】
また、蓄電装置4がその定格容量の上限値まで十分に充電がされている場合、コンセント給電部2からの電力供給を停止させ、その代わりに、蓄電装置4のみから所定の直流電力をソケット部3へ出力するようにしてもよい。
この場合、蓄電装置4のみから直流電力が供給され、直流電力系統6からコンセント給電部2を介して与えられる直流電力は使用されないので、消費電力を削減することができる。すなわち、蓄電装置4は、商用電力などからの直流電力を補完し、低消費電力化を図るために用いられる。
【0026】
コンセント給電部2とは、直流給電系統6から供給された直流電力(たとえば、DC380V)を、接続部5に接続される負荷機器を動作させることのできる所定の直流電力(たとえば、24V)に変換する部分である。変換された直流電力は、直流コンセント内部の配線を介してソケット部3に与えられる。
【0027】
電圧電流検出部7は、コンセント給電部2からソケット部3の接続部5までの伝送経路における直流電圧と直流電流を常に検出し、リアルタイムでこれらの検出情報(電圧値,電流値)を、コンセント給電部2に与える部分である。
検出される情報としては、たとえば、コンセント給電部2からソケット部3までの伝送経路において、ソケット部から出力される直流電力のうち、蓄電装置への分岐を過ぎ、コンセント接続部の出力に流れる出力電流の値(図3の出力電流検出信号に対応)と、この伝送経路および蓄電装置4に印加されている直流の出力電圧の値(図3の電池電圧検出信号に対応)、蓄電装置4から入力または出力される直流電流の値(図3の充放電電流検出信号に対応)がある。
【0028】
これらの検出情報がコンセント給電部2に与えられると、コンセント給電部2では、主として、この検出情報と、予め設定されている設定情報とを用いて電圧異常(低下)や電流変化を検出して、コンセント給電部2から出力すべき直流電力を制御するための制御信号を生成し、この制御信号(たとえば、図5の制御信号25)に基づいて、所定の直流電力が安定して出力されるようにする。
以下に、この直流コンセント1の内部の構成要素の配置や、電圧制御および電流制御等について、いくつかの実施例を説明する。
【0029】
<直流給電システムの全体構成>
図2に、この発明の直流コンセントを有する直流給電システムの全体構成の一実施例のブロック図を示す。
ここでは、図1の直流給電系統6に直流電力を供給するシステムとして、直流発電装置120,直流電力変換装置121,双方向電力変換装置122,商用電力系統(交流電力)123を備えたものを示している。
ただし、停電時などの非常用の電力供給源として、蓄電池(バッテリー)を設けてもよい。この場合、蓄電池は、専用の双方向電力変換装置を介して、直流給電系統6に接続される。
【0030】
図2において、直流発電装置120から得られる直流の電力は、直流電力変換装置121により、直流給電系統6の電圧(たとえば、380V)に変換され、直流給電系統6へ出力される。
双方向電力変換装置122は、直流給電系統6からの電力需要を検出し、直流発電装置120からの発電電力量が直流給電系統の負荷電力量を上回っている場合は、商用電力系統123に余剰分を逆潮流する。逆に、発電電力量が商用電力を下回っている場合は、商用電力系統123から電力を受電し、直流給電系統6に給電する。
【0031】
この発明の直流コンセント1は、直流給電系統6に複数接続される。各直流コンセント1には、直流電力で動作する負荷機器112が接続され、プラグ111を介してその動作に必要な直流電力が給電される。供給される直流電力の電圧は、単一の電圧値だけではなく、複数の異なる電圧値を提供するようにしてもよい。
また、異なる直流電圧(たとえば、24V,100Vなど)の直流電力を提供する場合、直流給電系統6のそれぞれの給電電圧ごとに、同じ電圧を供給する複数の直流コンセントを接続するようにする。
また、過電流保護、過負荷保護のために、それぞれの直流給電系統ごとに配線ブレーカーが備えられていることが好ましい。さらに、漏電防止のために、直流給電系統の大元である主幹に漏電検出器と漏電ブレーカーを備えていることが好ましい。
【0032】
配線ブレーカーおよび漏電ブレーカーは直流に対応したものを用いる。また、直流給電系統6に電流が流れた際に、配線抵抗による抵抗損失(抵抗×電流×電流)が生じるので、直流給電系統6の電圧は、できるだけ高いことが好ましい。これは、電圧を高くすると、同じ電力を給電する際に流れる電流を小さくすることができるので、抵抗損失を低減できるからである。この直流給電系統6の電圧としては、たとえば、100V以上が好ましく、法令に定められた電気設備安全基準の観点からは、対地電圧±150V以内であるため、線間電圧は300V程度が好ましい。また、商用電力系統への逆潮流が可能な電圧という面では350V以上が好ましく、半導体、回路部品、遮断機などの部品のコスト面で、400V以下が好ましい。
直流給電系統から、このような高電圧の直流電力が直流コンセント1に入力されると、直流コンセント1に接続された負荷機器に適した直流電圧となるように、直流コンセント内部で直流電力を変換する。
【0033】
直流発電装置120としては、太陽電池、燃料電池等の再生可能エネルギーを利用した発電装置が用いられる。これらは単独で用いられてもよいし、複数組み合わせて用いてもよい。太陽電池は太陽光により発電し、直流の電力を発生するものである。
燃料電池は、燃料として還元剤(水素、メタノール等)と酸化剤(酸素、過酸化水素)を用いて発電し、直流の電力を発生するものである。また、風力発電や水力発電などのように交流で発電した後、直流に変換して給電する発電装置を用いてもよい。
【0034】
直流電力変換装置121は、太陽電池や燃料電池から得られる直流の出力電圧を所定の電圧に安定化する目的で用いられる。
また、直流電力変換装置121は直流発電装置120が太陽電池の場合、太陽電池の発電電力を高めるために、日射に対して得られる電力量が最大になるような電流−電圧特性の動作点となる最大電力点追尾動作となるように制御することが好ましい。
また、燃料電池は、還元剤、酸化剤の供給状態、温度、湿度などの環境に応じて、発電効率と寿命を向上させるために、最適な電流−電圧特性の動作点での運転となるように制御することが好ましい。
【0035】
双方向電力変換装置122は、太陽電池や燃料電池から得られる直流電力を商用電力系統123へ逆潮流する方向と、電力会社からの商用の交流電力系統123の電力を家屋または商業施設に給電する潮流方向との双方向に、出力電圧を調整して電力を給電する装置である。
【0036】
<直流コンセントの実施例1>
図3に、この発明の直流コンセント1の実施例1の構成ブロック図を示す。
図3において、直流コンセント1は、図1と同様に、コンセント給電部2と、ソケット部3と、接続部5と、蓄電装置4と、電圧電流検出部7とから構成される。
コンセント給電部2は、直流給電系統6から直流電力が供給されるが、その直流電力は、プラス端子(+)と、マイナス端子(−)との間に供給される。
コンセント給電部2の出力用のプラス端子(+)は、接続部5のプラス端子(+)5aに接続され、コンセント給電部2の出力用のマイナス端子(−)は、接続部5のマイナス端子(−)5bに接続される。
接続部5が複数個ある場合は、それぞれ+端子どうしが並列的に接続され、−端子どうしが並列的に接続される。
【0037】
接続部5の+端子5aと−端子5bとの間には、出力される直流電圧が印加され、この端子(5a,5b)に負荷機器112のプラグ111が接続されることにより、コンセント出力電力Poutが、プラグ111へ供給される。
この実施例1では、コンセント給電部2と、接続部5とは直接配線で接続されている。したがって、特に、ソケット部3としての物理的な構成要素はないが、ここでは、接続部5を含む部分を形式的にソケット部3と呼ぶ。
また、図3において、2つの電流センス部(11−1,11−2)と、2つの検出電流調整部(12−1,12−2)と、電圧センス部15と、検出電圧調整部16とが、図1の電圧電流検出部7に相当する。
【0038】
一方の電流センス部11−1は、蓄電装置4の+端子と、コンセント給電部2の+端子とを接続する配線経路に設けられる。
この電流センス部11−1では、蓄電装置4から出力される放電電流あるいは蓄電装置4へ入力される充電電流の電流値I1(充放電電流値と呼ぶ)が測定される。この充放電電流値I1は、検出電流調整部12−1に与えられる。
もう一方の電流センス部11−2は、コンセント給電部2の+端子と接続部5の+端子5aとの間で、蓄電装置との分岐から接続部側の配線経路に設けられる。
この電流センス部11−2では、接続部5へ流れる出力電流の電流値I2(出力電流値と呼ぶ)が測定される。この出力電流値I2は、検出電流調整部12−2に与えられる。
接続部5が複数個並列的に設けられている場合は、複数個の接続部5への配線が分岐される点よりもコンセント給電部2に近い側に、電流センス部11−2を設ける。
【0039】
電圧センス部15は、蓄電装置4の2つの端子(+端子,−端子)に接続された配線の間に設けられる。
この電圧センス部15では、蓄電装置4の2つの端子間にかかる直流電圧V1が測定される。この直流電圧V1は、蓄電装置4の出力電圧に相当する。測定された直流電圧V1は、検出電圧調整部16に与えられる。
【0040】
電流センス部(11−1,11−2)は、たとえば、抵抗素子や、ホール素子を用いた電流センサーを用いればよい。ホール素子を用いた電流センサーでは、測定すべき電流値が、電圧信号として出力される。
電圧センス部15は、蓄電装置4の+端子と−端子へのそれぞれの配線に対して、数キロΩから数十キロΩ程度の高抵抗素子を並列接続したものを用いることができ、いわゆる抵抗分割により、その抵抗素子の両端の直流電圧(V1)を測定する。
【0041】
検出電流調整部(12−1,12−2)は、入力された電流値(I1,I2)のレベルを調整して、コンセント給電部2に入力可能な大きさの検出信号に変換する部分である。
たとえば、検出電流調整部(12−1,12−2)は、ノイズフィルタとオペアンプから構成される。
ここでは、ノイズフィルタによりノイズを低減し、さらに、オペアンプにより、後述するコンセント給電部2の制御部22に対して所定の入力可能電圧範囲内となるように、レベルを調整して検出信号を出力する。
一方の検出電流調整部12−1からは、電流センス部11−1により測定された電流値I1に対応した充放電電流検出信号13−1が出力されるものとする。
他方の検出電流調整部12−2からは、電流センス部11−2により測定された電流値I2に対応した出力電流検出信号13−2が出力されるものとする。
【0042】
また、検出電圧調整部16は、入力された電圧値V1のレベルを調整して、コンセント給電部2に入力可能な大きさの検出信号に変換する部分である。
たとえば、検出電圧調整部16は、ノイズフィルタ,絶縁アンプ,オペアンプから構成される。
ここでは、ノイズフィルタによりノイズを低減し、さらに、ノイズ対策と安全のため、絶縁アンプで絶縁した後、オペアンプにより、制御部22に対して、所定の入力可能電圧範囲内となるように、レベルを調整して検出信号を出力する。検出電圧調整部16からは、電圧V1に対応した電池電圧検出信号17が,コンセント給電部16に出力されるものとする。
ただし、電流センス部(11−1,11−2)と電圧センス部15において、出力される測定値(I1,I2,V1)がすでにコンセント給電部2へ出力すべき入力可能電圧の範囲内の適切なレベルとなっている場合は、検出電流調整部(12−1,12−2)と、検出電圧調整部16は、設けなくてもよい。すなわち、上記測定値を、そのままコンセント給電部2へ与えればよい。
【0043】
図3において、蓄電装置4は、コンセント給電部2と接続部5との間の配線に対して並列的に接続される。ここで、蓄電装置4の+端子は、コンセント給電部2の+端子と接続され、蓄電装置4の−端子は、コンセント給電部2の−端子と接続する。
このように接続することにより、コンセント給電部2からの出力電圧は、蓄電装置4の出力電圧と同一電圧値となる。
なお、蓄電装置4は、エネルギー密度や使い勝手の観点からは、鉛蓄電池,リチウムイオン二次電池,あるいはニッケル水素電池を用いることが好ましい。
【0044】
蓄電装置4は、コンセント給電部2から出力された直流電力によって充電される。充電方法は特に限定するものではなく、従来から行われているような方法を用いればよい。
例えば、リチウムイオン二次電池4の場合、コンセント給電部2はリチウムイオン二次電池4に流れる充電電流をモニターし、リチウムイオン二次電池4の定格電流容量に対し、充電電流が1C〜3C以内の電流値となるように制御し(充電電流制御)かつ、最大定格電圧付近では、最大定格電圧を超えないように、定電圧となるように出力を制御(一定電圧制御)する。
コンセント給電部2は、上記のような3つの検出信号(13−1,13−2,17)を用いて、現在出力している直流電力の状態をフィードバックして監視し、所定の直流電力が接続部5に出力されるように制御する。この制御内容の実施例については後述する。
【0045】
また、コンセント給電部2は、トランジスタのスイッチング損失や、トランスの固定損失、制御回路の消費電力等があるため、出力電力を所定以上大きく出力した方が、効率を良くすることができる。たとえば、直流給電系統電圧が380Vで、出力電圧が5Vの携帯電話の場合、上記コンセント給電部2の損失、制御回路の消費電力が5Wで、携帯電話の充電電力が10Wとすると、効率が約67%で余りよくないが、蓄電装置へ充電する電力を含めて30W出力すると、効率が約86%となる。
さらに、コンセント給電部2の損失を削減させるために、コンセント出力電力および必要充電電力が所定電力以下となった場合、コンセント給電部2の動作を停止し、蓄電装置4から直流電力を供給するようにしてもよい。また、蓄電装置は出力インピーダンスが低いため、コンセント給電部2の負荷変動の応答性が遅くても、蓄電装置をコンセント給電部と並列接続することにより、複数の負荷による負荷変動に対し、出力電圧を安定化させて電力を給電することが可能になる。
【0046】
以上が、この発明の実施例1の直流コンセントの構成であるが、この発明では、主として次のような給電制御を行う。給電制御の詳細は後述する。
(a)電圧電流検出部7に相当する電圧センス部15によって検出された出力電圧(V1)と、電池センス部11−2によって検出された出力電流(I2)とを用いて算出された直流電力であってソケット部3から出力される直流電力が、所定の出力電力判定値(Pa)よりも小さく、かつ検出された蓄電装置の出力電圧(V1)が所定の電池電圧下限値(VL)以上の場合に、コンセント給電部2が、直流電力の変換動作を停止する。
このとき、伝送経路に並列接続された蓄電装置4から出力される直流電力が、ソケット部3の接続部5を介して外部機器112へ出力される。
これによれば、軽負荷である外部機器が接続されている場合に、コンセント給電部2による直流電力の変換動作が停止されるので、直流コンセントの消費電力を低減できる。これは、後述する図10のステップS11に対応する制御である。
【0047】
(b)蓄電装置4から出力される直流電力を、外部機器112へ出力している給電状態の場合において、蓄電装置4からの出力電圧が、所定の電池電圧下限値VLよりも低くなった場合、コンセント給電部2が、変換した直流電力でソケット部3を介して外部機器112へ出力し、かつ蓄電装置4の充電を行う。
これによれば、蓄電装置4の給電能力が低下してきた場合において、蓄電装置4による給電からコンセント給電部2による給電に切り替えられ、所定の直流電力の給電を継続することができる。これは、後述する図10のステップS13に対応する制御である。
【0048】
(c)電圧電流検出部7に相当する電圧センス部15によって検出された出力電圧(V1)と、電流センス部11−2によって検出された出力電流(I2)とを用いて算出された直流電力であってソケット部3から出力される直流電力が、所定の出力電力判定値(Pa)以上の場合、コンセント給電部2が、変換した直流電力をソケット部を介して出力し、かつ蓄電装置4の充電を行う。
これによれば、ソケット部3の接続部5に軽負荷でない外部機器が接続された場合においては、急激な負荷変動に対応できない場合や、直流系統電圧が低下するなどの場合を除いた定常状態で蓄電装置による給電は行わず、直流給電系統6から供給される直流電力を用いたコンセント給電部2による給電が行われる。
これは、後述する図10のステップS4に対応する制御である。
【0049】
ここで、電池電圧上限値VHと、電池電圧下限値VLと、出力電力判定値Paは、RAMやROMなどの記憶素子の中に記憶しておくことが好ましい。
この上限値VHと下限値VLとは、蓄電池を動作させる電圧の上限と下限であり、この範囲内の電圧であれば、安定した直流電力の供給が可能となる。
【0050】
<直流コンセントの実施例2>
図4に、この発明の直流コンセントの実施例2の構成ブロック図を示す。
図4では、図3の実施例1と異なり、直流コンセント1は、給電ユニット部8とソケット部3とから構成され、給電ユニット部8とソケット部3とはコネクタ部50によって、着脱可能状態で接続されている。
コネクタ部50は、図4では6つのコネクタからなり、2つの給電コネクタ51,52(給電端子とも呼ぶ)と、3つのフィードバックコネクタ53,54,55(コネクタ端子とも呼ぶ)と、ソケット部の出力電圧設定用のコネクタ(31,32)とから構成される。
給電コネクタ(51,52)は、コンセント給電部2とソケット部3とを接続する伝送経路をつなぐものであり、プラス端子(+端子)と、マイナス端子(−端子)とから構成される。
また、フィードバックコネクタ(53,54,55)は、電圧電流検出部によって検出された出力電圧および出力電流に対応する信号を伝送する部分である。
【0051】
給電ユニット部8は、直流給電系統6に接続される部分で、一般的に、壁や床、天井などに固定設置される部分である。
給電ユニット部8は、コンセント給電部2と、電圧電流検出部7の一部分の構成とを含む。図4では、2つの検出電流調整部(12−1,12−2)と、検出電圧調整部16とが、給電ユニット8に含まれる。そして、これらの各調整部(12−1,12−2,16)からは、図3に示したのと同様に、それぞれの検出信号(13−1,13−2,17)が出力され、コンセント給電部2に入力される。
【0052】
また、給電ユニット部8は、ソケット部3を接続するための複数のコネクタ端子(51〜55)を備え、コネクタ端子(53,54,55)を介して、測定された電流値および電圧値がソケット部から入力され、2つの給電端子(51,52)を介して、給電すべき直流電力がソケット部3へ伝送される。
コネクタ部50は、給電ユニット部8とソケット部3とを接続する部分であるが、給電ユニット部8のコネクタ端子(51〜55)と、ソケット部3のコネクタ端子(51〜55)のそれぞれ対応する端子が互いに電気的に接触する構造とする。
たとえば、一方のコネクタ端子が凸形状のピンであり、対応する他方のコネクタ端子がそのピンを収容する凹形状のホールとしてもよい。
また、コネクタ部50は、これらのコネクタ端子(51〜55)を1つにまとめたモジュラージャックのような構造の部材としてもよい。
【0053】
ソケット部3は、図4に示すように複数のコネクタ端子(51〜55)を備え、2つの給電端子(51,52)を介してコンセント給電部2から直流電力を受電し、コネクタ端子(53,54,55)を介して、測定された電流値および電圧値をコンセント給電部2へ送信する。
また、ソケット部3は、コネクタ部50を介して容易に給電ユニット部8に装着し、給電ユニット部8から取りはずしができるようにする。
【0054】
図4に示すものでは、ソケット部3は、接続部5と、蓄電装置4と、電圧電流検出部7の一部分の構成とを含む。ここでは、2つの電流センス部(11−1,11−2)と、電圧センス部15とが含まれる。
そして、図3に示したのと同様に、電流センス部(11−1,11−2)からは、測定された電流値(I1,I2)に相当する信号が対応するコネクタ端子(53,54)に出力され、電圧センス部15からは、測定された電圧値V1が対応するコネクタ端子55に出力される。
このように、ソケット部3を給電ユニット部8に対して容易に着脱可能な構成とすることにより、ソケット部3ごとの単位で、負荷機器を接続する部分を交換することができるようになる。また、蓄電池毎と交換するので、各部屋のコンセントの場所の電圧を自由に取替え設定することができる。
【0055】
また、図4に示すように、コネクタ部50に、接続部5に供給する直流電圧を設定するための設定電圧通知部32と、設定電圧検出部31とを設ける。すなわち、給電ユニット部8に、設定電圧検出部31を設け、ソケット部3に、設定電圧通知部32を設ける。
ここで、設定電圧通知部32は、ソケット部の接続部5から出力可能な直流電圧の設定値を、給電ユニット部8へ通知するためのコネクタである。蓄電装置の出力電圧可能範囲によって、分類分けされる。
また、設定電圧検出部31は、設定電圧通知部32から通知される設定値を検出するコネクタである。
これらのコネクタ(31,32)が接続されることにより、ソケット部3が、どの直流電圧を供給できるものであるかを、給電ユニット部8へ知らせる。
これらのコネクタ(31,32)の形状は、種々のものが考えられるが、ソケット部3が供給する直流電圧を、電気的または機械的な手段により給電ユニット部8へ通知できるものであればよい。
【0056】
たとえば、給電ユニット部8の設定電圧検出部31は、設定電圧通知部32を収容できる凹部空間を備え、この凹部空間に複数個の押しボタンスイッチを配置する。
また、この複数個の押しボタンスイッチのうち、いずれかのスイッチが押下げられたときに、電気的接点が閉じ、そのスイッチに予め対応づけられた信号(設定電圧信号と呼ぶ)18が出力されるようにする。
【0057】
一方、ソケット部3の設定電圧通知部32は、上記凹部空間に収容可能な形状を有し、その先端部分の特定の位置に突起(凸部)を備える。
この凸部は、1つでも複数個でもよいが、その凸部を設ける位置と、ソケット部3が供給する直流電圧の値とを予め対応づけておく。
たとえば、先端部分の左端部分に凸部を設けた場合は、5Vの直流電圧を供給するソケット部であり、中央部に凸部を設けた場合は10Vの直流電圧を供給するソケット部3であるというように、予め設定しておく。
【0058】
また、設定電圧検出部31の各押しボタンスイッチは、設定電圧通知部32の凸部と対応する位置に配置しておく。
ソケット部3が給電ユニット部8に装着され、設定電圧通知部32が設定電圧検出部31の凹部空間に収容されたとき、凸部が挿入された位置に配置されている押しボタンスイッチのみが押下げられる。
【0059】
そして、押下げられたスイッチによって対応する電気的接点が閉じられると、このスイッチに予め対応づけられた設定電圧信号18が出力される。この設定電圧信号18は、設定電圧検出部31が検出した直流電圧の設定値に相当する信号である。給電ユニット部8のコンセント給電部2が、この設定電圧信号18を解析することにより、ソケット部3で給電可能な直流電圧の値がわかる。
すなわち、コンセント給電部2は、設定電圧検出部31が検出した直流電圧の設定値に基づいて、ソケット部3から出力すべき直流電力の出力電圧値を決定し、直流給電系統6から供給された直流電力を、決定された出力電圧値を有する直流電力に変換するようにする。これにより、ソケット部に予め設定された固有の出力すべき直流電圧を有する直流電力が、接続部5から出力できる。
【0060】
また、コンセント給電部2が、何らかの設定電圧信号18が入力されたことを検出した場合、給電ユニット部8に、ソケット部3が装着されたことを認識することができる。
したがって、設定電圧信号18が入力されていない場合は、コンセント給電部2の中で、給電端子(51,52)に出力する電力に関与する部分の回路への通電を停止させることにより、直流コンセントの給電ユニット部8で消費される消費電力を低減させることができる。たとえば、3つの検出信号の入力を監視する部分の回路は常時通電をするが、直流給電系統からの電力を受電する部分や、給電端子に直接接続された配線経路の部分の回路には通電しないようにしてもよい。
【0061】
また、このコネクタ部分(31,32)の構成は、上記した押しボタンスイッチと凸部との機械的なものの他に、複数個の電気的な接点による接触によっても実現することができる。
たとえば、複数個の押しボタンスイッチの代わりに、そのスイッチと同じ位置に電気的接点Aを設け、この電気的接点と対応する設定電圧通知部32の先端部分の位置のいずれかに、電気的接点Bを設けてもよい。
この場合、ソケット部3を装着したときに、電気的接点Bと、設定電圧検出部31の複数個の電気的接点Aのうち対応する電気的接点Aとが接触することにより、予め対応づけられた設定電圧信号18が出力される。
【0062】
供給電圧ごとに接続部5の端子(出力端子5a,5b)形状を異ならせたソケット部3を別々に予め複数個準備しておき、ソケット部単位で交換するようにすれば、利用者が誤って、供給電圧と異なる使用電圧で動作する負荷機器のプラグ11を接続部5に差し込むことを防止できる。
たとえば、接続部5から出力される供給電圧が5Vのソケット部3の出力端子(5a,5b)の形状と、10Vのソケット部3の出力端子(5a,5b)の形状とを異なるものとした場合において、5Vを供給するソケット部3が給電ユニット部8に装着されているときは、5Vで動作する負荷機器のみがこのソケット部の接続部5に接続でき、10Vで動作する負荷機器はこの接続部5に接続できない。すなわち、ソケット部単位で、プラグが差し込まれる接続部が交換可能となるようにすれば、誤接続を防止でき、利用者も安心して負荷機器を接続できる。
【0063】
また、10Vで動作する負荷機器を使用したい場合、5Vを供給するソケット部3を、10Vを供給するソケット部3に交換する必要はあるが、各供給電圧ごとに異なる専用のソケット部3を使用することで、誤接続を確実に防止し、かつ安全に負荷機器が使用できるようになる。
【0064】
また、蓄電装置4を、このような交換可能なソケット部3に備えているので、蓄電装置4に寿命がきた場合、そのソケット部3を取りはずして蓄電装置を新しい蓄電装置に交換するか、あるいは新しい蓄電装置を有する別のソケット部3を、給電ユニット部8に装着すればよい。すなわち、蓄電装置のメンテナンス作業が容易となり、蓄電装置に関する特別な専門知識や交換技術がなくても交換が可能となり、蓄電装置の交換にかかる時間とコストを削減することができる。
【0065】
また、特定の直流電圧を供給することができるソケット部3を、その供給電圧ごとに複数個予め準備しておき、固定設置されている給電ユニット部8に、所望の供給電圧を出力するソケット部3を装着することにより、その直流コンセントから出力される直流電圧を、複数種類の供給電圧に容易に変更することが可能となる。
さらに、コンセント給電部2を含む給電ユニット部8は、直流コンセントから出力される直流電圧の値にかかわらず共通化されているので、個別に設計仕様の異なる直流コンセントを利用することはなく、直流コンセントの給電ユニット部8についてコストを低減できる。
なお、直流コンセントから出力される電力の直流電圧が予め固定的に定められている場合は、図4に示した設定電圧検出部31および設定電圧通知部32からなるコネクタ部分の構成はなくてもよい。
【0066】
<直流コンセントの実施例3>
図5に、この発明の直流コンセントの実施例3の構成ブロック図を示す。
図3および図4では、コンセント給電部2と、ソケット部3の接続部5とが、電気的に直接接続される構成を示した。
これに対し、図5では、給電ユニット部8と、ソケット部3とはコネクタ部50で接続されるが、給電ユニット部8とソケット部3を繋ぐコネクタ部50にて電気的に絶縁されて給電ユニット部8からソケット部3へ給電されている点が、上記した実施例1および2と異なる。
【0067】
この場合は、直流給電系統6から与えられる直流電力を、コンセント給電部2で交流に変換し、非接触でこの交流をソケット部3へ伝達し、ソケット部3において、その伝達された交流を直流に変換して、接続部5から直流電力を出力する。
このように、直流を一旦交流に変換し、さらにその交流を直流に変換する構成は、いわゆるトランスを用いた絶縁型のDC−DCコンバータと同等の回路である。
したがって、図5の構成では、コネクタ部50が非接触による給電であるので、図4の電気的に直接接続される構成と比べて、感電に対する安全性の点で有利である。
【0068】
図5において、コンセント給電部2は、交流印加部21と、制御部22と、1次側コイル23と、1次側鉄心24とを備えている。
交流印加部21は、直流給電系統から供給された直流電力を交流電力に変換する部分である。交流印加部21によって生成された交流電力は、1次側コイル23に印加される。
一方、ソケット部3は、2次側コイル35と、2次側鉄心36と、交流直流変換部37とを備えている。
2次側コイル35は、1次側コイルと電磁結合され、かつその電磁結合によって交流電力を誘起する部分である。
また、交流直流交換部37は、2次側コイル35に誘起された交流電力を直流電力に変換する部分である。
【0069】
1次側鉄心24と2次側鉄心36とは、ソケット部3が給電ユニット部8と接続されたときに、電磁結合が生じる程度に接近するように、配置される。
その他の構成、すなわち3つの調整部(12−1,12−2,16)と、3つのセンス部(11−1,11−2,15)および蓄電装置4とを、それぞれ給電ユニット部8とソケット部3に設ける点は、図4の実施例2と同様である。
また、電圧電流検出部7の一部に相当する3つのセンス部(11−1,11−2,15)は、交流直流変換部37から出力される直流電力が伝送される伝送経路上に設けられる。
ただし、蓄電装置4は、ソケット部3の外部に設けてもよい(図6参照)。
図6においては、充放電回路61が蓄電装置4と電圧センス部15の間に設けられ、交流直流変換部の出力電力を調整して、蓄電装置4へ充放電可能な構成になっている。これによれば、軽負荷時は、交流印加回路部21や制御部22の余分な動作を停止し、充放電回路が動作して、蓄電装置から放電できるので、直流コンセント全体としての消費電力を軽減することができる。また、充放電回路が備えられていることにより、蓄電装置の電圧がコンセント出力電圧範囲以外になっても出力することができ、蓄電装置の容量を満タン付近から、空付近まで幅広い電圧で使用することができるようになる。
【0070】
制御部22は、3つの調整部から出力された検出信号(13−1,13−2,17)を入力として、これらの信号からコンセント給電部2の給電出力を制御するための制御信号25を生成する部分である。この制御信号25は、交流印加部21に与えられる。
【0071】
図5の場合、直流給電系統6から与えられた直流電力は、交流印加部21に入力される。交流印加部21では、主として交流を発生させるための高周波パルス信号を生成し、そのパルス信号を1次側コイル23に出力する。
【0072】
図7に、この発明の交流印加部21の一実施例の回路構成図を示す。
図7において、交流印加部21は、主としてトランジスタ(QA,QB)と、ダイオード(DA,DB)と、コンデンサ(CA,CB)と、トランジスタ(QA,QB)をONまたはOFFさせる駆動信号を発生するトランジスタ駆動回路41とから構成される。
また、制御部22から出力された制御信号25は、図7のS端子を介して、トランジスタ駆動回路41に入力される。トランジスタ駆動回路41は、この制御信号25の内容に基づいて、高周波パルス信号を生成し、2つのトランジスタ(QA,QB)のONまたはOFFの制御をする。
たとえば、トランジスタ駆動回路41は、制御信号25からコンセント接続部の電圧が設定電圧になり、蓄電装置への充電電流を一定に制御するようにスイッチングパルス信号が送られ、受信後、トランジスタへハーフブリッジ型DC/DCコンバータの動作を行うようゲート電圧を印加する。
【0073】
以下、生成された直流電力は、図3や図4と同様に、接続部5から、外部の負荷機器に出力される。
図5の場合、コネクタ部50に加えて、DC−DCコンバータに相当する回路の1次側と2次側とが分離可能な構成となっており、いわゆるトランスの2次側の構成がソケット部3に備えられたものである。
すなわち、図4と同様に、ソケット部3は給電ユニット部8に対して着脱可能であるが、図5の場合は、いわゆるトランスの1次側の構成が共通化された構成となっている。
【0074】
コンセント給電部2の1次側コイル23の固定された巻き線数に対し、異なる使用電圧で動作する種々の負荷機器に対応するようにソケット部3からの出力電圧を変更したい場合、1次側コイル23とソケット部3の2次側コイル35の巻き線数の比を変更することによって、ソケット部側で、供給電力の電圧を負荷機器にとって最適な入力電圧に調整して、給電することができる。
ソケット部3には、複数の接続部5を並列して備えることが好ましく、同一の最適入力電圧の機器を複数接続し、給電するようにしてもよい。
【0075】
また、図7のトランジスタのデューティ比の調整は、電池電圧センス部からの信号V1と電流センス部の信号I1、電流センス部の信号I2をそれぞれの検出電流調整部で調整し、たとえば、電池への充電電流が基準値と一定となるようにフィードバック制御を行うことによって、デューティ比を決定すればよい。2次側と1次側は電気的に絶縁しなければならないため、電流信号I1,I2と電圧信号V1は、たとえば絶縁アンプを用いて、絶縁後DSPコントローラのADコンバータに入力し、基準値と一致するようにデューティ比を演算するデジタル制御を行ってもよい。
【0076】
図5の実施例3の場合も、給電ユニット部8の構成を共通化することにより、直流コンセントのコストを削減することができる。またソケット部3として、2次側コイル35の巻き数を変更し種々の異なる直流電圧を出力することができるものを予め複数種類準備しておくことで、利用者が所望の出力電圧のソケット部3を給電ユニット部8に装着するだけで、1つの直流コンセントで、容易に種々の負荷機器を利用することが可能となる。
【0077】
<直流コンセントの実施例4>
図6に、この発明の直流コンセントの実施例4の構成ブロック図を示す。
図5では、蓄電装置4をソケット部3に含ませた構成を示したが、図6では、蓄電装置4と充放電回路61をソケット部3の外部に設ける点が異なる。
蓄電装置4をソケット部3に含まない構成とした場合、蓄電装置だけを交換可能に出来るという点で有利である。
また、供給電圧ごとに複数種類のソケット部3を製造する場合、蓄電装置4をソケット部3に含めないようにすることで、各ソケット部3のコストを低減させることができる。
さらに、蓄電装置4をソケット部と分離させることにより、利用者がすでに持っている蓄電装置や、市販されている蓄電装置を、利用者が自由に選択して利用することができるようになる。
この場合、ソケット部3に、蓄電装置4を接続するための給電コネクタ(+端子,−端子)を新たに設け、充放電回路61のソケット部側への出力に対するプラス端子、マイナス端子をつなぎ、蓄電装置側への出力に対するプラス端子、マイナス端子と外部の蓄電装置4の+端子および−端子とをそれぞれ接続すればよい。
【0078】
また、図6では、ソケット部3と蓄電装置4との間に充放電回路61を設けた構成を示している。充放電回路があるため、コンセントの出力電圧と蓄電装置の電池電圧が一致しなくても良い。
充放電回路61は、蓄電装置4から供給される直流電力を、より安定化させて接続部5へ与えるために、設けられる。
充放電回路は双方向のDC/DCコンバータである。片方のDC/DCコンバータを2つそれぞれ別の向きに並列に組み合わせて、双方向のDC/DCコンバータとしても良い。充放電回路61としては、たとえば、一般的に用いられている非絶縁型の双方向DC−DCコンバータが用いられる。
ただし、蓄電装置4から常に安定した直流電力が供給でき、接続部5から出力される直流電力に影響を与えることなく、コンセント給電部2からの出力電力によって、蓄電装置4の充電が可能な場合は、充放電回路61は設けなくてもよい。
【0079】
図6では、蓄電装置4をソケット部3の外部に設けること以外の構成と、電圧電流検出と出力電力の制御の構成と処理内容は、図5と同じものを用いればよい。
なお、図6の構成において、コンセント給電部2と接続部5との間の接続を、図5のような絶縁タイプの接続形態とするのではなく、図4に示したような直接的な接続形態としてもよい。
【0080】
<直流コンセントの装着の説明>
図9に、この発明の直流コンセントの装着状態の説明図を示す。
この図9は、図4の実施例2の構成に対応するものである。
図9(a)は、直流コンセントの給電ユニット部8の一実施例の外観の概略を示した構成図である。
図9(b)は、直流コンセントのソケット部3の一実施例の外観の概略を示した構成図である。
図9(b)のソケット部3には、図示していないが、図4の蓄電装置4は、図9(b)のソケット部の内部に収容されている。
【0081】
図9(a)において、給電ユニット部8は、たとえば壁60に固定設置されるもので、直方体形状の筐体である。この筐体の形状,サイズは、特に図示したものに限定されるものではない。
中央部に凹部空間があり、ここに図9(b)に示したソケット部3が装着される。この凹部空間を、ソケット位置固定部56と呼ぶ。
凹部空間56の表面に、給電ユニット部側の給電端子(51,52)に相当する+端子コネクタ51(メス)と、−端子コネクタ52(メス)を配置している。
また、凹部空間56の周辺部の下辺部分に、給電ユニット部側の他のコネクタ端子(53,54,55,31)を配置している。
図9(a)では、出力電流検出コネクタ(メス)53と、設定電圧検出部コネクタ31と、フィードバックコネクタ(メス)54,55を示している。
【0082】
図9(b)において、ソケット部3は、図9(a)の凹部空間56に嵌合するように、中央部に凸部を有する。この凸部を凹部空間に挿入することにより、ソケット部3が、給電ユニット部8に装着される。凹部空間と凸部とは嵌合する形状であればよく、特に図示した形状に限定するものではない。
図9(c)は、ソケット部3を給電ユニット部8に挿入した後の装着状態を示した図である。
図9(b)において、凸部表面であって、図9(a)の2つのメスコネクタ(51,52)と対応する位置に、ソケット部側の給電端子(51,52)に相当する+端子コネクタ51(オス)と、−端子コネクタ52(オス)とを配置している。
さらに、凸部の周辺部の下辺部分であって、図9(a)のコネクタ端子と対応する位置に、ソケット部側のコネクタ端子(53,54,55,32)を配置している。
図9(b)では、出力電流検出コネクタ(オス)53と、フィードバックコネクタ(オス)54,55と、設定電圧通知部コネクタ32を示している。
【0083】
図9(c)には、図9(b)のソケット部3の裏面の構成の一実施例も示している。
図9(c)において、ソケット部3の裏面には、3つの接続部5が配置されたものを示している。接続部5の数は3つに限定するものではなく、必要に応じて1つでもよく、あるいは複数個でもよい。
図9(c)の場合は、このソケット部3から出力される直流電力の同じ電圧で動作可能な3つの負荷機器を、接続部5に接続することができる。
【0084】
また、図9(c)では、この直流コンセントの使用状態を示す表示部(57−1,57−2,57−3)を設けたものを示している。
給電部出力表示部(LED)57−1は、この直流コンセントから現在正常に直流電力が出力されていることを示すものであり、たとえば、電力供給が可能な場合は、このLEDは点灯状態となる。
【0085】
蓄電池異常表示部(LED)57−2は、ソケット部に収容された蓄電装置4の異常を知らせるためのものであり、たとえば、電池電圧が正常範囲の場合は、このLEDは消灯状態となる。あるいは電池電圧が正常範囲外の場合は、点灯状態となる。
異常LED表示部(LED)57−3は、コンセントの異常を知らせるためのものであり、たとえば、出力電圧設定範囲以外の異常や、温度異常、過電流異常(過負荷異常)の場合は、このLEDは点灯状態となる。
また、正常状態の場合は、消灯状態となる。
ただし、これらの表示部をすべて備える必要はなく、またこれら3つの表示部に限るものではなく、他の状態を示す表示部を設けてもよい。
【0086】
また、図9(c)に示した接続部5の差し込み口の形状は、図示したものに限るものではないが、規格化された形状があればその形状とすればよい。
さらに、たとえば、図9(c)に示した差し込み口の形状は、5Vの直流電圧を出力するものであり、10Vの直流電圧を出力するための差し込み口の形状は、この形状と異なるものと予め定めておけば、10Vで動作する負荷機器は、図9(c)の差し込み口に接続することはできず、誤接続を防止できる。
【0087】
<コンセント給電部の制御部>
図8に、コンセント給電部2に含まれる制御部22の一実施例の構成ブロック図を示す。
ここでは、図5に示した実施例3の制御部22に対する構成を示している。
ただし、図4の実施例2と図6の実施例4の場合も、この制御部22と同じものを利用できる。
また、図3の実施例1の場合は、入力信号である設定電圧信号18が入力されないので、設定電圧信号受信部220は不要である。
【0088】
まず、この制御部22の概要を説明する。
以下の説明では、蓄電装置4の電池電圧上限値(VH)212を48V、電池電圧下限値(VL)213を45Vとし、蓄電装置4は、この上限値(VH)と下限値の範囲内(45V〜48V)で動作するように、充電または放電が行われるようにする。
たとえば、蓄電装置4の現在の出力電圧V1が、電圧センス部15によって下限値45V(=VL)以下であることが測定されたとすると、充電が行われる。
逆に、電圧センス部15によって測定された蓄電装置4の出力電圧V1が、上限値48V(=VH)以上になった場合は、蓄電装置の充電を停止し、コンセント給電部2から出力される直流電力を用いた通常の一定電圧制御を行う。
【0089】
また、この発明では、接続される負荷機器が比較的消費電力の少ない軽負荷である場合と、消費電力が比較的大きい場合とによって給電方法を変更させる。
ここで、軽負荷とは、負荷が軽い(小さい)状態であることを意味する。たとえば、以下の説明では直流コンセントからの出力電力(Pout)が5Wよりも少ない場合を軽負荷と呼ぶことにする。軽負荷であるか否かを判断するデータを出力電力判定値(Pa)と呼び、ここでは、Pa=5(W)とする。
【0090】
現在の出力電力(Pout)が軽負荷でない場合、すなわちPout≧Pa(=5)である場合は、コンセント給電部2から供給される電力を、接続部5から出力しつづける。このとき、蓄電装置4に対しては、その電池電圧(V1)が上限値(48V)となるまで充電電流制御を行う。
【0091】
一方、現在の出力電力(Pout)が軽負荷である場合、すなわちPout<Pa(=5)である場合は、蓄電装置4の現在の電池電圧(V1)の大きさにより、コンセント給電部2から電力を供給するか、あるいは蓄電装置4から電力を供給するかを決定する。
詳細は後述するが、コンセント給電部2の消費電力を低減させるために、電池電圧(V1)が下限値(45V)以上であれば、コンセント給電部2の電力の給電処理を実行する部分の回路への通電を停止させる。これにより、コンセント給電部2からの電力供給が停止されるので、蓄電装置4から出力される電力が接続部5へ与えられることになり、蓄電装置4からの電力が負荷機器へ出力される。
したがって、軽負荷であって上記の条件を満たすような場合は、直流コンセントのコンセント給電部2における消費電力を低減させることができる。また、コンセント給電部2からの電力供給を停止させても、蓄電装置4からの電力供給にすぐに切り替わるので、接続部5から出力される電圧はほとんど低下することはなく、安定した電力の給電ができる。
たとえば、電圧低下は数十ミリV程度であり、切り替えのタイムラグも数ミリ秒程度である。
【0092】
図14に、この発明と従来のコンセント出力電圧および電力の変化の様子の違いを説明する図を示す。
図14(a),(b)は、直流コンセントの内部に蓄電装置を有していない従来の場合について、コンセント出力電圧と、コンセント出力電力(Pout)の時間的変化の例を示している。
同図において、時刻T1において、直流コンセントの接続部に、直流電圧45V,直流電力200Wで動作する負荷機器を接続し動作させた場合を示している。
図14(b)に示すように、時刻T1において負荷機器が接続されたので、この後、出力電力(Pout)が急速に増加し、この負荷機器の動作電力である200W付近で安定している。
また、蓄電装置がない場合、たとえば図2の直流電力変換装置のみで出力電圧を変換する場合には、図14(a)に示すように、急激な負荷変動が生じるため、出力電圧が低下してしまう。図14(a)では、負荷機器を接続した時刻T1の後、出力電圧が45Vから40Vまで低下している。その後供給電圧は一定値(45V)まで上昇し安定するが、安定するまでにたとえば20msec程度の時間がかかる。
このような出力電圧の急激な変化(低下)は、わずかな時間ではあるが、機器のマイコンなどの電子機器、CPUに悪影響を及ぼすことになる。
【0093】
一方、図14(c),(d)に、この発明の直流コンセントの場合のコンセント出力電圧と、コンセント出力電力(Pout)の時間的変化の例を示している。
この場合も、図14(a),(b)と同様に、時刻T1において直流電圧45V,直流電力200Wで動作する負荷機器を接続し動作させたとする。
図14(d)に示すように、コンセント出力電力(Pout)は、図14(b)と同様に変化し、200Wで安定化する。
また、本発明では、図3等の実施例に示したように、直流コンセントの内部に蓄電装置を有しているので、図14(c)に示すように、時刻T1の後においても出力電圧はほとんど変化しない。
【0094】
ただし、蓄電装置4の内部回路および電池のインピーダンスによって、わずかな電圧降下(たとえば、数十ミリV程度)が発生するだけで、時刻T1の後すぐにその蓄電装置からの出力電圧で安定化する。
すなわち、蓄電装置4を備えている場合、この蓄電装置4からの給電にすぐに切りかわるので、図14(a)のような出力電圧の大きな変化が生じることはない。
【0095】
したがって、直流コンセントに蓄電装置を備えない場合は、負荷機器を動作させた場合、急激な出力電圧の変動が生じるが、この発明のように蓄電装置を設けた場合には、出力電圧は蓄電装置4の供給電圧以下には下がることはなく、この直流コンセントからは、出力電圧がほぼ一定した安定した電力を供給できる。
さらに、直流給電系統6から供給される直流電力の電圧が不安定な場合や、負荷機器が接続されたことによる急激な出力電力の変化が生じたとしても、蓄電装置4からの供給電力によって安定した出力電圧を負荷機器に与えることができる。
【0096】
次に、図8の構成要素について説明する。
図8において、制御部22は、入力される4つの信号を受信する部分を備える。
電池電圧V1に相当する電池電圧検出信号17を受信する電池電圧検出信号受信部218と、設定電圧信号18を受信する設定電圧信号受信部220と、充放電電流検出信号13−1を受信する充放電電流検出信号受信部215と、出力電流検出信号13−2を受信する出力電流検出信号受信部221とを備える。
【0097】
また、RAMやROMなどの記憶素子を備え、この記憶素子の中に、次のようなデータを予め記憶しておく。充電電流下限値(IL)217,電池電圧上限値(VH)212,電池電圧下限値(VL)213,充電電流指令値(IS)214,および出力電力判定値(Pa)216を記憶しておく。
図4や図5の場合、受信部220によって設定電圧信号18が受信されるので、この信号18から、データを読み出すことにより、上限値(VH)212と、下限値(VL)213の値が求められ、記憶される。
また、充電電流下限値(IL)217と、充電電流指令値(IS)214と、出力電力判定値(Pa)216とは、予め不揮発性のメモリの中に記憶しておく。
ただし、図3のように設定電圧信号18が受信されない場合は、上記5つのデータは、消えることがないように不揮発性のメモリの中に予め記憶しておく必要がある。
【0098】
充電電流下限値(IL)217は、充電終了を意味するものであり、受信した充放電電流検出信号13−1と比較され、充電終了を判断(判定フラグH=0)するときに利用されるデータである。
また、電池電圧上限値(VH)212と、電池電圧下限値(VL)213とは、蓄電装置4の現在の電池電圧(V1)と比較されるデータであり、主として、蓄電装置4による給電をするか、あるいは蓄電装置4への充電をするかを判断するために利用されるデータである。
充電電流指令値(IS)214は、充電電流を意味するデータであり、後述するように、充電電流を制御するときに利用されるデータである。このデータ(IS)214も、充放電電流検出信号13−1と比較されるデータである。
このような充電電流に関する下限値(IL)217と、指令値(IS)214とは、たとえば、蓄電池の容量によって予め決定される電流値である。
【0099】
出力電力判定値(Pa)216は、現在接続部5に供給している出力電力が軽負荷であるか否かを判断するデータであり、この数値は、たとえば、コンセントの出力容量によって予め決定される。
上記したように、以下の実施例では、Pa=5Wとする。
また、出力電力判定値(Pa)216は、比較部(C3)211によって、現在の出力電力の値(Pout)と比較される。
現在の出力電力は、演算回路215により算出される。演算回路215は、たとえば出力電流検出信号と電池電圧検出信号を用いて、掛け算をすることにより、現在の出力電力(Pout)を算出するものである。
【0100】
比較部(C3)211は、現在の出力電力の値(Pout)と、出力電力判定値(Pa)216との比較の結果、HまたはLの出力信号を、論理回路205に出力するものである。この比較部(C3)211は、上記した第2比較部に相当する。
ここで、Pout≧Paの場合、接続された負荷機器は軽負荷でないと判断され、論理回路205へH信号(ロジック回路のHighレベルの電圧信号、例えばDC 3.3V)を出力する。また、Pout≦Paの場合、軽負荷と判断され、論理回路205へL信号(ロジック回路のLowレベルの電圧信号、例えば、DC 0V)を出力する。
【0101】
比較部(C2)206は、充電電流下限値(IL)217と、受信した充放電電流検出信号13−1とを比較して、HまたはL信号を出力するものである。
たとえば、比較結果で、充電電流がILより小さい場合、L信号を判定フラグ209へ出力する。一方、充電電流がILより大きい場合は、H信号を判定フラグ209へ出力する。
【0102】
比較部(C1)208は、受信した電池電圧検出信号17と、電池電圧の上限値(VH)212および下限値(VL)213と比較して、判定フラグへH,L信号を出力し、かつPID1,PID2を選択するためSW2,SW3を選択するものである。この比較部(C1)208は、上記した第1比較部に相当する。
この出力データにより、2つのスイッチSW2,SW3を開閉する。たとえば、比較の結果、電池電圧が上限値以上の場合は、SW2へH信号、SW3へL信号を出力し、スイッチSW2をON、SW3をOFFする。また、電池電圧が上限値VHより小さい場合は、SW2へL信号、SW3へH信号を出力し、スイッチSW3をON、SW2をOFFする。
また、判定フラグ209は電池電圧が下限値VLに達すると、判定フラグH=1とし、上限値VHに達し、且つ、比較部C2の結果がL信号(充電電流がILより小さい)のとき、充電完了とし、判定フラグH=0とする。
【0103】
判定フラグH209は、RAMやレジスタ等の記憶素子に記憶される情報であり、給電制御にヒステリシスを設けるために用いられる情報である。
判定フラグHには、0または1が記憶され、たとえば初期値としては、H=1を記憶しておく。
H=0の場合、一度、電池の充電が完了したことを意味し、蓄電装置4に対して、充電を停止する。一方、H=1の場合、一度、電池電圧が下限値に到達したことを意味し、蓄電装置4に対して、一定充電電流制御を行う。
後述するように、この判定フラグHの値は、論理回路205での処理に利用される。
【0104】
2つのPID制御部(207,210)は、電圧および電流を一定に制御する演算を行う部分である。
この2つのPID制御部と信号出力部201とは、上記した電力制御部に相当する。
一方のPID制御部PID1(210)は、充電電流の制御を行うためのものであり、受信した充放電電流検出信号13−1を、充電電流指令値(IS)214と一致するように制御する。具体的には、信号13−1と、指令値(IS)214とを用いて、比較し、指令値との誤差がなくなるようにコンセント給電部のスイッチングパルスのデューティ幅を演算して、デューティ幅の数値を出力する。例えば、アナログの信号(0Vを0%とし、5Vを100%として、その間の直流信号)であってもよいし、デジタルの数値信号(デューティのレジスタへの書き込み)であっても良い。
この出力信号は、コンセント給電部のスイッチング信号のデューティ幅を意味するデータであり、スイッチSW3(204)、SW1(202)を介して、信号出力部201に与えられる。
【0105】
他方のPID制御部PID2(207)は、電圧を一定に制御するためのものであり、受信した電池電圧検出信号17を、電池電圧上限値(VH)212と一致するように制御する。
具体的には、信号17と、上限値(VH)212とを用いて、比較し、上限値と誤差がなくなるようにコンセント給電部のスイッチングパルスのデューティ幅を調整して、演算して、デューティ幅の数値を出力する。出力の方法はPID1と同様である。
この出力信号は、コンセント給電部のスイッチングのデューティ幅を意味するデータであり、スイッチSW2(203)とSW1(202)を介して信号出力部201に与えられ、信号出力部201からスイッチングパルス信号が出力される。
【0106】
論理回路205は、記憶部H209の数値と、比較部C3(211)からの出力データとを用いて、スイッチング信号の出力をON/OFF制御する部分である。論理回路205からの出力データは、SW1(202)を開閉するために用いられる。たとえば、比較部C1、C2の結果、判定フラグH=0(一度、充電完了)かつ、比較部C3の結果、出力L信号(Pout<Pa)の場合、SW1をOFFするL信号を出力する。
たとえば、論理回路205の出力データがH信号の場合は、SW1をONする。このとき、論理回路205は、判定フラグH=1、または、比較部C3がH信号のいずれかで、SW1をONするH信号を出力するOR回路である。
これらのスイッチは、たとえば、以下のような組合せとなるように制御される。
【0107】
ここで、スイッチの開状態をOFF(0)、閉状態をON(1)とする。
(1)SW1,SW2,SW3=0,0,0のとき
信号出力部201へ、PID制御部(PID1またはPID2)からの出力データは出力されない。
(2)SW1,SW2,SW3=0,0,1のとき
(3)SW1,SW2,SW3=0,1,0のとき
(4)SW1,SW2,SW3=0,1,1のとき
これらの場合(2,3,4)は、SW1=0(開状態)なので、出力されない。
(5)SW1,SW2,SW3=1,0,0のとき
SW2,SW3の両方が開状態なので、出力されない。
(6)SW1,SW2,SW3=1,0,1のとき
PID1(210)からの出力データであるデューティ値が、信号出力部201に与えられる。このとき、一定充電電流制御という制御が行われる。
(7)SW1,SW2,SW3=1,1,0のとき
PID2(207)からの出力データであるデューティ値が、信号出力部201に与えられる。このとき、一定電圧制御という制御が行われる。
(8)SW1,SW2,SW3=1,1,1のとき
比較部C1により、SW2とSW3のON状態が両方ONにならないように選択されるので、この場合が生じないように制御される。
【0108】
信号出力部201は、スイッチSW1(202)が閉状態の場合に入力される信号から、制御信号25を生成する部分である。
たとえば、一定充電電流制御の場合は、PID1(210)から与えられる出力データによって、スイッチングのタイミング制御信号25が生成される。
この制御信号25は、上記したように、図5の交流印加部21に与えられる信号であり、交流印加部21のトランジスタ駆動回路41を動作させるタイミング信号である。
トランジスタ駆動回路41は、この制御信号25に基づいて、2つのトランジスタ(QA,QB)のON−OFF制御を行い、1次側コイル23へ交流電圧を印加する。
【0109】
以上が制御部22の一実施例の構成である。ただし、制御部22は、図8に示した構成に限られるものではなく、4つの入力信号(13−1,13−2,17,18)を受信して、所定の制御信号25を出力するように制御すればよく、ハードウェアだけではなく、CPUとソフトウェアを用いたいわゆるコンピュータ制御により実現することもできる。
【0110】
<給電電力の出力制御の説明>
図10に、この発明の給電電力の出力制御の一実施例のフローチャートを示す。
図10のステップS1において、まず、直流給電系統6から直流電力が供給され、その電力の出力電圧が、コンセント給電部2に印加される。
【0111】
ステップS2において、この直流電力の供給により、コンセント給電部2の制御部22に通電が行われ、制御部22のハードウェア全体が起動させられる。
また、判定フラグHに、初期値H=1が設定される。
ここで、図4,図5のようなソケット部3が給電ユニット部8にまだ装着されていない場合は、コンセントとして機能しないので、待機状態となる。
図4,図5のようにソケット部が装着された場合と、図3のようにソケット部が常に接続されている場合は、以下の給電制御が実行される。
【0112】
ステップS3において、接続部5からの現在の出力電力Poutが、設定値Pa(出力電力判定値216)以上か否かを判断する。この判断は、図8の比較部C3(211)で行われるものである。
上記したように、出力電力判定値Paが5Wであったとすると、Poutが5W以上であるか否か、チェックされる。
Pout≧Pa(=5)の場合はステップS4へ進み、そうでない場合はステップS10へ進む。
【0113】
ステップS4へ進んだ場合は、ソケット部3の接続部5に、軽負荷でない負荷機器が接続された場合である。したがって、この場合、ステップS4において、コンセント給電部2から負荷機器への給電が行われ、かつ蓄電装置4への充電が行われる。
このとき、図8の制御部22では、比較部C1において、一定電流制御か、定電圧制御かが判断される。図10のステップS5に相当する。
ステップS5において、蓄電装置4の現在の電池電圧(V1)が、設定値VH(電池電圧上限値212)以上か否か、判断する。
ここで、上限値がVH=48Vであったとすると、V1≧VH(=48)であるか否かをチェックする。この比較処理は、図8の比較部C1(208)で行われるものである。V1≧VHの場合、ステップS6へ進み、そうでない場合はステップS9へ進む。
【0114】
ステップS6において、現在の電池電圧V1が、設定された上限値VH以上となっているので、これ以上電池電圧が上昇しないように、一定電圧制御を行う。
一定電圧制御とは、蓄電装置4の電圧の上昇を抑え、蓄電装置4へ流れ込む充電電流を減少させる制御を意味する。
ステップS6で一定電圧制御を選択した後、ステップS7で充電電流がILより小さいか判断する。図8の比較部C2に相当する。このとき、ILより小さければ充電完了とし、ステップS8において、判定フラグHに、0(ゼロ)を設定し、ステップS3へ戻る。
【0115】
一方、ステップS9へ進んだ場合、蓄電装置4の現在の電池電圧V1は、設定値VHよりも小さいので、蓄電装置4の充電を行うために、充電電流制御を行う。その後、ステップS3へ戻る。
【0116】
以上の処理は、接続された負荷機器が軽負荷でない場合であり、この場合は、コンセント給電部2からの給電が常に行われる。また、蓄電装置4に対しては、充電処理が行われるが、現在の電池電圧V1がその上限値VH以上であれば、一定電圧制御が行われ、上限値VHよりも低ければ、充電電流制御を行う。
【0117】
以下の処理は、接続された負荷機器が軽負荷の場合の処理である。
軽負荷の場合、ステップS3の判断により、ステップS10へ進む。
ステップS10において、現在の電池電圧V1が、設定値VL(電池電圧下限値213)以上であり、かつH=0か否かチェックする。
このチェックは、図8の比較部C1(208)によって行われる。
【0118】
ステップS10において、これら2つの条件が満たされた場合ステップS11へ進み、そうでない場合はステップS12へ進む。
ステップS11において、接続されている負荷機器は軽負荷であり、かつ、蓄電装置の現在の電池電圧V1は、下限値VLよりも高く十分に放電可能なので、コンセント給電部2の給電動作を停止させ、かつ蓄電装置4から負荷機器への給電を行わせる。
ステップS11では、コンセント給電部2の給電動作を停止させるために、図8において、論理回路がSW1をOFFすることにより、信号出力部201を停止し、トランジスタ駆動回路を停止する。
【0119】
ステップS11の後、現在の電池電圧V1が下限値VLよりも低くなるまで、蓄電装置4による給電が継続して行われることになる。この場合、コンセント給電部2の給電動作は停止させられるので、消費電力を低減させることができる。
ステップS11の後は、ステップS3へ戻る。
【0120】
一方、ステップS12へ進んだ場合は、蓄電装置4の現在の電池電圧V1が、その下限値VLよりも低い場合であるので、コンセント給電部2による給電を開始させ、蓄電装置4の充電が必要となる。
まず、ステップS12において、判定フラグHに、1を設定する。
ステップS13において、コンセント給電部2から負荷機器への給電を行い、かつ蓄電装置4への充電を行う。
ここでは、図8において、比較部C1がSW3をONすることにより、定電流充電制御を行う。
また、図8の論理回路205が、SW1をONすることにより、PID1の演算結果を信号出力部201に送り、スイッチングパルスである制御信号25を出力する。これにより、コンセント給電部2からの給電が開始される。
【0121】
ステップS14において、蓄電装置4の現在の電池電圧V1がその上限値VH以上か否か、判断する。これはステップS5と同じ処理を行えばよい。
ステップS14において、電池電圧V1が、設定値VH以上となっている場合は、ステップS15へ進み、そうでない場合は、ステップS18へ進む。
ステップS15へ進む場合は、蓄電装置4の充電が十分に行われたことを意味するので、ステップS6と同様に一定電圧制御を行う。その後、S16で充電電流がILよりも小さいか否か判断し、小さい場合はステップS17において、判定フラグHの値を、0(ゼロ)に設定し、ステップS3へ戻る。
この一定電圧制御の具体的な処理は、ステップS6で説明したものと同一なので、省略する。
【0122】
ステップS18においては、蓄電装置の現在の電池電圧V1はまだ上限値に達していないので、充電電流制御を行う。充電電流制御の処理は、ステップS9と同じ処理を行えばよい。
ステップS18の処理の後、ステップS3へ戻る。
以上が、軽負荷の場合の処理であり、特に、ステップS11において、コンセント給電部2の給電動作を停止させるので、コンセント給電部2の消費電力を低減させることができる。
【0123】
<この発明の電池電圧の変化の具体例>
この発明の給電制御によって変化する蓄電装置の電池電圧の具体例について説明する。
図11,12,13に、この発明のコンセント給電部の給電時における蓄電装置の電池電圧の変化の一実施例の説明図を示す。
図11、図12は、直流コンセントの接続部5に、軽負荷である負荷機器が接続されている場合を示している。
すなわち、負荷機器が動作している場合、接続部5から出力される直流電力(Pout)は、5W(=Pa)以下であるとする。
図11において、時刻T0のときに、蓄電装置4の電池電圧(V1)が45V(=下限値VL)よりも低くなっていたとすると、図10のステップS10の判断により、ステップS13へ進み、コンセント給電部2から負荷機器への給電とともに、蓄電装置4への一定電流の充電が開始される。すなわち、図11の充電制御期間P1が開始される。
【0124】
その後、充電制御期間は、時刻T1で、電池電圧V1が48V(=上限値VH)となるまで、ステップS17の充電電流制御が継続される。電池電圧V1が48Vになった場合、ステップS14の判断によって、ステップS15へ進み、充電を停止し、一定電圧制御が行われる。この後、定電圧制御期間P2となる。
【0125】
図12において、期間P1とP2は図11と同じである。
期間P2のとき、時刻T2において、電池電圧V1が45V(=下限値VL)よりも高い48Vとなっているとする。図11においてステップS15を実行した後、ステップS16において、H=0に設定しているので、時刻T2においてステップS10の判断(V1≧VL、かつH=0)によって、ステップS11へ進むことになる。
【0126】
ステップS11により、コンセント給電部2は動作が停止され、蓄電装置4からの給電に切りかえられる。
したがって、時刻T2のときに、給電停止期間P3が開始され、この期間内では、ステップS11における蓄電装置4による給電が行われている。
また、この期間P3では、蓄電装置の電力が消費されるため、電池電圧V1は、しだいに低下していく。
その後、時刻T3において、電池電圧V1が45V(=下限値VL)よりも低くなったとすると、ステップS10の判断によって、ステップS13へ進み、再びコンセント給電部2による給電が開始され、かつ蓄電装置4の充電が開始され、充電制御期間P1となる。
【0127】
図13に、接続された機器が、軽負荷の負荷機器から軽負荷でない負荷機器に変更された場合の電池電圧の変化の例の説明図を示す。
図13において、期間(P1−1,P2−1,P3)については、軽負荷の負荷機器が接続されている場合を示しており、図12と同じである。
すなわち、充電制御期間P1−1は、ステップS13の処理に対応するものであり、定電圧制御期間P2−1はステップS15の処理に対応するものであり、給電停止期間P3は、ステップS11の処理に対応するものである。
図13において、給電停止期間P3の間の時刻T3のときに、接続された負荷機器への出力電力(Pout)が、5W(=出力電力判定値Pa)以上になったとする。
この時刻T3のとき、ステップS3の判断において、Pout≧Paとなったので、ステップS4へ進み、充電制御期間P1−2となる。
【0128】
すなわち、蓄電装置4による給電から、コンセント給電部2による給電に切りかえられ、蓄電装置4に対しては充電が行われる。
その後、充電制御期間P1−2において、電池電圧V1が上昇し、時刻T4において上限値である48Vに到達すると、ステップS5の判断によってステップS6へ進み、一定電圧制御を行う定電圧制御期間P2−2となる。
【0129】
このように、コンセント給電部2と蓄電装置4による給電の切り替えがスムーズに行われ、蓄電装置4の充電が十分に行われた後は、コンセント給電部2の給電動作が停止させられるので、消費電力の低減と、安定した給電が可能となる。
【符号の説明】
【0130】
1 直流コンセント
2 コンセント給電部
3 ソケット部
4 蓄電装置
5 接続部
6 直流給電系統
7 電圧電流検出部
8 給電ユニット部
11−1 電流センス部
11−2 電流センス部
12−1 検出電流調整部
12−2 検出電流調整部
13−1 充放電電流検出信号
13−2 出力電流検出信号
15 電圧センス部
16 検出電圧調整部
17 電池電圧検出信号
18 設定電圧信号
21 交流印加部
22 制御部
23 1次側コイル
24 1次側鉄心
25 制御信号
31 設定電圧検出部
32 設定電圧通知部
35 2次側コイル
36 2次側鉄心
37 交流直流変換部
41 トランジスタ駆動回路
50 コネクタ部
51 給電コネクタ(+端子)
52 給電コネクタ(−端子)
53 フィードバックコネクタ
54 フィードバックコネクタ
55 フィードバックコネクタ
56 ソケット位置固定部
57−1 給電出力表示部(LED)
57−2 蓄電池異常表示部(LED)
57−3 異常表示部(LED)
58 コンセント出力電流検出コネクタ
60 壁
61 充放電回路
111 プラグ
112 負荷機器
120 直流発電装置
121 直流電力変換装置
122 双方向電力変換装置
123 商用電力系統
201 信号出力部
202 スイッチSW1
203 スイッチSW2
204 スイッチSW3
205 論理回路
206 比較部C2
207 PID制御部PID2
208 比較部C1
209 記憶部H
210 PID制御部PID1
211 比較部C3
212 電池電圧上限値VH
213 電池電圧下限値VL
214 充電電流指令値IS
215 演算回路
216 出力電力判定値VS
217 充電電流下限値IL
218 電池電圧検出信号受信部
219 充放電電流検出信号受信部
220 設定電圧信号受信部
221 出力電流検出信号受信部

【特許請求の範囲】
【請求項1】
直流電力源を含む直流給電系統から供給された直流電力を所定の直流電力に変換するコンセント給電部と、
前記コンセント給電部によって変換された直流電力を外部機器へ出力するソケット部と、
前記コンセント給電部と前記ソケット部とを接続する伝送経路に並列接続された蓄電装置と、
前記伝送経路上において、前記ソケット部から出力される直流電力の出力電流と、前記蓄電装置の出力電圧とを検出する電圧電流検出部とを備え、
前記電圧電流検出部によって検出された出力電圧と出力電流とを用いて算出された前記ソケット部から出力される直流電力が所定の出力電力判定値Paよりも小さく、かつ前記検出された蓄電装置の出力電圧が所定の電池電圧下限値VL以上の場合に、前記コンセント給電部が、前記直流電力の変換動作を停止し、かつ前記蓄電装置から出力される直流電力を前記ソケット部を介して外部機器へ出力することを特徴とする直流コンセント。
【請求項2】
前記蓄電装置から出力される直流電力を外部機器へ出力している給電状態において、前記蓄電装置の出力電圧が前記電池電圧下限値VLよりも低くなった場合、
前記コンセント給電部が、前記変換された直流電力を前記ソケット部を介して外部機器へ出力し、かつ前記変換された直流電力を用いて前記蓄電装置の充電を行うことを特徴とする請求項1記載の直流コンセント。
【請求項3】
前記電圧電流検出部によって検出された出力電圧と出力電流を用いて算出された前記ソケット部から出力される直流電力が、前記出力電力判定値Pa以上の場合、前記コンセント給電部が、前記変換された直流電力を前記ソケット部を介して出力し、かつ前記変換された直流電力を用いて前記蓄電装置の充電を行うことを特徴とする請求項1または2に記載の直流コンセント。
【請求項4】
前記コンセント給電部が、
前記直流給電系統から供給された直流電力を変換する電力変換部と、
前記蓄電装置を動作させる電池電圧上限値VHおよび電池電圧下限値VLと、前記所定の出力電力判定値Paとを記憶する記憶部と、
前記電圧電流検出部によって検出された出力電圧と、前記電池電圧上限値VHおよび電池電圧下限値VLとを比較する第1比較部と、
前記検出された出力電圧と出力電流によって算出された直流電力と、前記出力電力判定値Paとを比較する第2比較部と、
前記第1比較部および第2比較部によって比較された結果に基づいて、前記電力変換部の直流電力の変換動作を制御する電力制御部とを備えたことを特徴とする請求項1,2または3のいずれかに記載の直流コンセント。
【請求項5】
前記ソケット部は、前記蓄電装置と前記電圧電流検出部とを含み、かつ外部機器を電気的に接続する接続部をさらに備え、
前記コンセント給電部は、固定設置される給電ユニット部に備えられ、前記給電ユニット部と前記ソケット部とがコネクタ部によって着脱可能に接続され、
前記コネクタ部は、前記コンセント給電部と前記ソケット部とを接続する伝送経路をつなぐ給電コネクタと、前記電圧電流検出部によって検出された出力電圧および出力電流に対応する信号を伝送するフィードバックコネクタとを備えることを特徴とする請求項1記載の直流コンセント。
【請求項6】
前記ソケット部が、前記接続部から出力可能な直流電圧の設定値を、前記給電ユニット部へ通知するための設定電圧通知部をさらに備え、
前記給電ユニット部が、前記設定電圧通知部から通知される設定値を検出する設定電圧検出部をさらに備え、
前記設定電圧通知部と前記設定電圧検出部とが前記コネクタ部に備えられていることを特徴とする請求項5記載の直流コンセント。
【請求項7】
前記コンセント給電部は、前記設定電圧検出部が検出した直流電圧の設定値に基づいて、前記ソケット部から出力すべき直流電力の出力電圧値を決定し、前記直流給電系統から供給された直流電力を前記出力電圧値を有する直流電力に変換することを特徴とする請求項6記載の直流コンセント。
【請求項8】
前記コンセント給電部は、前記直流給電系統から供給された直流電力を交流電力に変換する交流印加部と、交流印加部によって生成された交流電力が印加される1次側コイルとを備え、
前記ソケット部は、前記1次側コイルと電磁結合され、かつその電磁結合によって交流電力を誘起する2次側コイルと、誘起された交流電力を直流電力に変換する交流直流変換部とを備え、
前記電圧電流検出部は、交流直流変換部から出力される直流電力が伝送される伝送経路上に設けられることを特徴とする請求項1,2,3,5,6または7のいずれかに記載の直流コンセント。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9(a)】
image rotate

【図9(b)】
image rotate

【図9(c)】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate


【公開番号】特開2012−84481(P2012−84481A)
【公開日】平成24年4月26日(2012.4.26)
【国際特許分類】
【出願番号】特願2010−231684(P2010−231684)
【出願日】平成22年10月14日(2010.10.14)
【出願人】(000005049)シャープ株式会社 (33,933)
【Fターム(参考)】