説明

管体の超音波探傷装置および超音波探傷方法

【課題】数μmの酸化物が薄く広く散在した散在型ペネトレータを検出可能とする。
【解決手段】管体1の管軸方向溶接部2の溶接面に対し、送波ビーム8のビーム幅が0.5mmから2.5mmの範囲となるように超音波を送波する送波部6と、前記溶接面における反射波の一部または全部(受波ビーム9)を受波する受波部7とを有し、前記送波部6及び前記受波部7が、管体周方向に配置された一又は二以上のアレイ探触子5上の異なる振動子群からなる送受信部を備える。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、溶接鋼管の溶接部に発生する微小な欠陥を超音波探傷で精度良く検出するための管体の超音波探傷装置および超音波探傷方法に関するものである。
【背景技術】
【0002】
溶接鋼管では溶接部の品質が非常に重要であり、製造工程においては一般に超音波斜角探傷によって溶接部のオンライン探傷が行われている。この方法は、被検材の検査面に対して斜めに超音波を入射させ、欠陥で反射した反射波から被検材の内外表面欠陥および内部欠陥を検出するものである。通常、例えば電縫管では5MHzで45゜の屈折角を持つ超音波ビームによる反射法が適用され、mmオーダーの大きさの欠陥、例えば溶込不良、溶け落ち、介在物による割れなどの欠陥が検出される。
【0003】
一方、最近では溶接鋼管に対する品質要求が厳しくなり、従来よりも小さい欠陥の検出が求められるようになってきている。例えば、電縫管では冷接欠陥や微小ペネトレータ、レーザー溶接管ではブローホールなどで、これらの欠陥の大きさは数10μm〜数100μmと非常に微小である。また、発生位置は溶接線に沿って内面から外面までのいずれの場所でも発生する可能性があり、欠陥の位置によっては超音波ビームの入射点と帰点が異なってしまう。これらの影響のため、従来実用されている超音波探傷法では検出できない場合が多く、より精度良く検出できる技術が求められている。
【0004】
溶接鋼管の微小欠陥を検出する方法として、これまで以下のような従来技術が開示されている。特許文献1では、斜角探傷において周波数8MHz以上のポイントフォーカス型探触子を用いるようにし、ペネトレータに対する検出能を向上させるようにしている。また、特許文献2では、アレイ探触子によりフォーカスビームを形成して検出能を向上させ、セクタスキャンによって溶接部の内面側から外面側までをスキャンするようにしてブローホールを検出できるようにしている。
【0005】
また、特許文献3では、超音波の周波数を25MHz以上500MHz以下として入射角0゜以上20゜以下で管外面側から溶接部に入射させることで、数μm以下の微細なFeOが群をなして夾雑している冷接欠陥を検出できるようにしている。さらに、特許文献4では、周波数20MHz〜80MHzのポイントフォーカス型探触子を複数用い、シーム直上から集束位置が3mm以下のピッチとなるように配置することで、0.1mm以上のブローホールを検出できるようにしている。
【0006】
なお、[発明の開示]において、下記の特許文献5及び非特許文献1を引用するので、ここにあわせて記載しておく。
【0007】
【特許文献1】特開昭60−205356号公報
【特許文献2】特開平11−183446号公報
【特許文献3】特開昭61−111461号公報
【特許文献4】特開平7−35729号公報
【特許文献5】特開平4−274756号公報
【非特許文献1】日本鉄鋼協会編「超音波探傷シリーズ(II) 溶接鋼管の超音波探傷法」1988年、28〜31頁
【発明の開示】
【発明が解決しようとする課題】
【0008】
しかしながら、上述の開示技術においても、以下に述べるような問題が残されていた。先ず特許文献1の方法では、集束した超音波のビーム幅が狭いため、溶接部の深さ方向(鋼管の肉厚方向)の全域を見逃しがないように探傷するためには、数多くのチャンネルが必要で設備コストが高くなる上、管のサイズが変わった際の位置調整などが非常に面倒であるという問題がある。また、欠陥形状がブローホール状ではなくペネトレータや冷接のように面状で、かつ位置が肉厚内部にある場合は、反射波が入射方向とは異なる方向に行ってしまうため検出が困難である。
【0009】
また特許文献2の方法では、アレイ探触子が1個で済み、サイズ替わりの際の設定も電子的に行えるので、特許文献1で示した前者の問題はないものの、後者の問題については依然として未解決のままである。
【0010】
さらに欠陥形状が上記のように面状の場合、例えば電縫管ではシーム部にアプセットがかかっているためにシーム直上から見た欠陥の幅は100μm以下と非常に細く、特許文献3および特許文献4の方法であっても、実際には欠陥からの反射波は非常に弱くて検出困難な場合が多い。また、表面エコー近傍の1〜2mm程度は表面エコーの残響によって不感帯となるため、欠陥の位置が外面近傍にある場合は検出できないという問題がある。
【0011】
このように、溶接鋼管の管軸方向の溶接部に発生する数100μm程度以下の微小欠陥を検出する技術は、溶接部を切り出したテストサンプルを、オフラインで測定するCスキャン法であれば可能であるが、数100μm程度以下の欠陥を非破壊で、且つ、オンラインで精度良く、安定して検出する技術は未だに確立されていなかった。
【0012】
本発明は、前記事情に鑑みてなされたもので、電縫管などの溶接部の肉厚内部に位置する機械的特性に影響を与える微小欠陥を、精度よく検出できるようにすることを目的とする。
【課題を解決するための手段】
【0013】
本発明者等は、鋭意研究の結果、電縫溶接鋼管の管軸方向溶接面の機械的特性には、溶接部に残留する微小ペネトレータなどの微小欠陥の存在が影響を及ぼしているが、単体の欠陥サイズは問題にならないほど小さいが、その存在量(ある面積内に存在する欠陥数)が溶接部の機械的特性に大きく関与しているという新規で、有用な知見を突き止めた。
【0014】
当初、発明者等は電縫管溶接部の機械的特性に大きく影響を及ぼすのはペネトレータのサイズであり、溶接部に存在するペネトレータのサイズがある程度小さければ、機械的特性が優れていると考えた。そして、これらの欠陥を検出すべく探傷法を検討した結果、従来の超音波探傷法に比べ、送受波の超音波ビーム径をより小さくして、これらの欠陥を検出するための技術に想到した。しかしながら、このビーム径を小さくした超音波探傷技術を用いて、ペネトレータ有無を評価し、その結果と機械的特性とを比較したが、想定した結果とは全く異なっていた。つまり、ペネトレータが検出された場合でも機械的特性が良好であったり、逆にペネトレータが検出されない場合でも機械的特性が悪いという結果が得られた。その後、発明者等は、更なる詳細検討を行った結果、数μmの微小欠陥が広い範囲に分散した形態のペネトレータが機械的特性と相関があるという、従来知られていなかった、非常に有益な知見を見出した。そして、それらを検出するための超音波探傷技術を開発したのである。
【0015】
ここで、図14を用いて、ペネトレータの形態を説明する。当初、機械的特性に影響を与えるペネトレータなどの微小欠陥の形態は、鋼管1の溶接部2において、3aに示すような、元々、数μmの酸化物(主にSi−Mn系)が数10〜数100μmの大きさの領域に密集(凝集)したもので、見かけ上、1個の欠陥に認識されるもの、と考えていた(本明細書では、凝集型ペネトレータとも記す。)。しかしながら、発明者らの調査によって、3bに示すような、数μmの酸化物が広い領域に多数分布(散在)したような形態を示すペネトレータ(本明細書では、散在型ペネトレータとも記す。)の存在が、分かった。この散在型ペネトレータは、従来の検出方法では明瞭には検出されず、密度が薄く断面観察が極めて難しいため、明らかになっていなかったが、発明者等が詳細調査した結果、機械的特性の評価、特に特性の優れたレベルの評価にあたっては、これが重要な検出対象であることが初めて判明した。
【0016】
[微小ペネトレータの形態と靭性の関係]
図15は、サンプル管からシャルピー試験片を切り出してシャルピー衝撃試験を行なった結果である。シャルピー衝撃試験の結果では、サンプルA(サンプル数は3個)は吸収エネルギーが400J以上の良好な機械的特性を示し、サンプルB(サンプル数は3個)は吸収エネルギーが200J程度のものであった。そして、これらのシャルピー試験片を切り出した近傍で、図16に示すように、電縫管1の管軸方向溶接面の溶接部2を、溶接面から周方向に4mmの位置で切り出した(スライスした)サンプルSを用いて、切り出した面に対して集束型超音波探触子50を用いたCスキャン法により溶接部部の探傷を行ない、シャルピー衝撃試験の結果と比較した。まず、発明者等は、上述の数10〜数100μmの領域に密集した凝集ペネトレータの存在が溶接部の機械的特性に影響を及ぼすと考え、それらを検出するように、周波数50MHzの集束型超音波探触子50を用いて、ビーム幅100μmに絞って探傷した。その結果を図17に示した。図17(a)は、サンプルAのCスキャンデータで、横軸は管軸方向、縦軸は厚み方向であり、信号強度を濃淡(信号強度大ほど白色)で示している。図17(b)は、(a)のデータについて、管軸方向が同じ位置で厚み方向について信号強度最大値をとったもので、横軸を管軸方向位置とし、縦軸に信号強度最大値をプロットしたものである。同様に、図17(c)、(d)はサンプルBについての超音波探傷結果である。なお、(b)、(d)の結果には、厚み方向の信号強度最大値から推定した欠陥径の値を縦軸に示している。サンプルAでは欠陥径50μm以上に相当する信号強度の欠陥指示(上述の凝集ペネトレータに対応)が点在して多く見られたが、サンプルBでは、そのような点在する欠陥指示はほとんど見られなかった。この結果は、凝集ペネトレータがあっても機械的特性が良好であり、逆にペネトレータがほとんど検出されないサンプルでは吸収エネルギーが低いと言うことを示しており、発明者等が当初、想定した結果と全く逆の結果であった。
【0017】
次に、発明者等は、測定条件を種々変更し、測定した。そのうち、ビーム径を広げてみたところ(具体的には、100μmから、250μmに広げた)、これまで確認できなかった信号が得られることがわかった。その結果を図18に示す。シャルピー衝撃試験で機械的特性が良好であったサンプルAについては、図17と同様に、欠陥径40μmを大きく下回る、欠陥径25μm程度に相当する信号レベルをベースとして、欠陥径100μm程度の信号レベルが高い欠陥信号が所々に確認された。一方、サンプルBについては、図17と同様に、信号レベルが高い欠陥信号はないものの、欠陥径40μm程度に相当する信号強度を示す信号(図中の画像において淡く薄い指示)が管軸方向の全長に亘って確認された。以上の結果に基づき、発明者等は、信号レベルは欠陥径40μm程度とさほど高くないが、それが広く分布している欠陥が、溶接部の機械的特性に大きく影響しているとの知見に至った。
【0018】
さらに、このサンプルBの断面を電子顕微鏡でも調査したところ、サンプルBに見られる欠陥指示部には、1個当たりの大きさが5μm〜20μmの微小な酸化物(微小ペネトレータ)がまばらに存在していることが確認され、Cスキャンの結果が裏付けられた。
【0019】
ここで、超音波ビーム幅を広げたことで淡いエコー帯が検出されるようになった理由を考察する。図19に示すように、広い範囲に微小反射源が一様に散在している状態を考えると、ビーム幅が狭い場合、微小反射源がビーム内に少数しか含まれないので、ビーム面積に対する欠陥の合計面積の比率が低く、結果として反射エコーが弱くなる。一方、ビーム幅を広くすると、微小反射源がビーム内に数多く含まれるようになり、ビーム面積に対する欠陥の合計面積の比率が高くなるため、個々のエコーが弱くても、それが積算されて強まることになり、検出信号レベルが高くなる。
【0020】
以上の結果から、このように個々の欠陥径は非常に小さいが、広い領域に分布した状態を示すペネトレータ(散在型ペネトレータ)も溶接部の機械的特性に影響し、その評価を精度良く行うためには、検出すべき欠陥であるという、新たな知見が導き出された。
【0021】
このような発明者の知見や解析に基づき、鋼管のままで超音波探傷し、散在ペネトレータを検出する発明を想到した。つまり、散在ペネトレータを検出するには従来技術レベルのビーム集束度では感度不足であるものの、集束させすぎても検出ができないことがわかった。しかも、集束の程度は、後述するように、Cスキャン法と、鋼管のままで検出可能とするための、本願発明で使用するタンデム探傷とで異なっている。本願発明の骨子は、必要な感度を得るためにタンデム探傷を用いつつ、その条件で散在ペネトレータを検出できるビーム幅の範囲を見出したところにある。
【0022】
なお、本発明において、アレイ探触子を用いているため、ビーム形状は矩形状となるので、本明細書でいうビーム幅は、ビーム面積の平方根をとった実効的な値と考えればよい。しかし、ペネトレータが管軸方向に連続している場合など管軸方向の集束が不要な場合も有り得るので、その場合は管厚方向のビーム幅と考えてもよい。
【0023】
上記課題を解決するために、具体的には以下のような手段が提供される。
【0024】
本発明の請求項1に係る発明は、管体の管軸方向溶接部の溶接面に対し、ビーム幅が0.5mmから2.5mmの範囲となるように超音波を送波する送波部と、前記溶接面における反射波の一部または全部を受波する受波部とを有し、前記送波部及び前記受波部が、管体周方向に配置された一又は二以上のアレイ探触子上の異なる振動子群からなる送受信部を備えたことを特徴とする管体の超音波探傷装置である。
【0025】
又、本発明の請求項2に係る発明は、請求項1に記載の管体の超音波探傷装置において、更に、前記溶接面に対する超音波ビームのビーム幅が前記範囲に維持されるように、各送波に用いる超音波の開口幅を制御する制御部を備えたことを特徴とする管体の超音波探傷装置である。
【0026】
又、本発明の請求項3に係る発明は、請求項2に記載の管体の超音波探傷装置において、前記制御部は、同時励振する振動子数により、超音波開口幅を制御することを特徴とする管体の超音波探傷装置である。
【0027】
又、本発明の請求項4に係る発明は、請求項1乃至3のいずれかに記載の管体の超音波探傷装置において、前記送波部は、集束位置での音圧上昇を示す集束係数が−13dB以上28dB以下となる超音波を送波することを特徴とする管体の超音波探傷装置である。
【0028】
又、本発明の請求項5に係る発明は、請求項2乃至4のいずれかに記載の管体の超音波探傷装置において、前記送波部は、管体の管軸方向溶接部の溶接面と前記管体の内面に対し、それぞれ33.2°から56.8°の範囲内の角度で超音波を入射し、前記受波部は、前記溶接面における正反射方向に対して−12°から16°の範囲内の方向に反射した一部又は全部の反射波を受波し、前記制御部は、前記アレイ探触子上で前記送波部及び前記受波部に対応する振動子群を変更する、又は前記アレイ探触子の角度を変更するように制御して、超音波を前記管体の厚さ方向に走査するとともに、前記溶接面と前記内面への入射角度及び前記溶接面での反射波の角度が前記それぞれの範囲に維持されるように、各送波及び受波における管体に対する超音波の入射角を制御することを特徴とする管体の超音波探傷装置である。
【0029】
又、本発明の請求項6に係る発明は、請求項5に記載の管体の超音波探傷装置において、前記制御部は、前記振動子群における各振動子の送波及び/又は受波タイミングをずらすことにより、前記溶接面と前記内面への入射角度及び前記溶接面での反射波の角度が前記それぞれの範囲に維持されるように、前記管体への入射角及び焦点位置を制御することを特徴とする管体の超音波探傷装置である。
【0030】
又、本発明の請求項7に係る発明は、請求項5又は6に記載の管体の超音波探傷装置において、前記管体に対する送波側の超音波又は受波側の超音波の少なくとも一方の入射角を一定に保つことを特徴とする管体の超音波探傷装置である。
【0031】
又、本発明の請求項8に係る発明は、請求項5乃至7のいずれかに記載の管体の超音波探傷装置において、前記制御部は、前記管体への超音波の入射角が一定となるように各振動子の送波又は受波の少なくとも一方を制御することを特徴とする管体の超音波探傷装置である。
【0032】
又、本発明の請求項9に係る発明は、請求項1乃至8のいずれかに記載の管体の超音波探傷装置において、前記アレイ探触子は、前記管体周方向に沿うように曲率を持たせて振動子群を配置することを特徴とする管体の超音波探傷装置である。
【0033】
又、本発明の請求項10に係る発明は、請求項1乃至9のいずれかに記載の管体の超音波探傷装置において、前記アレイ探触子には、送波ビーム及び受波ビームを管体の管軸方向に集束させるための音響レンズを備え、該音響レンズの焦点距離を、溶接部に近いほど短く、溶接部から遠いほど長く設定することを特徴とする管体の超音波探傷装置である。
【0034】
又、本発明の請求項11に係る発明は、請求項1乃至10のいずれかに記載の管体の超音波探傷装置において、前記送受信部は、複数のアレイ探触子から成ると共に、それぞれのアレイ探触子上に送波及び受波部を有することを特徴とする管体の超音波探傷装置である。
【0035】
又、本発明の請求項12に係る発明は、請求項1乃至10のいずれかに記載の管体の超音波探傷装置において、前記送受信部は、送波部と受波部が別々のアレイ探触子からなることを特徴とする管体の超音波探傷装置である。
【0036】
又、本発明の請求項13に係る発明は、請求項5乃至10のいずれかに記載の管体の超音波探傷装置において、前記送受信部は、送波部と受波部が別々のアレイ探触子からなり、前記制御部は、各アレイ探触子からの送波ビーム及び受波ビームの偏向角を変更することを特徴とする管体の超音波探傷装置である。
【0037】
又、本発明の請求項14に係る発明は、請求項5乃至13のいずれかに記載の管体の超音波探傷装置において、前記制御部は、送波ビームの走査線と受波ビームの走査線とが、前記管体周方向の複数の位置において交差するように、各送波及び/又は受波における前記管体に対する超音波の入射角及び焦点位置を変更することを特徴とする管体の超音波探傷装置である。
【0038】
又、本発明の請求項15に係る発明は、管体周方向に配置された一又は二以上のアレイ探触子上の異なる振動子群からなる送波部及び受波部とから構成される管体の超音波探傷装置を用い、前記管体の管軸方向溶接部の溶接面に対しビーム幅が0.5mmから2.5mmの範囲となるように超音波を送波することを特徴とする管体の超音波探傷方法である。
【0039】
又、本発明の請求項16に係る発明は、請求項15に記載の管体の超音波探傷方法において、前記溶接面に対する超音波ビームのビーム幅が前記範囲に維持されるように、各送波に用いる超音波の開口幅を制御することを特徴とする管体の超音波探傷方法である。
【0040】
又、本発明の請求項17に係る発明は、請求項16に記載の管体の超音波探傷方法において、前記振動子群における同時励振する振動子数により、超音波の開口幅を制御することを特徴とする管体の超音波探傷方法である。
【0041】
又、本発明の請求項18に係る発明は、請求項15乃至17のいずれかに記載の管体の超音波探傷方法において、集束位置での音圧上昇を示す集束係数が−13dB以上28dB以下となる超音波を送波することを特徴とする管体の超音波探傷方法である。
【0042】
又、本発明の請求項19に係る発明は、請求項15乃至18のいずれかに記載の管体の超音波探傷方法において、前記管体の管軸方向溶接部の溶接面と前記管体の内面に対し、それぞれ33.2°から56.8°の範囲内の角度で入射するように前記送波部により超音波を送波し、前記溶接面における正反射方向に対して−12°から16°の範囲内の方向に反射した一部又は全部の反射波を前記受波部により受波し、前記アレイ探触子上で前記送波部及び受波部に対応する振動子群を変更する、又は前記アレイ探触子の角度を変更するように制御して前記管体の厚さ方向に走査することを特徴とする管体の超音波探傷方法である。
【0043】
又、本発明の請求項20に係る発明は、請求項15乃至19のいずれかに記載の管体の超音波探傷方法において、前記振動子群における各振動子の送波及び/又は受波タイミングをずらして、前記管体への入射角及び焦点位置を制御することを特徴とする管体の超音波探傷方法である。
【0044】
又、本発明の請求項21に係る発明は、請求項15乃至20のいずれかに記載の管体の超音波探傷方法において、前記管体に対する送波側の超音波又は受波側の超音波の少なくとも一方の入射角を一定に保つことを特徴とする管体の超音波探傷方法である。
【0045】
なお、送波ビームの集束位置と受波ビームの集束位置とは、必ずしも一点ではなく、送波ビーム、受波ビームが集束された位置でのビーム幅に相当する領域範囲であり、管体の断面内やそれと直交する管軸方向にもビーム幅を持ち、その値は材料や超音波諸元で決定される。
【発明の効果】
【0046】
本発明により、欠陥径は微小であるが、広い領域に分散している形態の散在型ペネトレータを検出できるようになるため、溶接鋼管の溶接部の機械的特性に影響を及ぼす微小欠陥が発生しないように溶接プロセスを改善したり、欠陥が流出しないように製造工程で選別できるようになり、溶接鋼管の品質を飛躍的に高めることができ、従来以上に過酷な使用条件で使用できるようになる。
【発明を実施するための最良の形態】
【0047】
まず、発明者は、検出対象とする欠陥の反射特性の調査を行い、微小欠陥を検出するための、超音波の欠陥への入射角や、欠陥で反射する反射波について受波する超音波の反射角の最適範囲を求めた。詳細を以下に記載する。
【0048】
[欠陥の反射特性の解析]
本発明が対象とする電縫溶接鋼管の溶接部に存在するペネトレータや冷接欠陥などの微小欠陥は、溶接部をアプセットして溶接鋼管を製造することから、管周方向にはつぶされ薄くなり、一方、管厚み(管径)方向と管軸方向、即ち、管軸溶接面内には伸ばされ、面積を有する平坦な形状であると想定される。
【0049】
そこで、欠陥の大きさと反射指向性の関係を理論的に検討し、図20に示す結果を得た。ここで、図20に示した結果は、図21に示すように、超音波を−45°方向から入射し、周波数10MHz、15MHz、20MHzにおいて、それぞれ管肉厚方向に対応する(図21では横方向に対応する)欠陥サイズ(等価欠陥サイズ)0.1mm、0.2mm、0.4mm、0.8mmの条件で、各反射角度における信号強度を理論的に計算して求めたものである。なお、図20の縦軸は正反射角度である45°の信号強度を基準値1として、規格化した相対値で示している。いずれの場合も超音波を入射した−45゜方向に反射する反射波の信号強度は非常に低く、正反射方向45゜のおよそ0.2以下である。いずれの場合も正反射方向である45゜方向が最も強いことがわかる。
【0050】
この計算条件で指向性が最も鋭い欠陥サイズ0.8mmの20MHzでは、正反射角度の信号強度に対して、信号強度が半分(図20で値が0.5)になる角度は40゜〜50゜の範囲である。このように、欠陥サイズによって指向性は異なるため、検出したい欠陥の大きさによって受波ビームの溶接部に対する入射角の範囲を決定すればよい。例えば、より大きな欠陥も感度の低下なく検出するためには受波ビームの溶接部に対する入射角は45゜に近い角度が望ましく、例えば15MHzで0.8mmの欠陥の信号強度低下を半分に抑えるには39゜〜52゜以内の範囲が好ましい。反対に例えば15MHzで0.4mm以下のみの小さな欠陥を対象とする場合は33゜〜61゜の範囲でも好ましい。
【0051】
上記解析により、欠陥における超音波の反射信号は、正反射方向をピークとして信号強度が高いことを見出した。その正反射方向の超音波を受波することが最も好ましいが、反射強度がピークの50%であれば十分に検出できるので、その範囲に対応する角度範囲に反射した超音波を受波すればよいことが分った。
【0052】
図20に示される、周波数15MHzで欠陥サイズ0.4mmの反射指向性の結果からすれば、反射強度がピークの50%以上となる反射角度が33°〜61°であるから、正反射角度である45°を基準として、−12°〜+16°の範囲が好ましい範囲である。また、周波数20MHzで欠陥サイズ0.8mmまでを対象とすれば、正反射角度に対して、−5°〜+5°の範囲が好ましい範囲となる。また、上述の例は、欠陥への入射角45°で反射角度特性を示したが、逆の反射角度を45°としたときの入射角特性も同様の結果が得られる。また、45°以外の入射角度であっても、後述するモード変換ロスの条件をクリアできる入射角度範囲であれば、ほぼ同様な特性が得られる。
【0053】
そして、この欠陥の反射特性に基づき、超音波センサの構成について検討を行った内容について以下に説明する。
【0054】
[タンデム構成]
上記のような欠陥反射特性の知見によれば、欠陥での正反射方向を中心として所定の角度範囲に反射した超音波を受波するためには、受波用超音波探触子を、送波用超音波探触子とは別の位置に配置する、いわゆるタンデム配置の構成とすることが好ましい。しかしながら、特許文献1のような、ポイントフォーカス型探触子を用いて、溶接部の管肉厚み方向(管径方向)に、抜けなく検査をするために、複数の探触子を配置する必要がある。また、より小さい欠陥を検出するために、ビームを集束するための大開口径化を指向することになる。このことを、装置構成として実現するには、エンジニアリング的、コスト的に非常に困難である。
【0055】
そこで、本発明においては、アレイ探触子を用い、送信部と受信部が異なるタンデム構成とした。アレイ探触子を用いることにより、送波部の振動子群と受波部の振動子群、および/または送波時の屈折角と受波時の屈折角を順次変更していくことで、超音波ビームの集束位置を溶接部の管肉厚み方向の内面側から外面側まで(あるいは、外面側から内面側まで。向きはどちらでもよい。)走査させることができ、内面側から外面側まで不感帯なく探傷可能となる。また、アレイ探触子を使用しているため、管のサイズが変わっても、走査範囲および集束位置を容易に変更でき、事前の設定調整が非常に簡単にもなる。このように、アレイ探触子の振動子をタンデム配置となるように選択し、且つ、厚み方向に抜けの無い検査を実現するようにした。
【0056】
なお、このタンデム構成は正反射方向に対し所定の角度範囲の反射波を受波することで感度向上のメリットがあるが、それ以外に、以下に述べるように他の感度向上効果があり、微小欠陥を確実に検出するためには、タンデム構成とすることが必要であるとの知見に至った。
【0057】
図22は、非タンデム構成とタンデム構成との比較を模式的に示す図である。図22(a)はアレイ探触子を用いて、送波部と受波部を同じとする一般的な反射法で溶接部を探傷する場合を示したものである。超音波は、アレイ探触子の振動子群から発せられて、管外面で屈折して管の内部に入り、溶接部に達する。欠陥があれば反射して、送波時と同じ経路を辿って送波した振動子群に入射し、受波される。ここで、受波する際に、欠陥からの反射波以外に、アレイ探触子内部での残響、管外面の表面粗さに起因する乱反射波、管外面で反射しアレイ探触子やその保持部などでの反射波、管内面の表面粗さやビード切削残りでの反射波が、アレイ探触子に向かう。このように、一般的な反射法の場合は、これらの不要な反射波、つまりノイズが、欠陥信号に重畳して、受波されるので、信号感度、S/N比が悪い状態の検出を行っている。また、そのノイズ除去は非常に困難を要するものである。
【0058】
一方、図22(b)に本発明による送波と受波を別の振動子群を用いたタンデム構成とするタンデム探傷法の場合を示した。超音波は、アレイ探触子の送波用振動子群から発せられて、管外面で屈折して管の内部に入り、溶接部に達する。欠陥があればそこで反射し、この時、正反射方向に最も強く進み、その後管内面で反射した後、管外面に達し、屈折して受波用の振動子群に入射し、受波される。このような経路を辿るため、アレイ探触子内部での残響、管外面の表面粗さに起因する乱反射、管外面で反射しアレイ探触子やその保持部などで反射、管内面の表面粗さやビード切削残りでの反射は、全て送波用の振動子群へ向かうが、受波用の振動子群には到達しない。つまり、本発明のタンデム構成における受波用振動子群で受波する信号には、超音波の乱反射に起因するノイズエコーが重畳せず、ノイズの影響をほとんど受けず、図22(a)に示す一般的な反射法に比べて極めて高いS/Nを得ることができることとなり、正反射方向の反射波を取ることの効果とノイズ低減の効果が得られて、微小欠陥の検出を可能とするものである。
【0059】
図23は、タンデム構成をとらない送受波を同じ探触子で行う従来法と本発明によるタンデム探傷法とを比較した探傷結果の一例である。
【0060】
図23(a)は従来法での探傷画像データ、(b)は本発明での探傷画像データである。なお、画像データ(a)、(b)においては、信号強度が高いほど白くなるように表示している。
【0061】
この結果からわかるように、従来の反射法では内面側表面粗さによるノイズが強く発生しており、ノイズに埋もれて、特に肉厚内部からの反射は非常に弱くなっており、ほとんど検出されていない。一方、本発明では内面側表面粗さによるノイズは弱くなり、肉厚内部も含めて明瞭に検出できるようになった。
【0062】
上述のように、タンデム構成は、従来法に対して、検出性能を向上させることがわかった。しかし、曲率をもった管体に適用するにあたり、いくつかの困難があることが判明した。その解決策について以下に説明する。
【0063】
[モード変換ロスの検討]
上述のようにタンデム構成により高感度化が十分達成できることを見出した。しかし、タンデム構成の高感度化を維持するためには、超音波の鋼管内部の伝播過程で、管の内面や外面、欠陥で反射する際の、「モード変換ロス」による信号強度の減衰が発生しないようにしなければならない。モード変換ロスは、鋼管に入射する超音波は横波超音波であるが、反射条件により縦波超音波に変換し、その結果、信号強度が減衰し、検出感度が低下する現象である。この現象を、図を用いて説明する。
【0064】
図24は、平鋼板でのモード変換ロスを説明する図である。図24(a)は平鋼板のタンデム構成での探傷(以下、タンデム探傷とも記載する)を示している。平鋼板に対して横波超音波を入射し、その屈折角をθとすると、平鋼板では、溶接面への入射角θaは(90°−θ)となる。また、底面への入射角θbはθとなる。ここで、鋼中においては、横波超音波が溶接部や鋼板底面などで反射する際に、約33°以下の入射角で入射すると、反射でのモード変換によって縦波超音波が図の点線方向に生じてしまうことが知られている。
【0065】
例えば、図24(a)のように、θが大きい(約57°以上)と、θaが小さく(約33°以下)なり、溶接部の反射でモード変換が発生し、図24(b)のように、θが小さい(約33°以下)と、溶接部の反射でモード変換が発生しないが、θbは約33°以下となるため、モード変換が発生する。このような横波から縦波へのモード変換が生ずると、タンデム探傷方向の超音波強度は弱まってしまい、その結果、検出感度が低下する。このように反射時に超音波が横波から縦波にモード変換し、横波超音波の強度が減衰する現象をモード変換ロスという。ここで、図24(c)は、反射する時に、その入射角に対する超音波が溶接面と内面とで2回反射したときの、反射強度の変化を示したもので、これに示されるように、理論値として入射角33.2°〜56.8°の範囲とすれば、モード変換ロスは生じない。
【0066】
なお、平鋼板であれば、アレイ探触子面と平鋼板上面との相対角度は場所によらず一定であるので、溶接面を超音波ビームで走査するために、送波部と受波部を構成する振動子群を移動させた場合でも、任意の位置で、平鋼板上面に対するアレイ探触子面の相対角度と探触子面に対する送波ビームの角度を検討しておけば、モード変換ロスが発生するか否かの屈折角条件は、容易に判断できる。
【0067】
しかしながら、鋼管のタンデム探傷では、曲率の影響により、平鋼板のように単純にいかないことを図25で説明する。前述の平鋼板と同様に、溶接面の角度を基準角度0°とした時に、屈折角θとなるようにアレイ探触子から超音波が鋼管に入射する場合を考える。なお、鋼管外面への入射点(入射位置)は、入射点における外面法線方向と溶接面とのなす角がθ1となる位置とする。このときの溶接面への入射角θaは(90°−θ)にはならず、(90°−θ−θ1)となる。同様に、底面への入射角θbはθにはならず、(θ+θ2)となる。
【0068】
この例においては、θ1<θ2であるから、平鋼板に比べると、モード変換ロスが生じない屈折角の範囲は最大でθ2だけ狭くなることになる。一例をあげると、肉厚t/外径D=3.4%の鋼管では、例えば屈折角が約45°とすれば、θ2は約4゜であるから、屈折角に対応させると、モード変換ロスが生じない屈折角の範囲は37゜〜53゜と狭くなる。なお、現実的に考えられる鋼管のサイズからすると、θ2は1.7°〜11.25°程度の範囲になる。
【0069】
なお、t/Dを最も小さい値からt/D=5%程度までで、主要な鋼管サイズのかなりがカバーでき、t/D=5%では、θ2が6.8°となる。この場合、屈折角の範囲は40゜〜50゜となる。
【0070】
さらに、ここでアレイ振動子が一般的に直線状であり鋼管に曲率があることを考慮すると、図25(b)に示すように、平鋼板の場合と同様にアレイ振動子から超音波ビームを一定角度(図では探触子面に対して90°)で送波すると、鋼管への入射角は一定角度にはならず、よって屈折角も一定にはならない。タンデム探傷を行うためには、アレイ振動子からのビームスキャン幅を肉厚の倍として、先のt/D=3.4%の鋼管を例に取ると、中心で屈折角45°となるように探触子を配置しても、スキャン幅内で屈折角は31°〜62°と変化してしまい、モード変換ロスが生じない範囲を超えてしまう。
【0071】
従って、上記問題があるので鋼管の曲率を考慮して、溶接面および底面でモード変換ロスが生じないよう屈折角が一定範囲となるようにビームを制御しないと、鋼管を高い感度でタンデム探傷することはできない。管体の溶接面および管体の内面への入射角を上記θ2を考慮して屈折角に変換すると、t/Dが最も小さな値のときで入射角の理論値に対して、屈折角は35゜〜55゜の角度になる。
【0072】
つまり、超音波ビームを走査して測定位置を移動させていくと、鋼管への超音波入射角(屈折角)を変化させていくことになるので、モード変換ロスの発生する角度になるのか否かが容易に判断できず、その方法は確立されていなかった。
【0073】
発明者は、モード変換ロスの発生しないように入射角度を、一例として以下に示す走査線の決定方法により、設定することを実現した。
【0074】
以下、屈折角度は、モード変換ロスが発生しない屈折角度範囲に設定する手順について説明する。
【0075】
1)屈折角を決め、アレイ探触子の位置および角度を定める。
【0076】
1)−1:溶接面への入射角θaを考慮して、屈折角θを決定する。モード変換ロスが発生しない理論的な溶接面への入射角は、33.2°≦θa≦56.8°であり、この範囲内であれば溶接面を管肉厚み方向の内面外面にかけて走査する際に、溶接面への入射角が一定でなく、変化しても構わない。よって、ここでは計算を容易にするために、屈折角θが一定になるようにする例で示す。ここで、溶接面への入射角度θaは、θa=90°−θ−θ1であり、また、θ1は、0〜θ2の範囲で溶接部肉厚方向位置により変化する(例えば、内面側ではθ1=θ2、外面側でθ1=0となる。)。例えば、θ2=4°、屈折角45°のときは、θa=41°〜45°。また、溶接部の管肉厚中心近傍に入射するときに屈折角を47°とすれば、溶接部の肉厚方向中心部でθa=約45°となり、内外面での走査では、θa=43°〜47°の範囲となる。
【0077】
1)−2:アレイ探触子の中心に位置する振動子から、その探触子面に対して垂直方向に送波されるビームが、所定の屈折角度(例えば、45°)で、横波超音波が鋼管外面側から入射し、溶接面の内面側端(または外面側端)の位置に所定の入射角(例えば、上述の例では41°)で入射するように、アレイ探触子の位置および角度を定める。
【0078】
2)アレイ探触子の各振動子から送受波される走査線が管の外面上に入射する位置を決める。
【0079】
2)−1:決め方は色々あるが、例えば、対象となる振動子(又は振動子の間の位置)について、管外面上を走査して、振動子位置と外面走査位置と外面接線とで決まる屈折角θを算出し、θが1)−1で決めた値になる外面上の入射位置を決定する。具体的には、各振動子から外面上の各点(例えば、各点は外周上に等間隔や任意間隔に配置)とを直線で結んで走査線を定め、それら各走査線について屈折角θを計算し、θが所定の屈折角と同じ、あるいは、最も近い値となる走査線を選択し、その走査線の入射位置とする。
【0080】
2)−2:振動子位置と上記2)−1で決めた外面上の入射位置と管形状(径と厚さ)から管入射後の伝播経路を幾何学的に求め、溶接面への入射位置を割り出す。
【0081】
3)上記1)でアレイ探触子の中心で位置決めし、かつ屈折角一定で上記処理をしているので、アレイ探触子中心の走査線を基準として対称的に、溶接面上に2)−2で求めた伝播経路(走査線)のルートの組合せ(ペア)ができる。このペアを送波・受波の走査線とし、送波部・受波部それぞれの中心振動子とする(この振動子を中心に送波部・受波部の振動子群が形成される)。なお、振動子群の数が偶数の場合は、中心位置が振動子の境界に修正されて、上記処理を行う。さらに、ここでは屈折角θ一定として計算したが、溶接面への入射角θaを一定として計算してもよいし、θおよびθaの双方を変化させることも可能である。
【0082】
詳細は後述するが、振動子群を適宜制御するまたは曲率をもったアレイ探触子にするようにすれば、入射角、屈折角をモード変換ロスを生じない理論的範囲に収めることができる。なお、横波での探傷に適した屈折角は、およそ30゜〜70゜の範囲で適用できるが、横波が欠陥および内面で反射する際の音圧反射率の角度依存性を考慮すると、全反射となるおよそ35゜〜55゜の範囲がより望ましい。さらに、安定性を考慮して40゜〜50゜の範囲にしてもよい。また、送波と受波の屈折角は同一であることが最も望ましいが、欠陥の反射指向性はブロードであることから、反射指向性の範囲内で異なっていても適用できる。
【0083】
[入射角一定の制御]
曲率を有する管体にタンデム化されたアレイ探触子を適用するに際しては、一般的なアレイ探触子は直線状であってこれを周面に対して配置することから、送波部と受波部を構成する振動子群のアレイ上の位置が変化すると、ある送受信と他の送受信では管体への入射角が変わってしまう。この現象を、管体での伝播経路例を表わす図26にて示す。実線のビームでは送波と受波が成り立っているが、それ以外の破線のビームについては、屈折角が異なっているため、送波と受波の関係が成り立たなくなっていることが分かる。
【0084】
即ち、送波部はアレイ探触子内に収められても、受波部はアレイ探触子の外の位置(図の破線に示す)になったりして、アレイ探触子の範囲内で、送波部と受波部の振動子群をタンデム構成となるように配置することができなくなる。発明者は、送波側若しくは受波側の少なくとも何れか一方、好ましくは双方の入射角を走査を通じて一定角度に保つようにした。そのようにすると、鋼管などの管体内部の屈折角が一定になるため、上述したような問題はほとんど生じない。
【0085】
例えば、図26と同様なアレイ探触子を用いた図4の場合でも屈折角を一定とすることで、全ての送波部と受波部の組合せがアレイ探触子内に収まる。また、屈折角を一定にすると、例えば鋼管の外面側内面側ともに真円であれば送波と受波の位置関係が幾何学的に容易に求まるという利点もある。さらには、鋼管に肉厚の変化があり内面側が真円でない場合でも、送波側若しくは受波側の何れか一方が一定の屈折角であれば、溶接面へ入射して反射した経路までは鋼管の外面側は真円であるから容易に求めることができ、そこから先の経路も内面側の形状を考慮して理論的あるいは実験的に決定することができる。
【0086】
なお、入射角を一定にする手段は、アレイ探触子から、送波部と受波部に使用する振動子群の各振動子を制御することで実現できる。振動子群の選択は、上述の方法で行えばよいが、他の制御に関する詳細は後述する。
【0087】
また、別の手段としては、アレイ探触子自体を管体と略同曲率となる形状で構成し、振動子を制御させてもよい。
【0088】
[ビーム幅の最適範囲]
図27(a)はビーム幅(四角の一辺に対応するビーム幅、図27ではビームサイズと表記)と等価欠陥径(ビーム内の欠陥合計面積に対応する欠陥径)との関係を示した図である。欠陥密度が0.03mmの場合と、0.02mmの場合について、超音波ビーム内に存在する欠陥合計面積を等価欠陥径として、ビーム幅(ビームサイズ)を変化させたときの、等価欠陥径を理論的に算出したものである。ビーム幅が大きくなるにつれて、等価欠陥径が大きくなるが、ビーム幅1.5mm以上で飽和して、一定値となる。このように飽和するのは、ここでの解析において、散在型ペネトレータの分布範囲を1.5mm×1.5mmと仮定したためである。
【0089】
図27(b)は、タンデム探傷において、上述の図27(a)に示した等価欠陥径に対応する音圧反射率から、そのときの信号強度を計算し、dBで表わした図である。ノイズレベルの−40dBはタンデム探傷で実際に得られるレベルをおよそで描いたものである。ビーム幅(ビームサイズ)が大きい側でノイズレベルが大きくなるのは、ビーム幅が大きくなると、内外面の表面粗さに起因するノイズを検出してしまいノイズレベルが増えるためである。タンデム探傷で、ノイズレベルが信号レベルより小さい範囲となる、ビーム幅0.5〜2.5mmの範囲が適用可能な範囲であることがわかる。また、欠陥密度0.02mmでは、やや信号強度が低くなるので、ビーム幅0.7mm超えから2.5mmが適用範囲となり、さらには、良好のS/N比とするためには、信号レベルとノイズレベルとの差が5dB以上であるのが望ましいので、1〜2mmがより好適な範囲である。
【0090】
ちなみに、図27(c)は、タンデム探傷とCスキャンの違いを比較するべく、上の等価欠陥径の信号強度を計算し、dBで表わした図である。図27(c)では、信号レベルを欠陥密度0.03mmのみの場合について示している。Cスキャンはシングルプローブであること、水距離が近いこと、表面が研磨面であることなどの好条件のため、タンデム探傷に比べてノイズレベルが低くなる。一方、ビーム幅(ビームサイズ)が1mmを越えると、サンプル側面の影響(ビーム伝播経路が遮られたり、サンプル側面での乱反射が発生し、そのノイズ信号を拾う)でS/Nが悪化する(厳密に言えば有効な探傷領域が狭くなって評価に使えなくなる)。図より、Cスキャンでのビームサイズの適用範囲は0.2〜1mmである。このように、本願発明で使用するタンデム探傷とCスキャン法とで、感度を良好とするために、集束の程度が異なっている。
【0091】
従って、本発明は、製造工程において鋼管のままの状態で、検査し、品質保証や品質制御を行うための検査が目的であるので、Cスキャン法におけるビーム幅(ビームサイズ)の最適値を求めても意味がなく、オンラインやインラインでの検査を可能とするタンデム探傷におけるビーム幅(ビームサイズ)の最適値が重要な意味をもつことになり、その適用範囲を導き出した。
【0092】
なお、タンデム探傷ではビーム幅dを得るための振動子の開口幅Dは、次式により求められる。
【0093】
【数1】

【0094】
ここで、図28に示す如く、dは、探傷位置におけるビーム幅、Fは焦点距離、λは波長、θは屈折角、θwは入射角である。
【0095】
例えば、水距離30mm、鋼中の路程を24mm、屈折角θ=45°とすると、焦点距離Fは30+24/1480×3230=82mm、周波数を10MHzとすると波長λは1480/10MHz=0.148mmである。従って、ビーム幅d=1.5mmを得るための開口幅Dは、式(1)から、15mmと求められる。
【0096】
以上のようにして求められた開口幅より振動子群の振動子数は求められる。ここで各走査線の振動子群の振動子数は一定でも良いが、感度をより均一にするためには、各走査線毎に振動子数を変化させても良い。すなわち、アレイ探触子を用いたタンデム探傷においては、振動子群の内、溶接部に近い側ほど焦点距離が短く、溶接部から遠い側ほど焦点距離が長いので、振動子の位置に応じた焦点距離Fを考慮し、ビーム幅が上述の範囲に収まるように、あるいは、ビーム幅が一定となるように、開口幅を求め、同時励震する振動子数を決定する。そして、この開口幅に対応する振動子数を同時励振するように制御をおこなう。なお、ここで同時励振する振動子数とは、1回の送波や受波に用いる振動子群の振動子数をいう。そして、この振動子群のなかで、集束や偏向の制御のために、各素子に対して遅延時間が設定される。
【0097】
振動子数を変えてビーム幅を一定にする場合は、具体的には、送波用の振動子群および受波用の振動子群の振動子数を、溶接部に近いほど少なく、溶接部から遠いほど多く設定することになる。このようにして、ビーム幅dを最適な範囲に設定することで、微小欠陥が広い範囲に分布している形態の散在ペネトレータを、内面側から外面側まで均一の検出感度で、探傷が可能となる。
【0098】
[超音波ビームの集束条件]
上述のように、タンデム探傷において、電縫溶接鋼管溶接部の機械的特性を評価するためには、送受信する超音波のビーム幅を0.5〜2.5mmとする必要がある。一方、ビームの集束度を表現するパラメータの一つである集束係数について、その最適な範囲を考察した。集束係数Jとは、集束位置での音圧上昇を示した値である。
【0099】
【数2】

【0100】
ここで、Dは振動子の開口幅、Fは焦点距離、λは波長である。なお、式(2)において、焦点距離Fと波長λは水中換算の値を用いる。
【0101】
図29に、周波数5MHz〜15MHz、焦点距離F=60mm〜80mm(鋼管の肉厚10mm〜16mmの範囲にほぼ相当)の条件で、式(2)を用いて、理論的に集束係数とビーム幅(ビームサイズ、図29ではビームサイズと表記)の関係を計算した結果を示す。これからわかるようにビーム幅(ビームサイズ)が小さいと、集束係数が大きくなり、ビーム幅が大きいと、集束係数が小さくなる。集束係数は音圧上昇を示す値であるので、大きな値ほど良いが、上述のように、微小欠陥が広い範囲に分布している形態の散在ペネトレータの検出においては、集束係数を大きくすると、ビーム幅が最適な範囲より小さくなってしまうので、ビーム幅が最適な範囲となることも考慮する必要がある。例えば、散在ペネトレータを検出するために適用可能な、超音波のビーム幅が0.5〜2.5mm程度に対しては、集束係数は−13dB〜28dBがそのまま対応する範囲となるが、ビーム幅との兼ね合いを考えれば、集束係数は−5〜20dB程度が適用範囲であり、ビーム幅の好適範囲である、1.0〜2.0mm程度に対しては、集束係数は−10〜5dB未満程度が適用範囲である。
【0102】
[シームずれ対応]
管の探傷では、アレイ探触子をシームに追従させて位置関係を保つことは難しく、多少のシームずれが生じやすく、このシームずれが起きると送波の走査線と受波の走査線が溶接線上で交わらなくなる。
【0103】
これに対し、設計上の正規の位置に置かれた管体の溶接部において、送波ビームの集束位置と受波ビームの集束位置とが一致している条件を中心として溶接部の上下(管体の径方向)、左右(管体の周方向)の複数点異なる位置に送波ビームと受波ビームの少なくともいずれか一方の集束位置となるように、前記送波用の振動子群と受波用の振動子群、およびまたは送波時の屈折角と受波時の屈折角を設定するようにしているため、シーム位置がずれても、いずれかの走査線の組合せは溶接線上で交わることとなり、欠陥からの反射波を確実に検出可能となる。
【実施例1】
【0104】
本発明の実施例を、以下に図面を参照しながら説明していく。図1は、本発明の第1の実施例を説明する図である。図中、1は被検体である鋼管、2は溶接部、3は肉厚内部の欠陥、4は超音波を伝達させるための水、5はリニアアレイ探触子、6は送波用の振動子群、7は受波用の振動子群、8は送波ビーム、9は欠陥から受波用の振動子群に向かう超音波を示す部分(以下、受波ビームとも呼ぶ)をそれぞれ表す。また、送波ビーム8および受波ビーム9の中間に引いてある線はそれぞれの走査線を示す。
【0105】
リニアアレイ探触子5は、溶接部2に近い側(図1における左側方向)に位置する振動子群から送波される超音波が溶接部の鋼管外面から直接入射し、溶接部から遠い側に位置する振動子群から送波される超音波が溶接部の鋼管外面に鋼管内面で1回反射したのち入射するような大きさを持たせている。そして、中心から垂直に出る送波ビームが屈折角45゜の横波で鋼管の外面側から入り、溶接部の鋼管内面側の端部に入射する(0.5スキップという)ように、鋼管の外周面に対して入射角を持たせて配置している。
【0106】
送波用の振動子群6からの超音波ビームは屈折角45゜となるように鋼管の外径に合わせてわずかにアレイ探触子の中心軸側に偏向させると共に、溶接部2を横切る位置で集束するように、各振動子の遅延時間が設定されている。同様に、受波用の振動子群7については、欠陥3からの反射エコーを内面側の1回反射波として受波できるように選択されており、屈折角が45゜となるように指向性を鋼管の外径に合わせてわずかにアレイ探触子の中心軸側に偏向させると共に、溶接部2を横切る位置で集束するように、各振動子の遅延時間が設定されている。ここで、屈折角は45゜に限らず、横波での探傷が可能なおよそ30゜〜70゜の範囲で適用できるが、横波が欠陥および内面で反射する際の音圧反射率の角度依存性を考慮すると、全反射となるおよそ35゜〜55゜の範囲が望ましい。さらに、安定性を考慮して40゜〜50゜の範囲にしてもよい。
【0107】
上記のように、送波ビームと受波ビームの振動子群の位置・数や屈折角が溶接部の位置に合わせて集束するように設定され、欠陥からの反射波を受波できるような位置関係になっているため、肉厚内部の微小欠陥からの反射を検出することができるようになる。
【0108】
次に、図2にて、鋼管内面から外面にわたる溶接部を走査するための手順例を示す。まず、走査の開始を示すステップ1では、リニアアレイ探触子の中央近傍の振動子群を用いて、溶接部の鋼管内面側に集束位置(焦点位置)を合わせて、0.5スキップの反射法で探傷を行う。この時は送波と受波は同一の振動子群で行う。次に、ステップ2では、送波の振動子群を溶接部側にずらすとともに、受波の振動子群を溶接部から遠い側にずらし、焦点位置を溶接部の鋼管内面側から少し上(鋼管外面側)に設定することで、タンデム探傷によって溶接部の鋼管内面側から少し上(鋼管外面側)の肉厚内部を探傷する。
【0109】
引き続き、ステップ3では送波の振動子群を溶接部側に、受波の振動子群を溶接部とは反対側にずらしていき、溶接部における探傷位置を鋼管外面側へと移動させて探傷を行う。図ではステップ2と3のみ図示しているが、実際には超音波の焦点サイズ(焦点位置におけるビームサイズ)を考慮して、探傷の抜け(漏れ)と重複のない効率的な探傷となるように、超音波ビームの一部が重なり合うように振動子群のずらす個数を決定する。最後にステップ4は走査の終了を示しており、溶接部から遠い側の振動子群を用いて、溶接部の外面側を1.0スキップの反射法で探傷を行う。このステップ1〜4を繰り返すとともに、鋼管とリニアアレイ探触子の相対位置を管軸方向に機械的に走査させることで、溶接部の全面全長(鋼管の外面側から内面側まで)にわたって探傷を行うことができる。
【0110】
図3は、本発明に係る超音波探傷装置の機能構成例を示す図である。被検体サイズ入力部30では、オペレータあるいはプロセスコンピュータから、探傷を行う鋼管の外径、肉厚の値が入力される。アレイ探触子記憶部31には、アレイ探触子5の周波数、振動子ピッチ、振動子数が記憶されている。
【0111】
開口幅制御部32では、鋼管のサイズおよびアレイ探触子の仕様に応じて、送波用アレイ探触子の位置、送波用走査線の数、各走査線の送波用ビームの経路を計算する。次に、各経路において、焦点距離、偏向角を求める。その焦点距離、超音波周波数を、式(1)に代入して、ビーム幅が所定の範囲になるように開口幅を求める。なお、ビーム幅の所定の範囲は、0.5〜2.5mmが適用可能範囲であり、好ましくは0.7mm超えから2.5mm、より好ましくは、1.0〜2.0mmである。
【0112】
開口幅を振動子ピッチで除算して、各走査線の送波用振動子群の振動子数を求める。そして、走査線位置と振動子数から送波用振動子群の位置を決定し、さらに走査線毎に各振動子の遅延時間を計算する。このように決定された上記の各値をここではアレイ送信則と呼ぶ。
【0113】
開口幅制御部32では、又、鋼管のサイズおよびアレイ探触子の仕様に応じて、アレイ探触子の位置、受波用走査線の数、各走査線の受波用ビームの経路を計算する。次に、各経路における焦点距離、偏向角を求める。その焦点距離、超音波周波数を、式(1)に代入して、ビーム幅が所定の範囲になるように開口幅を求める。なお、受波においても、送波同様に、ビーム幅の所定の範囲は、0.5〜2.5mmが適用可能範囲であり、好ましくは0.7mm超えから2.5mm、より好ましくは、1.0〜2.0mmである。
【0114】
開口幅を振動子ピッチで除算して、各走査線の受波用振動子群の振動子数を求める。そして、走査線位置と振動子数から受波用振動子群の位置を決定し、さらに走査線毎に各振動子の遅延時間を計算する。このように決定された上記の各値をここではアレイ受信則と呼ぶ。さらに、開口幅制御部32にて計算されたビームの経路に基づき欠陥検出用のゲート位置を決定してゲート位置記憶部33に記憶する。
【0115】
なお、ここで、アレイ受信則は先に求めたアレイ送信則に基づいて決定しても良いし、反対にアレイ受信則を先に求めてそれに基づいてアレイ送信則を決定しても良い。このようにして決定されたアレイ送信則とアレイ受信則はそれぞれアレイ送信則記憶部34とアレイ受信則記憶部35にて記憶され、以下の送受信制御に用いられる。
【0116】
アレイ送信部36では、アレイ送信則記憶部34に記憶されたアレイ送信則に基づいて、送波用の振動子群を選択し、各素子に遅延時間を付けて送信パルスを発生する。アレイ受信部37では、アレイ受信則記憶部35に記憶されたアレイ受信則に基づいて、受波用の振動子群を選択し、各素子に遅延時間を付けて信号を加算し、探傷波形を得る。ゲート部38では、ゲート部記憶部33に記憶されたゲート位置の信号を抽出する。
【0117】
欠陥判定部40では、判定しきい値入力部39に入力された欠陥判定しきい値と、ゲート内の信号強度とを比較し、信号強度がしきい値以上であれば欠陥と判定する。このようにして1走査線の探傷が終了したら、アレイ送信則記憶部34に記憶されたアレイ送信則に基づいて、次の送波用の振動子群を選択し、以下上記と同様に探傷を繰り返し行う。なお、欠陥の判定については、信号強度がしきい値以上となる場合が複数回あった時に欠陥と判定するようにしても良い。
【0118】
この超音波探傷装置を用いて、溶接面の厚み方向にビームを走査するための、振動子群の制御手順を以下に説明する。具体的には、送波・受波の振動子群、振動子の数、偏向角、焦点距離を、以下の手順で決定すればよい。ここでは、屈折角が一定となるように、送波部と受波部に使用する振動子群の幅は、必要な感度が得られるための集束係数から求めることとして、図1または図4を適宜参照して説明する。なお、以下に示すa)、b)、g)の内容は、前述した1)、2)、3)に対応するので、ここでは簡潔に説明を行う。
【0119】
a)リニアアレイ探触子の中心に位置する振動子から、その探触子面に対して垂直に送波されるビームが所定の屈折角度(例えば、屈折角45゜)の横波で鋼管に入り、溶接部の鋼管内面側または鋼管外面側に入射するように、リニアアレイ探触子の位置を定める。
【0120】
b)各振動子からの鋼管外面への入射角が常に一定、または、所定の範囲になるように、幾何学的に入射点を決め、さらに屈折角45゜で鋼管内を通る線(走査線)を決定する。
【0121】
ここでいう、各振動子とは送波部の中心位置に対応する振動子であり、送波部の振動子群と鋼管外面の入射点との位置関係が決定される。また、屈折角に対応して鋼管入射後の伝播経路、即ち、内面での反射点、外面での反射点、溶接面での反射点が定まることとなる。
【0122】
c)上記入射点と各振動子の位置関係から、各走査線の偏向角を計算する。
【0123】
d)各走査線の水距離と、溶接部までの鋼中路程を計算し、音速と水距離で換算して水中焦点距離Fを求める。
【0124】
e)必要なビーム幅dに合せて、式(1)を用いて、各走査線の開口幅Dを計算し、その開口幅Dを振動子ピッチで割って四捨五入することにより、各走査線の振動子群の振動子数n(請求項3の「同時励振する振動子数」に対応)を求める。なお、必要なビーム幅dとは、上述のように、微小欠陥が広い範囲に分布した形態を示す散在ペネトレータを検出するために適用されるビーム径の範囲であり、0.5〜2.5mm、好ましくは0.7mm超えから2.5mm、より好ましくは、1.0〜2.0mmである。
【0125】
f)各走査線の振動子位置と振動子数nから、送波部を構成する各振動子群の位置を決定する。
【0126】
g)各走査線の溶接部で交わる位置関係から、探傷に使用する走査線を決定するとともに、送波の振動子群とペアとなる受波の振動子群を決定する。送波部と受波部のペアの選択は、逆方向から伝播してきて、溶接部で交わる走査線同士をペアとすればよい。また、溶接部の同じ箇所を要求される空間分解能に対して必要以上に重複している場合には、間引くようにしてもよい。
【0127】
h)探傷に使用する全ての走査線について、振動子群の数、焦点距離と偏向角が決定されるので、各振動子に与える遅延時間をそれぞれ計算する。この計算方法については、本発明者により以前に出願された特許文献5に開示されている公知技術を利用すればよい。
【0128】
計算の基本的な考え方を、以下に図5および数式を参照して説明する。まず、振動子群の中心位置を座標の原点とし、焦点距離をF、偏向角をθとして、焦点位置の座標{Xf,Yf}を以下のように求める。
【0129】
Xf=F・sinθ、Yf=−F・cosθ
【0130】
次に振動子ピッチをP、振動子群の振動子数(請求項3の「同時励振する振動子数」に対応し、図5では「同時励振素子」と記した。)をn(ただし、nは偶数)として、各振動子の座標{Xp(i),Yp(i)}を求める。
【0131】
Xp(i)=−n・p/2−p/2+p・i、Yp(i)=0 (i=1〜n)
【0132】
さらに、焦点位置と各振動子との距離Z(i)およびその最大値Zmを次のように求める。
【0133】
Z(i)=SQRT{(Xf−Xp(i))+(Yf−Yp(i))} (i=1〜n)
Zm=max{Z(i)} (i=1〜n)
【0134】
最後に、次式で遅延時間Δt(i)を求める。なお、Cは音速である。
【0135】
Δt(i)=(Zm−Z(i))/C (i=1〜n)
【0136】
なお、上記は計算の基本的な考え方を示したものであって、各走査線のそれぞれについて振動子群の中心位置を座標の原点とする必要は必ずしもない。また、振動子数nは偶数として説明したが、奇数であってもよい。奇数の場合には、上記式を一部変更すれば適用可能であることはいうまでもない。実際の計算においては、予めアレイ探触子の素子それぞれの座標を決めておき、焦点距離と偏向角に応じて焦点位置の座標を求め、上記焦点位置と各振動子との距離Z(i)を求めるようにすれば良い。
【0137】
図4は、このように決定された走査線と、その走査線のうちの代表的な点の探傷条件計算結果の一例を示す図である。外径φ558.8mm、肉厚25.4mmの鋼管を、超音波周波数15MHz、振動子の間隔を0.5mmピッチ、160素子(振動子)のリニアアレイ探触子で、中心の水距離20mm、屈折角45゜で探傷する例を示している。ここで振動子番号は、溶接部に近い側を1、遠い側を160とした。
【0138】
以上、図4中の表のように、各振動子位置における焦点距離が求められるので、その焦点距離にもとづき、管軸方向に集束するための音響レンズの曲率も決定される。音響レンズの曲率rは、良く知られているように次式にて計算される。
【0139】
r={1−(C2/C1)}F …(3)
【0140】
なお、走査線Aは二点鎖線、走査線Bは破線、走査線Cは一点鎖線で示され、図をわかりやすくするために、走査線A、B、Cの線の両側は白で表示している。また、探触子の黒色部分は各走査線を送受波するための振動子群を表している。
【0141】
図6は、図4に示される走査線Aについて遅延時間を計算した結果と送波の原理を示した図である。図中、10は、上記1)〜8)までを計算する探傷条件計算部、11はそれに基づいて送波パルスの送波タイミングを決定する遅延時間設定部、12はパルサー、13はリニアアレイ探触子5の各振動子である。図では、振動子番号17〜22のみが選択され、振動子番号17が一番先に励振され、徐々に時間遅れをもって振動子番号18〜22までが励振されることが示されている。これによって、走査線Aに相当する送波ビームが形成される。
【0142】
図7は、図4に示される走査線Cについて遅延時間を計算した結果と受波の原理を示した図である。図中、13はリニアアレイ探触子の各振動子、14は受信アンプ、15は遅延時間設定部、16は合成処理部、17はゲート評価部である。図では、振動子番号124〜155のみが選択され、欠陥からのエコーが振動子番号124に一番先に入射し、徐々に時間遅れを持って振動子番号125〜155まで受信され、遅延時間設定部15にてこの時間遅れが補正されて位相が一致し、合成処理部16にて合成され、集束効果によってエコーが大きくなることが示されている。
【0143】
これによって、走査線Cに相当する受波が行われる。この後、ゲート評価部17にて、送波パルス(図中のTパルス)からビーム路程に応じた距離に設定された時間域(ゲート)にて欠陥エコー(図中のFエコー)の有無が判定され、探傷が行われる。なお、遅延時間設定部15、合成処理部16、ゲート評価部17については、受信アンプ14を出てすぐにA/D変換し、信号をメモリーに記憶してからソフト的に処理を行っても実施できる。
【0144】
本実施例において探傷条件の計算は、上記2)以降のようにまず各走査線の入射点を決めてから、順次計算を行っていったが、これに限られることなく、例えば、焦点位置を決めてから、その焦点位置に至る伝播時間が最も短い経路を各振動子について探索的に求めるようにしても良い。
【実施例2】
【0145】
次に本発明の第2の実施例について説明する。図8は、本発明の第2の実施例を説明する図であり、図2に示したステップ3における探傷の設定と手順を示している。図中、7'〜7'''は受波用の振動子群、9'〜9'''は受波ビームである。この実施例では、送波用の振動子群5から送波ビーム6を送波し、まず、受波用の振動子群7'で受信する。次に、送波用の振動子群5から送波ビーム6を送波し、受波用の振動子群7''で受信する。最後に送波用の振動子群5から送波ビーム6を送波し、受波用の振動子群7'''で受信する。このようにすることで、溶接部位置が図に示されているように、溶接点の位置を特定できない、位置決め精度が悪い、振動があるなどの理由によって、左右に揺らいでも、どれかの組合せでは溶接部で走査線が交差するため、欠陥を見逃しなく検出することができる。
【実施例3】
【0146】
次に本発明の第3の実施例について説明する。図9は本発明の第3の実施例を説明する図である。第3の実施例では、図2におけるステップ1〜4で管周方向のある部分を全肉厚探傷した後、次にステップ5〜8でその走査位置より手前(図中右側)を、さらにステップ9〜12で奥側(図中左側)を探傷するようにしている。
【0147】
このようにすることで、溶接点の位置を特定できない、位置決め精度が悪い、振動があるなどの理由によって、左右に揺らいでも、どれかの組合せでは溶接線で走査線が交差するため、欠陥を見逃しなく検出することができる。図9では走査線の交差位置を管周方向で3本としたが、これに限られることはない。走査線の交差位置をずらす方法としては、送信または受信の振動子群の位置をずらす、あるいは偏向角を変化させるなどの方法で実現できる。
【実施例4】
【0148】
次に本発明の第4の実施例について説明する。第1の実施例では、1つのアレイ探触子で溶接面厚み方向(管径方向)全域を走査したが、第4の実施例では、図10に示されるように、1つのアレイ探触子の中に、送波部と受波部が有するアレイ探触子を周方向に複数個配置して、溶接面厚み方向(管径方向)を分割して、各アレイ探触子で走査するものである。
【0149】
この例では2つのアレイ探触子を用いて、図中左側のアレイ探触子では内面から肉厚中央部までを探傷するようにし、右側のアレイ探触子では肉厚中央部から外面までを探傷するようにしている。図2に示すような一つのアレイ探触子で内面から外面までを探傷しようとすると、特に厚肉材ではアレイ探触子の長さが長くなる。すると、送波用あるいは受波用振動子群がアレイ探触子の端に来る場合に偏向角が大きくなってしまうため、感度が低下するという問題が生ずる。
【0150】
これに対し、本実施例は、複数のアレイ探触子を用いて肉厚方向を分割してカバーするようにしているため、アレイ探触子の長さが長くならず、偏向角があまり大きくならず感度低下が抑えられる。例えば、22''で25mm厚の鋼管を第1の実施例で探傷する場合は、アレイ探触子の長さとしては88mmが必要であり、最も振動子群が端に設定される際の偏向角は±5.9゜である。
【0151】
ここで例えば、アレイ探触子の1素子の幅を0.95mm、周波数を10MHzとすると、偏向による感度低下は17.4dBとなる。これを受信ゲインを増やして感度補償しようとしても、同時に電気ノイズも増えてしまうため、S/Nを高くすることができない。一方、本実施例ではアレイ探触子の長さは60mmで済み、最端の振動子群での偏向角は±3.4゜となり感度低下は5dBで済む。この程度であれば受信ゲインを増やして感度補正を行っても電気ノイズの増大は少なくて済む。
【実施例5】
【0152】
次に本発明の第5の実施例について説明する。第1の実施例と第4の実施例は、1つのアレイ探触子の中に送波部と受波部があるようにしたが、第5の実施例では、図11に示されるように、送波用のみに用いるアレイ探触子と受波用のみに用いるアレイ探触子とを区別し、複数のアレイ探触子を配置する構成とした。このようにすると、送波受波それぞれに最適化されたアレイ探触子を使うことができるので、感度が向上する。また、それぞれの鋼管に対する角度を最適に設定できるので、偏向角が小さくなり感度低下が抑えられる。
【実施例6】
【0153】
第5の実施例までは、アレイ探触子の一部の振動子群を用いて送波部と受波部とし、送波部と受波部を移動させながら溶接面を走査していたが、第6の実施例では、図12に示されるように、送波用アレイ探触子と受波用アレイ探触子とを区別して、複数のアレイ探触子を配置し、アレイ探触子の全部の振動子群で送受波する。溶接面の走査の方法は、送波ビームと受波ビームの交差位置を設定するために、偏向角を変更させるようにしている。このようにすると、アレイ探触子の素子全てを振動子群として使うことができるため、開口が大きくなり、集束係数を大きくすることができる。ここで、アレイ探触子の位置を固定している場合は、溶接線に対して送波ビームと受波ビームが正反射の関係にはならないため、偏向角を変更すると同時に、送波用アレイ探触子あるいは受波用アレイ探触子の位置を送波ビームと受波ビームが溶接線にて正反射の関係になるように機械的に移動させても良い。
【実施例7】
【0154】
次に本発明の第7の実施例について説明する。第7の実施例では、図13に示されるように、アレイ探触子を管の曲率に合わせた形状とするものである。このようにすると、実施例1から6までとは異なり、送信受信の入射位置が変わったとしても、リニアアレイ探触子のような複雑な偏向角の演算処理を行わずに、偏向角および屈折角を一定として走査することが容易に可能であり、感度ばらつきを抑えることができる。
【0155】
なお、実施例4〜7の構成は、単独で使用する構成と限定されるものではなく、例えば、溶接面を内面側と外面側との分割し、内面側を実施例4の構成とし、外面側を実施例5の構成として組み合わせたり、実施例7のように管の曲率をもったアレイ探触子に屈折角度と遅延時間を制御を組み合わせた構成などのように、適宜組み合わせて、構成してもよい。
【図面の簡単な説明】
【0156】
【図1】本発明の第1の実施例を説明する図
【図2】本発明の第1の実施例における走査の手順例を示す図
【図3】本発明に係る超音波探傷装置の機能構成例を示す図
【図4】走査線と、代表点の探傷条件計算結果の一例を示す図
【図5】各振動子に与える遅延時間の計算を説明する図
【図6】走査線Aについて遅延時間を計算した結果と送波の原理を示した図
【図7】走査線Cについて遅延時間を計算した結果と受波の原理を示した図
【図8】本発明の第2の実施例を説明する図
【図9】本発明の第3の実施例を説明する図
【図10】本発明の第4の実施例を説明する図
【図11】本発明の第5の実施例を説明する図
【図12】本発明の第6の実施例を説明する図
【図13】本発明の第7の実施例を説明する図
【図14】発明者の調査で判明した微小ペネトレータの種類を示す斜視図
【図15】シャルピー衝撃試験を行ったサンプル結果を示す図
【図16】本発明の原理を説明するためのシームスライス材のCスキャン方法を示す斜視図
【図17】同じく50MHzビーム径100μmでのCスキャン結果を示す図
【図18】同じく50MHzビーム径250μmでのCスキャン結果を示す図
【図19】同じく反射源が散在している場合の検出イメージ図
【図20】欠陥の大きさと反射指向性の関係を説明する図
【図21】反射特性を説明する図
【図22】非タンデム構成とタンデム構成との比較を模式的に示す図
【図23】非タンデム構成をとる従来法とタンデム探傷法との比較例を示す図
【図24】平鋼板でのモード変換ロスを説明する図
【図25】鋼管でのモード変換ロスを説明する図
【図26】管体での伝播経路例を表わす図
【図27】ビームサイズと信号強度の関係を示す図
【図28】開口幅とビームサイズの関係を示す図
【図29】集束係数とビームサイズの関係を示す図
【符号の説明】
【0157】
1…鋼管
2…溶接部
3…欠陥
4…水
5…リニアアレイ探触子
6…送波用の振動子群
7…受波用の振動子群
8…送波ビーム
9…受波ビーム
10…探傷条件計算部
11…遅延時間設定部
12…パルサー
13…リニアアレイ探触子の振動子
14…受信アンプ
15…遅延時間設定部
16…合成処理部
17…ゲート評価部
30…被検体サイズ入力部
31…アレイ探触子記憶部
32…開口幅制御部
33…ゲート位置記憶部
34…アレイ送信則記憶部
35…アレイ受信則記憶部
36…アレイ送信部
37…アレイ受信部
38…ゲート部
39…判定しきい値入力部
40…欠陥判定部

【特許請求の範囲】
【請求項1】
管体の管軸方向溶接部の溶接面に対し、ビーム幅が0.5mmから2.5mmの範囲となるように超音波を送波する送波部と、
前記溶接面における反射波の一部または全部を受波する受波部とを有し、
前記送波部及び前記受波部が、管体周方向に配置された一又は二以上のアレイ探触子上の異なる振動子群からなる送受信部を備えたことを特徴とする管体の超音波探傷装置。
【請求項2】
請求項1に記載の管体の超音波探傷装置において、更に、
前記溶接面に対する超音波ビームのビーム幅が前記範囲に維持されるように、各送波に用いる超音波の開口幅を制御する制御部を備えたことを特徴とする管体の超音波探傷装置。
【請求項3】
請求項2に記載の管体の超音波探傷装置において、
前記制御部は、同時励振する振動子数により、超音波開口幅を制御することを特徴とする管体の超音波探傷装置。
【請求項4】
請求項1乃至3のいずれかに記載の管体の超音波探傷装置において、
前記送波部は、集束位置での音圧上昇を示す集束係数が−13dB以上28dB以下となる超音波を送波することを特徴とする管体の超音波探傷装置。
【請求項5】
請求項2乃至4のいずれかに記載の管体の超音波探傷装置において、
前記送波部は、管体の管軸方向溶接部の溶接面と前記管体の内面に対し、それぞれ33.2°から56.8°の範囲内の角度で超音波を入射し、
前記受波部は、前記溶接面における正反射方向に対して−12°から16°の範囲内の方向に反射した一部又は全部の反射波を受波し、
前記制御部は、前記アレイ探触子上で前記送波部及び前記受波部に対応する振動子群を変更する、又は前記アレイ探触子の角度を変更するように制御して、超音波を前記管体の厚さ方向に走査するとともに、前記溶接面と前記内面への入射角度及び前記溶接面での反射波の角度が前記それぞれの範囲に維持されるように、各送波及び受波における管体に対する超音波の入射角を制御することを特徴とする管体の超音波探傷装置。
【請求項6】
請求項5に記載の管体の超音波探傷装置において、
前記制御部は、前記振動子群における各振動子の送波及び/又は受波タイミングをずらすことにより、前記溶接面と前記内面への入射角度及び前記溶接面での反射波の角度が前記それぞれの範囲に維持されるように、前記管体への入射角及び焦点位置を制御することを特徴とする管体の超音波探傷装置。
【請求項7】
請求項5又は6に記載の管体の超音波探傷装置において、
前記管体に対する送波側の超音波又は受波側の超音波の少なくとも一方の入射角を一定に保つことを特徴とする管体の超音波探傷装置。
【請求項8】
請求項5乃至7のいずれかに記載の管体の超音波探傷装置において、
前記制御部は、前記管体への超音波の入射角が一定となるように各振動子の送波又は受波の少なくとも一方を制御することを特徴とする管体の超音波探傷装置。
【請求項9】
請求項1乃至8のいずれかに記載の管体の超音波探傷装置において、
前記アレイ探触子は、前記管体周方向に沿うように曲率を持たせて振動子群を配置することを特徴とする管体の超音波探傷装置。
【請求項10】
請求項1乃至9のいずれかに記載の管体の超音波探傷装置において、
前記アレイ探触子には、送波ビーム及び受波ビームを管体の管軸方向に集束させるための音響レンズを備え、該音響レンズの焦点距離を、溶接部に近いほど短く、溶接部から遠いほど長く設定することを特徴とする管体の超音波探傷装置。
【請求項11】
請求項1乃至10のいずれかに記載の管体の超音波探傷装置において、
前記送受信部は、複数のアレイ探触子から成ると共に、それぞれのアレイ探触子上に送波及び受波部を有することを特徴とする管体の超音波探傷装置。
【請求項12】
請求項1乃至10のいずれかに記載の管体の超音波探傷装置において、
前記送受信部は、送波部と受波部が別々のアレイ探触子からなることを特徴とする管体の超音波探傷装置。
【請求項13】
請求項5乃至10のいずれかに記載の管体の超音波探傷装置において、
前記送受信部は、送波部と受波部が別々のアレイ探触子からなり、
前記制御部は、各アレイ探触子からの送波ビーム及び受波ビームの偏向角を変更することを特徴とする管体の超音波探傷装置。
【請求項14】
請求項5乃至13のいずれかに記載の管体の超音波探傷装置において、
前記制御部は、送波ビームの走査線と受波ビームの走査線とが、前記管体周方向の複数の位置において交差するように、各送波及び/又は受波における前記管体に対する超音波の入射角及び焦点位置を変更することを特徴とする管体の超音波探傷装置。
【請求項15】
管体周方向に配置された一又は二以上のアレイ探触子上の異なる振動子群からなる送波部及び受波部とから構成される管体の超音波探傷装置を用い、
前記管体の管軸方向溶接部の溶接面に対しビーム幅が0.5mmから2.5mmの範囲となるように超音波を送波することを特徴とする管体の超音波探傷方法。
【請求項16】
請求項15に記載の管体の超音波探傷方法において、
前記溶接面に対する超音波ビームのビーム幅が前記範囲に維持されるように、各送波に用いる超音波の開口幅を制御することを特徴とする管体の超音波探傷方法。
【請求項17】
請求項16に記載の管体の超音波探傷方法において、
前記振動子群における同時励振する振動子数により、超音波の開口幅を制御することを特徴とする管体の超音波探傷方法。
【請求項18】
請求項15乃至17のいずれかに記載の管体の超音波探傷方法において、
集束位置での音圧上昇を示す集束係数が−13dB以上28dB以下となる超音波を送波することを特徴とする管体の超音波探傷方法。
【請求項19】
請求項15乃至18のいずれかに記載の管体の超音波探傷方法において、
前記管体の管軸方向溶接部の溶接面と前記管体の内面に対し、それぞれ33.2°から56.8°の範囲内の角度で入射するように前記送波部により超音波を送波し、
前記溶接面における正反射方向に対して−12°から16°の範囲内の方向に反射した一部又は全部の反射波を前記受波部により受波し、
前記アレイ探触子上で前記送波部及び受波部に対応する振動子群を変更する、又は前記アレイ探触子の角度を変更するように制御して前記管体の厚さ方向に走査することを特徴とする管体の超音波探傷方法。
【請求項20】
請求項15乃至19のいずれかに記載の管体の超音波探傷方法において、
前記振動子群における各振動子の送波及び/又は受波タイミングをずらして、前記管体への入射角及び焦点位置を制御することを特徴とする管体の超音波探傷方法。
【請求項21】
請求項15乃至20のいずれかに記載の管体の超音波探傷方法において、
前記管体に対する送波側の超音波又は受波側の超音波の少なくとも一方の入射角を一定に保つことを特徴とする管体の超音波探傷方法。

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図19】
image rotate

【図20】
image rotate

【図21】
image rotate

【図22】
image rotate

【図24】
image rotate

【図25】
image rotate

【図26】
image rotate

【図27】
image rotate

【図28】
image rotate

【図29】
image rotate

【図1】
image rotate

【図8】
image rotate

【図9】
image rotate

【図17】
image rotate

【図18】
image rotate

【図23】
image rotate


【公開番号】特開2008−209364(P2008−209364A)
【公開日】平成20年9月11日(2008.9.11)
【国際特許分類】
【出願番号】特願2007−48875(P2007−48875)
【出願日】平成19年2月28日(2007.2.28)
【出願人】(000001258)JFEスチール株式会社 (8,589)
【Fターム(参考)】