説明

自走式掃除機

【課題】 自走して清掃が可能であるとともに、自走の機能を利用しつつ火災報知にも利用可能な自走式掃除機を提供の提供を課題とする。
【解決手段】 本発明によれば自走式掃除機に備えられる測距用のAF用パッシブセンサ31FMを利用して炎の検出を行うことができる。従って、火災検出用のカメラ等を新たに搭載する必要がなくて済む。また、AF用パッシブセンサ31FMにより少なくとも2回以上(ステップS510,S530)撮像を行い、炎に対応する撮像画素領域の増減を判断基準としているため、炎のみを確実に検出することができる。従って、炎に似た色の障害物を炎として検出してしまうこともない。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、掃除機構を備えた本体と、障害物との距離を検出する測距機構と、同測距機構により測定された距離に基づいて操舵と駆動を実現する駆動機構とを備える自走式掃除機に関するものである。
【背景技術】
【0002】
従来、この種の火災報知器として、カラーカメラで撮像したカラー画像データを解析することにより火災の検知を行うものが知られている(例えば、特許文献1参照。)。 かかる構成によれば、炎の位置変化の空間周波数特性に着目することにより、カラー画像データに含まれる炎の成分の検出を正確に行うことが可能であった。従って、カラー画像データにイルミネーション等の画像成分が含まれる場合であっても、火災の有無を正確に判定することができた。
【特許文献1】特開平10−126765号公報
【発明の開示】
【発明が解決しようとする課題】
【0003】
しかしながら、上述した火災報知器は固定して設置されるため、視野が一定となる。従って、広範囲にわたって火災の監視を行うためには、複数のカラーカメラを設置しなければならない。この場合、カラーカメラの設置台数が増加し、設置コストが増加するという課題があたった。また、障害物等により死角が生じ、視野内であっても実質的に火災の監視を行うことができない部分が存在するという課題があった。
【0004】
本発明は、上記課題にかんがみてなされたもので、自走して清掃が可能であるとともに、自走の機能を利用しつつ火災報知にも利用可能な自走式掃除機を提供することを目的とする。
【課題を解決するための手段】
【0005】
上記目的を達成するため、請求項1にかかる発明は、掃除機構を備えた本体と、障害物との距離を検出する測距機構と、同測距機構により測定された距離に基づいて操舵と駆動を実現する駆動機構とを備える自走式掃除機において、
上記測距機構は、それぞれ複数の撮像画素によって構成され、異なる位置に備えられた2個以上のCCDラインセンサにおける撮像ずれから上記障害物との距離を測定する測距手段と、上記CCDラインセンサの各撮像画素に蓄積される電荷の蓄積度合いを取得し、同取得した蓄積度合いが炎に対応する値域となる撮像画素を、炎を受像した撮像画素として検出する炎検出手段と、明るさを取得する明るさ検出手段と、同明るさ検出手段によって取得された明るさに応じて炎に対応する上記値域を変動させる値域変動手段と、上記炎検出手段により炎を受像した撮像画素が検出されたとき、上記駆動機構による操舵および駆動を停止させるとともに、上記CCDラインセンサにより再度撮像し、その撮像結果から炎を受像した撮像画素領域の変動を検出する火災検出手段と、上記火災検出手段が炎を受像した撮像画素領域の変動を認識したとき、上記駆動機構に操舵および駆動を行わせつつ、警報を発する警報手段とを具備する構成としてある。
【0006】
上記のように構成した請求項1の発明において、自走式掃除機が掃除機構により掃除を行うにあたり、駆動機構が操舵と駆動を実現する。また、測距機構が障害物との距離を検出することにより、障害物を避けつつ操舵と駆動を実現することができる。上記測距機構は、異なる位置に備えられた2個以上のCCDラインセンサによって構成され、同CCDラインセンサのそれぞれが複数の撮像画素によって構成されている。そして、各CCDラインセンサの撮像ずれに基づいて上記障害物との距離を測定することができる。
【0007】
上記CCDラインセンサにより撮像を行う際に各撮像画素には入力に応じた電荷が蓄積される。炎検出手段は蓄積された電荷の蓄積度合いを取得する。そして、この蓄積度合いと炎に対応する値域とを比較し、この蓄積度合いが同値域内となる撮像素子を炎を受像した撮像画素として検出する。一方、明るさ検出手段は、明るさを取得する。そして、値域変動手段は、同明るさ検出手段によって取得された明るさに応じて炎に対応する上記値域を変動させる。
【0008】
火災検出手段は、上記炎検出手段により炎を受像した撮像画素が検出されたとき、上記駆動機構による操舵および駆動を停止させる。これにより、上記CCDラインセンサの撮像視野が一定に保持される。そして、上記CCDラインセンサにより再度撮像し、その撮像結果から炎を受像した撮像画素領域の変動を検出する。炎を受像した撮像画素領域の変動があった場合には、警報手段が警報を発する。警報を発する際には上記駆動機構により操舵および駆動が行われる。すなわち、経時的に炎を受像した撮像画素領域が変動した場合、これをもって炎のゆらぎを認識し、火災の警報を行うことができる。
【0009】
本体に備えられる掃除機構については、吸引タイプによる掃除機構を採用しても良いし、ブラシにより掻き込むタイプの掃除機構を採用しても良いし、両者を組み合わせて採用しても良い。
【0010】
また、操舵及び駆動が可能な駆動機構についても、本体における左右に配置された駆動輪の回転を個別に制御することにより、前進、後進、左右への方向転換及び同一場所での回転といった操舵及び駆動が可能である。なおこの場合、前後などに補助輪を備えても良いことはいうまでもない。また、駆動輪は、車輪のみならず、無端ベルトを駆動する構成で実現しても良い。むろん、これ以外にも、4輪、6輪など、各種の構成で駆動機構を実現可能である。
【0011】
また、請求項2にかかる発明は、掃除機構を備えた本体と、障害物との距離を検出する測距機構と、同測距機構により測定された距離に基づいて操舵と駆動を実現する駆動機構とを備える自走式掃除機において、
上記測距機構は、それぞれ複数の撮像画素によって構成され、異なる位置に備えられた2個以上のラインセンサにおける撮像ずれから上記障害物との距離を測定する測距手段と、上記ラインセンサによる撮像結果から炎を受像した撮像画素を検出する炎検出手段と、上記炎検出手段により炎を受像した撮像画素が検出されたとき、上記ラインセンサにより再度撮像し、その撮像結果から炎を受像した撮像画素領域の変動を検出する火災検出手段と、上記火災検出手段が炎を受像した撮像画素領域の変動を認識したとき、警報を発する警報手段とを具備する構成としてある。
【0012】
上記のように構成した請求項2の発明において、自走式掃除機が掃除機構により掃除を行うにあたり、駆動機構が操舵と駆動を実現する。また、測距機構が障害物との距離を検出することにより、障害物を避けつつ操舵と駆動を実現することができる。上記測距機構は、異なる位置に備えられた2個以上のラインセンサによって構成され、同ラインセンサのそれぞれが複数の撮像画素によって構成されている。そして、各ラインセンサの撮像ずれに基づいて上記障害物との距離を測定することができる。
【0013】
炎検出手段は、上記ラインセンサによる撮像結果から炎を受像した撮像画素を検出する。火災検出手段は、上記炎検出手段により炎を受像した撮像画素が検出されたとき、、上記ラインセンサにより再度撮像し、その撮像結果から炎を受像した撮像画素領域の変動を検出する。炎を受像した撮像画素領域の変動があった場合には、警報手段が警報を発する。
【0014】
さらに、請求項3にかかる発明は、上記炎検出手段は、上記ラインセンサに蓄積される電荷の蓄積度合いを取得し、同取得した蓄積度合いが炎に対応する値域となる撮像画素を、炎を受像した撮像画素として検出する構成としてある。
上記のように構成した請求項3の発明において、上記ラインセンサにより撮像を行う際に各撮像画素には入力に応じた電荷が蓄積される。炎検出手段は蓄積された電荷の蓄積度合いを取得する。そして、この蓄積度合いと炎に対応する値域とを比較し、この蓄積度合いが同値域内となる撮像素子を炎を受像した撮像画素として検出する。このようにすることにより、測距機構として障害物との距離の測定を行いながら、炎を示すもを検出することも可能となる。
【0015】
さらに、請求項4にかかる発明は、明るさを取得する明るさ検出手段と、同明るさ検出手段によって取得された明るさに応じて炎に対応する上記値域を変動させる値域変動手段とを具備する構成としてある。
上記のように構成した請求項4の発明において、明るさ検出手段は、明るさを取得する。そして、値域変動手段は、同明るさ検出手段によって取得された明るさに応じて炎に対応する上記値域を変動させる。このようにすることにより、明るさに応じた上記閾値を設定することができる。
【0016】
また、請求項5にかかる発明は、上記駆動機構は、上記炎検出手段が炎を検出した後、上記火災検出手段が再度の撮像を完了させるまで操舵および駆動を停止させる構成としてある。
上記のように構成した請求項5の発明において、上記炎検出手段により炎を受像した撮像画素が検出されたとき、上記駆動機構による操舵および駆動が停止する。これにより、上記ラインセンサの撮像視野が一定に保持される。従って、一定の視野について炎を受像した撮像画素領域の変動を評価することができる。
【0017】
また、請求項6にかかる発明は、上記ラインセンサは、CCDセンサである構成としてある。
上記のように構成した請求項6の発明において、上記ラインセンサとしてCCDセンサを適用することも可能である。
【0018】
また、請求項7にかかる発明は、上記警報手段は、上記駆動機構に上記自走式掃除機の操舵および駆動を行わせつつ、警報を発する構成としてある。
上記のように構成した請求項7の発明において、警報を発する際に、上記駆動機構により操舵および駆動を行うことにより、離れた位置にいる使用者にも近づいて警報を発することができる。
【発明の効果】
【0019】
以上説明したように請求項1および請求項2にかかる発明によれば、自走して清掃が可能であるとともに、自走の機能を利用しつつ火災報知にも利用可能な自走式掃除機を提供することができる。
また、請求項3にかかる発明によれば、ラインセンサにおける電荷の蓄積度合いに基づいて炎を検出することができる。
さらに、請求項4にかかる発明によれば、外部の明るさに影響されることなく炎を検出することができる。
【0020】
さらに、請求項5にかかる発明によれば、同一視野にて炎の変動を比較することができる。
さらに、請求項6にかかる発明によれば、感度の良い撮像を行うことができる。
また、請求項7にかかる発明によれば、確実に火災の発生を知らせることができる。
【発明を実施するための最良の形態】
【0021】
図1は、本発明にかかる自走式掃除機の概略構成をブロック図により示している。
同図に示すように、各ユニットを制御する制御ユニット10と、周囲に人間がいるか否かを検知する人体感知ユニット20と、周囲の障害物を検知するための障害物監視ユニット30と、移動を実現する走行系ユニット40と、掃除を行うためのクリーナ系ユニット50と、所定範囲を撮影するカメラ系ユニット60と、無線でLANに接続するための無線LANユニット70と、追加センサなどからなるオプションユニット80とから構成されている。なお、本体BDは薄型の略円筒形状をなしている。
【0022】
図2は、各ユニットを具体的に実現する電気系の構成をブロック図により示している。
制御ユニット10として、CPU11と、ROM13と、RAM12がバス14を介して接続されている。CPU11は、ROM13に記録されている制御用プログラムおよび各種パラメータテーブルに従い、RAM12をワークエリアとして使用して各種の制御を実行する。上記制御用プログラムの内容については後述する。
【0023】
また、バス14には操作パネルユニット15が備えられ、同操作パネルユニット15には、各種の操作用スイッチ15aと、液晶表示パネル15bと、表示用LED15cが備えられている。液晶表示パネルは多階調表示が可能なモノクロ液晶パネルを使用しているが、カラー液晶パネルなどを使用することも可能である。
【0024】
本自走式掃除機はバッテリー17を有しており、CPU11はバッテリー監視回路16を介してバッテリー17の残量をモニター可能となっている。なお、同バッテリー17は誘導コイル18aを介して非接触で供給される電力を用いて充電する充電回路18を備えている。バッテリー監視回路16は主にバッテリー17の電圧を監視して残量を検知する。
【0025】
人体感知ユニット20として、四つの人体センサ21(21fr,21rr,21fl,21rl)が前方左右斜め方向と後方左右斜め方向に対面させて備えられている。各人体センサ21は赤外線の受光センサを備えるとともに受光した赤外線の光量の変化に基づいて人体の有無を検知するものであり、変化する赤外線照射物体を検知したとき出力用のステータスを変化させるため、CPU11は上記バス14を介して同人体センサ21の検知を取得することが可能となっている。すなわち、CPU11は所定時間毎に各人体センサ21fr,21rr,21fl,21rlのステータスを取得しにいき、取得したステータスが変化していれば、同人体センサ21fr,21rr,21fl,21rlの対向方向に人体の存在を検知することが可能となる。
【0026】
ここでは赤外線の光量変化に基づくセンサによって人体センサを構成しているが、人体センサはこれに限られるものではない。例えば、CPUの処理量が上がればカラー画像を撮影し、人体に特徴的な肌色の領域を探し、同領域の大きさ、変化に基づいて人体を検知するという構成を実現することもできる。
【0027】
障害物監視ユニット30は、オートフォーカス(以下、AFと呼ぶ。)用測距センサとしてのAF用パッシブセンサ31(31R,31FR,31FM,31FL,31L,31CL))とその通信用インターフェイスであるAFセンサ通信I/O32と、照明用LED33と、各LEDに駆動電流を供給するLEDドライバ34とから構成されている。まず、AF用パッシブセンサ31の構成について説明する。図3はAF用パッシブセンサ31の概略構成を示している。二軸のほぼ平行な光学系31a1,31a2と、同光学系31a1,31a2の結像位置にほぼそれぞれ配設されたCCDラインセンサ31b1,31b2と、各CCDラインセンサ31b1,31b2の撮像イメージデータを外部に出力するための出力I/O31cとを備えている。
【0028】
CCDラインセンサ31b1,31b2は光エネルギーを電気エネルギーに変換する160〜170画素の撮像画素で構成され、各撮像画素ごとに生成した電気エネルギーを電荷として蓄積することが可能となっている。そして、それぞれの撮像画素において蓄積された電荷の量に応じて8ビットのデータを出力することが可能となっている。一定時間に蓄積される電荷の量は、入力された光エネルギーに応じた量となるため、入力された光の光量や波長等に応じて異なる値の電荷が各撮像画素に蓄積されることとなる。すなわち、各CCDラインセンサ31b1,31b2は入力したイメージを表現可能なデータを生成することが可能となっている。
【0029】
また、光学系が二軸であるので、結像イメージには距離に応じたずれが生じており、それぞれのCCDラインセンサ31b1,31b2が出力するデータのずれに基づいて距離を計測できる。例えば、近距離になるほど結像イメージのずれが大きく、遠距離になるほど結像イメージのずれはなくなっていく。従って、一方の出力データにおける4〜5画素毎のデータ列を他方の出力データ中でスキャンし、元のデータ列のアドレスと発見されたデータ列のアドレスとの相違を求め、相違量で予めROM13に記憶しておいた相違量−距離変換テーブルT1を参照し、実際の距離を求めることになる。
【0030】
一方のCCDラインセンサ31b1の近傍には、数画素分の撮像画素で構成されたモニターセル31b3が備えられている。モニターセル31b3はCCDラインセンサ31b1,31b2よりも広角な光学系31a3により結像されている。また、モニターセル31b3も撮像画素によって構成されているため、入力した光エネルギーに応じた電荷を蓄積することができる。ただし、モニターセル31b3に光を入力する光学系31a3は広角とされており、モニターセル31b3は数画素分の撮像画素で構成されるため、CCDラインセンサ31b1,31b2よりも解像度が低い。すなわち、モニターセル31b3によって、ぼんやりとしたイメージが撮像されるようにされている。さらに、モニターセル31b3は、同モニターセル31b3を構成する各撮像画素に蓄積された電荷の平均を算出し、同平均値に対応するデータを出力する。
【0031】
このようにすることにより、モニターセル31b3に入力可能な広範囲の視野における平均的な光量をデータとして出力することができる。言い換えれば、モニターセル31b3によって本自走式掃除機が設置された部屋の広範囲にわたる平均的な明るさを取得することができる。なお、モニターセル31b3にて取得した明るさデータも出力I/O31cによってCPU11等に出力される。ROM13には上述した相違量−距離変換テーブルT1の他に、明るさ−色−電荷テーブルT2が備えられている。この明るさ−色−電荷テーブルT2は、モニターセル31b3にて取得された明るさと、各CCDラインセンサ31b1,31b2にて蓄積された電荷が示す色との対応関係を規定したテーブルである。
【0032】
様々な明るさにおいて、各色の被写体をCCDラインセンサ31b1,31b2にて撮像する実験を行う。そして、明るさ−色−電荷テーブルT2は、そのとき各撮像画素に蓄積される各色についての電荷の量と、モニターセル31b3にて取得される明るさデータとの対応関係をテーブル化することにより作成されている。図4は、明るさ−色−電荷テーブルT2を模式的に示している。同図において、横軸は明るさを示し、縦軸は一定時間に撮像画素に蓄積される電荷の量を電圧として示している。同図において、各明るさ(25%,50%,100%)において、それぞれ緑色とオレンジ色と赤色の対象物を撮像した場合の電荷の値が取りうる値域を示している。同図から、撮像画素に入力される光の量と電荷とは線形的な関係にあり、波長が大きいほど電荷が小さくなることが分かる。
【0033】
明るさ−色−電荷テーブルT2を参照することにより、例えば明るさが50%においてオレンジ色を撮像したときの電荷が取りうる値域を特定することができる。従って、CCDラインセンサ31b1,31b2にて距離を測定しつつモニターセル31b3にて明るさデータを取得することにより、明るさ−色−電荷テーブルT2を参照してCCDラインセンサ31b1,31b2にて撮像された画像の色を各撮像画素について特定することが可能となっている。
【0034】
AF用パッシブセンサ31R,31FR,31FM,31FL,31L,31CLのうち、AF用パッシブセンサ31FR,31FM,31FLは正面の障害を検知するために利用され、AF用パッシブセンサ31R,31Lは前方左右直前の障害を検知するために利用され、AF用パッシブセンサ31CLは前方天井までの距離を検知するために利用されている。また、モニターセル31b3は正面の障害を検知するために利用されるAF用パッシブセンサ31CLにおいてのみ明るさを取得している。従って、正面前方についてのみ障害物の色を検出することが可能となっている。
【0035】
なお、上述のとおり各AF用パッシブセンサ31R,31FR,31FM,31FL,31L,31CLが測距を行う際には、CCDラインセンサ31b1,31b2における4〜5画素毎のデータ列のアドレスの相違量が分かれば良く、各撮像画素がどの色を示すか分からなくても良い。従って、モニターセル31b3が明るさを取得しないAF用パッシブセンサ31R,31FR,31FM,31FL,31Lにおいても測距が可能であることはいうまでもない。
【0036】
図5は正面と前方左右直前の障害をAF用パッシブセンサ31で検知する際の原理を示している。これらのAF用パッシブセンサ31は周囲の床面に対して斜めに向けて配置されている。対向方向に障害物が無い場合、AF用パッシブセンサ31による測距距離はほぼ全撮像範囲においてL1となる。しかし、図面で一点鎖線で示すように段差がある場合、その測距距離はL2となる。測距距離が伸びたら下がる段差があると判断できる。また、二点鎖線で示すように上がる段差があれば測距距離はL3となる。障害物があるときも上がる段差と同様に測距距離は同障害物までの距離として計測され、床面よりも短くなる。
【0037】
本実施形態においては、AF用パッシブセンサ31を前方の床面に斜めに配向した場合、その撮像範囲は約10cmとなった。本自走式クリーナの幅が30cmであったので、三つのAF用パッシブセンサ31FR,31FM,31FLについては撮像範囲が重ならないように僅かに角度を変えて配置している。これにより、三つのAF用パッシブセンサ31FR,31FM,31FLにより前方方向の30cmの範囲での障害物と段差を検知できるようになっている。むろん、検知幅はセンサの仕様や取付位置などに応じて変化し、実際に必要となる幅に応じた数のセンサを利用すればよい。
【0038】
一方、前方左右直前の障害を検知するAF用パッシブセンサ31R,31Lについては撮像範囲を垂直方向を基準として床面に対して斜めに配置している。また、AF用パッシブセンサ31Rを本体左方に取り付けつつ本体中央を横切って右方直前位置から本体幅を超えた右方の範囲を撮像するように対向させてあり、AF用パッシブセンサ31Lを本体右方に取り付けつつ本体中央を横切って左方直前位置から本体幅を超えた左方の範囲を撮像するように対向させてある。
【0039】
クロスさせないで左右の直前位置を撮影するようにすると、センサは急角度で床面に対面させなければならず、このようにすると撮像範囲が極めて狭くなってしまうので、複数のセンサが必要となる。このため、敢えてクロスさせる配置とし、撮像範囲を広げて少ない数のセンサで必要範囲をカバーできるようにしている。また、撮像範囲を垂直方向を基準として斜めに配置するのは、CCDラインセンサの並び方向が垂直方向に向くことを意味しており、図6に示すように撮像できる幅がW1となる。ここで、撮像範囲の右側で床面までの距離L4は短く、左側で距離L5が長くなっている。本体BDの側面の境界ラインが図面上の波線位置Bであると、境界ラインまでの撮像範囲は段差の検知などに利用され、境界ラインを超える撮像範囲は壁面の有無を検知するために利用される。
【0040】
前方天井までの距離を検知するAF用パッシブセンサ31CLは天井に対面している。通常はAF用パッシブセンサ31CLが検知する床面から天井までの距離が一定であるが、壁面に近づいてくると撮像範囲が天井ではなく壁面となるので、測距距離が短くなってくる。従って、前方壁面の存在をより正確に検知できる
【0041】
図7は各AF用パッシブセンサ31R,31FR,31FM,31FL,31L,31CLの本体BDへの取り付け位置を示すとともに、それぞれの床面での撮像範囲を括弧付きの符号で対応させて示している。なお、天井については撮像範囲を省略している。AF用パッシブセンサ31R,31FR,31FM,31FL,31Lの撮像を証明するように白色LEDからなる右照明用LED33Rと、左照明用LED33Lと、前照明用LED33Mを備えており、LEDドライバ34はCPU11からの制御指示に基づいて駆動電流を供給して照明できるようになっている。これにより、夜間であったり、テーブルの下などの暗い場所でもAF用パッシブセンサ31から有効な撮像イメージのデータを得ることができるようになる。
【0042】
走行系ユニット40は、モータドライバ41R,41Lと、駆動輪モータ42R,42Lと、この駆動輪モータ42R,42Lにて駆動される図示しないギアユニットと駆動輪を備えている。駆動輪は本体BDの左右に一輪ずつ配置されており、この他に駆動源を持たない自由転動輪が本体の前方側中央下面に取り付けられている。駆動輪モータ42R,42Lは回転方向と回転角度をモータドライバ41R,41Lによって詳細に駆動可能であり、各モータドライバ41R,41LはCPU11からの制御指示に応じて対応する駆動信号を出力する。また、駆動輪モータ42R,42Lと一体的に取り付けられているロータリーエンコーダの出力から現実の駆動輪の回転方向と回転角度が正確に検知できるようになっている。なお、ロータリーエンコーダは駆動輪と直結させず、駆動輪の近傍に自由回転可能な従動輪を取り付け、同従動輪の回転量をフィードバックさせることによって駆動輪にスリップが生じているような場合でも現実の回転量を検知できるようにしても良い。走行系ユニット40には、この他に地磁気センサ43が備えられており、地磁気に照らし合わせて走行方向を判断できるようになっている。また、加速度センサ44はXYZ三軸方向における加速度を検知し、検知結果を出力する。
【0043】
ギアユニットや駆動輪は各種のものを採用可能であり、円形のゴム製タイヤを駆動させるようにしたり、無端ベルトを駆動させるようにして実現しても良い。
【0044】
本自走式掃除機における掃除機構は、前方両サイドに配置されて本体BDの進行方向における両側寄りのゴミなどを当該本体BDにおける中央付近にかき寄せるサイドブラシと、本体の中央付近にかき寄せられたゴミをすくい上げるメインブラシと、同メインブラシによりすく上げられるゴミを吸引してダストボックス内に収容する吸引ファンとから構成されている。クリーナ系ユニット50は、各ブラシを駆動するサイドブラシモータ51R,51Lとメインブラシモータ52、それぞれのモータに駆動電力を供給するモータドライバ53R,53L,54と、吸引ファンを駆動する吸引モータ55と、同吸引モータに駆動電力を供給するモータドライバ56とから構成されている。サイドブラシやメインブラシを使用した掃除は床面の状況やバッテリーの状況やユーザーの指示などに応じてCPU11が適宜判断して制御するようにしている。
【0045】
カメラ系ユニット60は、それぞれ視野角の異なる二つのCMOSカメラ61,62を備えており、本体BDの正面方向であってそれぞれことなる仰角にセットされている。また、各カメラ61,62への撮像を指示するとともに撮像イメージを出力するためのカメラ通信I/O63も備えられている。さらに、カメラ61,62の撮像方向に対面させて15コの白色LEDからなるカメラ用照明LED64と、同LEDに照明用駆動電力を供給するためのLEDドライバ65を備えている。
【0046】
無線LANユニット70は、無線LANモジュール71を有しており、CPU11は所定のプロトコルに従って外部LANと無線によって接続可能となっている。無線LANモジュール71は、図示しないアクセスポイントの存在を前提として、同アクセスポイントはルータなどを介して外部の広域ネットワーク(例えばインターネット)に接続可能な環境となっていることとする。従って、インターネットを介した通常のメールの送受信やWEBサイトの閲覧といったことが可能である。なお、無線LANモジュール71は、規格化されたカードスロットと、同スロットに接続される規格化された無線LANカードなどから構成されている。むろん、カードスロットは他の規格化されたカードを接続することも可能である。
【0047】
オプションユニット80は、図11に示すように、通信ユニットなどからなる。本実施形態においては、赤外線通信ユニット83と火災警報装置84とを備えている。赤外線通信ユニット83は後述するマーカーから送信される位置情報をコーディングした赤外線信号を受信可能であり、上記位置情報をデコードしてCPU11に送出可能となっている。火災警報装置84は使用者に対して火災の発生を警報により知らせることができるものであり、スピーカを備えている。音声やブザー音等を発することにより、使用者に火災発生を通知することができる。応答判断装置86は使用者が火災発生の有無を確認した後に操作されるスイッチを備えており、このスイッチが操作されることにより火災警報装置84は警報を停止させる。
【0048】
図12は上記マーカー85の外観を示しており、外部には、液晶表示パネル85aと、十字キー85bと、決定キー85cと、戻るキー85dとを備えている。内部には、1チップマイクロコンピュータと赤外線送受信ユニットとバッテリーなどが備えられており、1チップマイクロコンピュータは、上記決定キー85cと戻るキー85dとの操作に応じて液晶表示パネル85aでの表示を制御させつつ、同操作に応じた設定パラメータを生成し、同設定パラメータに応じた位置情報を上記赤外線送受信ユニットから出力できるようになっている。本実施形態において設定できるのは、部屋番号「1〜7と廊下」、清掃選択の「する」「しない」、特別指定としての「EXIT(出口)」「ENT(入口)」「SP1(特別位置1)」「SP2(特別位置2)」「SP3(特別位置3)」「SP4(特別位置4)」である。以下の実施形態では、特別位置1〜4は出火原因となりうる火災監視対象物の所在地等であり、予め設定されている。なお、これらの設定に要するフローチャートは特別なものではなく当業者において通常の知識で生成可能なものである。
【0049】
次に、上記構成からなる自走式掃除機の動作について説明する。
(1)走行制御及び清掃動作について:
図8及び図9は上記CPU11が実行する制御プログラムに対応したフローチャートを示しており、図10は同制御プログラムに従って本自走式掃除機が走行する走行順路を示す図である。
【0050】
電源オンにより、CPU11は図8の走行制御を開始する。ステップS110ではAF用パッシブセンサ31の検知結果を入力し、前方エリアを監視する。前方エリアの監視に使用するのはAF用パッシブセンサ31FR,31FM,31FLの検知結果であり、平坦な床面であれば、その撮像イメージから得られるのは図5に示す斜め下方の床面までの距離L1である。それぞれのAF用パッシブセンサ31FR,31FM,31FLの検知結果に基づき、本体BD幅に一致する前方の床面が平坦であるか否かが判断できる。ただし、この時点では、各AF用パッシブセンサ31FR,31FM,31FLが対面している床位置と本体の直前位置までの間の情報は何も得られていないので死角となる。
【0051】
ステップS120ではモータドライバ41R,41Lを介して駆動輪モータ42R,42Lに対してそれぞれ回転方向を異にしつつ同回転量の駆動を指示する。これにより本体BDはその場で回転を始める。同じ場所での360度の回転(スピンターン)に要する駆動モータ42R,42Lの回転量は予め分かっており、CPU11は同回転量をモータドライバ41R,41Lに指示している。
スピンターン中、CPU11はAF用パッシブセンサ31R,31Lの検知結果を入力し、本体BDの直前位置の状況を判断する。上述した死角はこの間の検知結果により、ほぼなくなり、段差、障害物が何も無い場合、周囲の平坦な床面の存在を検知できる。
【0052】
ステップS130ではCPU11はモータドライバ41R,41Lを介して駆動輪モータ42R,42Lに対してそれぞれ同回転量の駆動を指示する。これにより本体BDは直進を開始する。直進中、CPU11はAF用パッシブセンサ31FR,31FM,31FLの検知結果を入力し、正面に障害物がいないか判断しながら前進する。そして、同検知結果から正面に障害物たる壁面が検知できたら、その壁面の所定距離だけ手前で停止する。
【0053】
ステップS140では右に90度回転する。ステップS130で壁面の所定距離だけ手前で停止したが、この所定距離は本体BDが回転動作するときに同壁面に衝突せず、また、直前および左右の状況を判断するためのAF用パッシブセンサ31R,31Lが検知する本体幅の外側にあたる範囲の距離である。すなわち、ステップS130にてAF用パッシブセンサ31FR,31FM,31FLの検知結果に基づいて停止し、ステップS140にて90度回転するときには、少なくともAF用パッシブセンサ31Lが壁面の位置を検知できる程度の距離となるようにしている。また、90度回転するときには、上記AF用パッシブセンサ31R,31Lの検知結果に基づいて直前位置の状況を判断しておく。図10はこのようにしてたどり着いた平面図で見たときの部屋の左下角を清掃開始位置として清掃走行を開始する状況を示している。
【0054】
清掃走行開始位置へたどり着く方法はこれ以外にも各種の方法がある。壁面に当接する状況において右に90度回転するだけでは、最初の壁面の途中から始めることになることもあるため、図10に示すように左下角の最適位置にたどり着くのであれば、壁面に当接して左90度回転し、正面の壁面に当接するまで前進し、当接した時点で180度回転することも望ましい走行制御である。
【0055】
ステップS150では、清掃走行を実施する。同清掃走行のより詳細なフローを図9に示している。前進走行するにあたり、ステップS210〜S240にて各種のセンサの検知結果を入力している。ステップS210では前方監視センサデータ入力しており、具体的にはAF用パッシブセンサ31FR,31FM,31FL,31CLの検知結果を入力し、走行範囲の前方に障害物あるいは壁面が存在しないか否かの判断に供することになる。なお、前方監視という場合には、広い意味での天井の監視も含めている。
【0056】
ステップS220では段差センサデータ入力をしており、具体的にはAF用パッシブセンサ31R,31Lの検知結果を入力し、走行範囲の直前位置に段差がないか否かの判断に供することになる。また、壁面や障害物に沿って平行に移動するときには壁面や障害物までの距離を計測し、平行に移動しているか否かの判断に供することになる。
【0057】
ステップS230では地磁気センサデータ入力をしており、具体的には地磁気センサ43の検知結果を入力し、直進走行中に走行方向が変化していないか否かを判断するのに利用する。例えば、清掃走行開始時の地磁気の角度を記憶しておき、走行中に検出される角度が記憶されている角度と異なった場合には、左右の駆動輪モータ42R,42Lの回転量をわずかに異ならせて進行方向を修正し、元の角度へ戻す。例えば、地磁気の角度に基づいて角度が増加する方向へ変化(359度から0度への変化は例外点となる))したら左方向へ軌道を修正する必要があり、右の駆動輪モータ42Rの回転量を左の駆動輪モータ42Lの回転量よりも僅かに増やすようにそれぞれのモータドライバ41R,41Lへ駆動を制御する指示を出力する。
【0058】
ステップS240では、加速度センサデータ入力をしており、具体的には加速度センサ44の検知結果を入力し、走行状態の確認に供することになる。例えば、直進走行開始時に概ね一定の方向への加速度を検知できれば正常な走行と判断できるが、回転する加速度を検知すれば片方の駆動輪モータが駆動されていないような異常を判断できる。また、正常な範囲の加速度値を超えたら段差などから落下したり、横転したような異常を判断できる。そして、前進中に後方にあたる方向への大きな加速度を検知したら前方の障害物に当接した異常を判断できる。このように、加速度値を入力して目標加速度を維持するとか、その積分値に基づいて速度を得るというような走行に対する直接的な制御をすることはないが、異常検出の目的として加速度値を有効に利用している。
【0059】
ステップS250では、ステップS210とステップS220で入力したAF用パッシブセンサ31FR,31FM,31CL,31FL,31R,31Lの検知結果に基づいて障害物の判定を行う。障害物の判定は、正面、天井、直前のそれぞれの部位毎に行う。正面は障害物あるいは壁面の意味として判定し、直前は段差の判定とともに走行範囲外の左右の状況、例えば壁面の有無などを判定する。天井は鴨居などによって天井までの距離が下がってきているときに正面に障害物がないとしても、そこからは廊下であって室外に出てしまうことを判定するのに利用される。
【0060】
ステップS260では、各センサからの検知結果を総合的に判断し、回避の必要があるか否かを判断する。回避の必要がない限りステップS270の清掃処理を実行する。清掃処理は、サイドブラシとメインブラシを回転させつつ、ゴミを吸引する処理であり、具体的にはモータドライバ53R,53L,54,56に各モータ51R,51L,52,55を駆動させる指示を出力する。むろん、走行中は常に同指示を出しているのであり、後述するように清掃走行の終端条件が成立したときに停止させることになる。
【0061】
一方、回避が必要と判断されると、ステップS280にて右に90度ターンを実施する。このターンは同じ位置での90度ターンであり、モータドライバ41R,41Lを介して駆動輪モータ42R,42Lに対してそれぞれ回転方向を異にしつつ90度ターンに必要なだけの回転量の駆動を指示する。回転方向は右の駆動輪に対して後退の方向であり、左の駆動輪に対して前進の方向となる。回転中は段差センサであるAF用パッシブセンサ31R,31Lの検知結果を入力し、障害物の状況を判断する。例えば、正面に障害を検知し、右90度ターンを実施したとき、AF用パッシブセンサ31Rが前方右方の直前位置に壁面を検知しなければ単に正面の壁面に当接したといえるが、回転後も前方右方の直前位置に壁面を検知しているのであれば、角部に入り込んでいるといったことが判断できる。また、右90度回転時にAF用パッシブセンサ31R,31Lのいずれもが前方直前に障害を検知しなければ、壁面に当接したのではなく、小さな障害物などであったと判断できる。
【0062】
ステップS290では障害物を走査しながらの進路変更のため前進する。壁面に当接し、右90度回転後、前進していく。壁面の手前で停止したのであれば、前進の走行量は概ね本体BDの幅分である。その分の前進後、ステップS300では再度右90度ターンを実施する。
以上の移動の間、正面の障害物、前方左右の障害物の有無は常に走査して状況を確認しており、部屋の中の障害物の有無の情報として記憶していく。
【0063】
ところで、上述した説明では、右90度ターンを2度実行したが、次に前方に壁面を検知した時点で右90度ターンを実行すると元に戻ってしまうので、二度の90度ターンは、右を繰り返したら、次は左を繰り返し、その次は右というように交互に行っていく。従って、奇数回目の障害物回避では右ターン、偶数回目の障害物回避では左ターンとなる。
【0064】
以上のように障害物を回避しながら、部屋の中をつづら折り状に走査して清掃走行を継続していく。そして、部屋の終端にきたか否かをステップS310にて判断する。清掃走行の終端は、二度目のターン後に、壁面に沿って前進して清掃走行を実施し、その後で前方に障害物を検知した場合と、既に走行した部位に入り込んだ場合である。すなわち、前者はつづら折り状に走行していった最後の端から端への走行後に生じる終了条件であり、後者は後述するように未清掃エリアを発見して再度清掃走行を開始したときの終了条件になる。
【0065】
この終端条件が成立していなければ、ステップS210へ戻って以上の処理を繰り返す。終端条件が成立していれば、本清掃走行のサブルーチン処理を終了し、図8に示す処理へ復帰する。
復帰後、ステップS160では、これまでの走行経路と走行経路の周囲の状況から未清掃エリアが残っていないか判断する。未清掃エリアが見つかれば、ステップS170で未清掃エリアの開始点へと移動し、ステップS150に戻って清掃走行を再開する。
未清掃エリアが複数箇所に散在していたとしても、上述したような清掃走行の終端条件が成立するごとに、未清掃エリアの検出を繰り返していくことにより、最終的には未清掃エリアがなくなる。
【0066】
(2)マッピングについて:
未清掃エリアの有無の判断は、各種の手法を利用可能であるが、本実施例においては、図13及び図14に示すマッピングの手法で実現する。
図13は、マッピングのフローチャートを示しており、図14は、マッピングの手法を説明する図である。この例では、上述したロータリーエンコーダの検知結果に基づいて室内での走行経路と、走行中に検出した壁面の有無を記憶領域に確保してあるマップ上に書き込んでいっており、周囲の壁面が途絶えることなく連続し、かつ、室内の存在していた障害物の周囲も連続し、かつ、室内で障害物を除く範囲を全て走行したか否かで判断する。
【0067】
マッピングのデータベースは、x軸とy軸でアドレス指定可能な二次元のデータベースであり、(1,1)を室内の角部であるスタート地点とし、(n,0)(0,m)については仮の壁面を表している。本体BDの走行に伴って、本体BDの大きさ30cm×30cmを単位エリアとして未走行エリア、掃除完了エリア、壁、障害物の区分をして室内をマッピングしていく。
【0068】
ステップS400では、スタートポイントのフラグを書き込む。図14に示すように、スタートポイント(1,1)は部屋の角部である。360度スピンターンし、後方と左方に壁面が存在することを確認し、それぞれの単位エリア(1,0)、(0,1)に対して壁のフラグを書き込み(1)、壁と壁の交点(0,0)に対してさらに壁のフラグを書き込む(2)。ステップS402では本体BDの前方に障害があるか否かを判断し、前方に障害がなければステップS404にて単位エリアだけ前進する。この前進は実際には上述した清掃を伴う前進であり、具体的には清掃に伴う移動中にロータリーエンコーダの出力から単位エリア分だけ移動したときに同期して本マッピング処理が並行して行われることになる。
【0069】
一方、前方に障害があると判断されたときは、ステップS406にてターン方向に障害があるか判断する。障害の回避は、90度ターンと前進と90度ターンで行うことにしている。ターン方向は、上述したように左と右を2度つつ繰り返して順次変更するようにしている。次の回避のためのターンが右方向であるとすると、前方に障害があるとき、右方向に進んでターンできるか否かを判断することになる。最初の頃は右方向は未清掃エリアであって、ターン方向に障害がないものと判断し、ステップS408にて通常回避運動を行う。
【0070】
これらの移動後、ステップS410では走行した経路の単位エリアに走行部位フラグを書き込む。走行したということは掃除をしたということなので、清掃完了エリアを表すフラグを書き込む。ステップS412では周囲の壁面の状況を周壁フラグとして各単位エリア毎に書き込む。単位エリア(1,1)から、単位エリア(1,2)へ移動したとき、AF用パッシブセンサ31R,31Lの検知結果に基づき、(0,1)、(2,1)の単位エリアについて壁か否かの判断が可能であり、単位エリア(0,1)については壁を表すフラグを書き込み、単位エリア(2,1)については壁がない未走行かつ未清掃を表すフラグを書き込める。
【0071】
一方、単位エリア(1,20)では前方に障害を検出され、二度の90度ターンと前進とで単位エリア(2,20)へ移動しつつ進行方向は180度反転した。このときは、単位エリア(0,20)、(2,20)、(1,21)、(2,21)のそれぞれについてフラグを書き込む(4)ことができる。また、単位エリア(0,21)については壁と壁の交点であるととの判断に基づき、壁を表すフラグを書き込む(5)。なお、走行済みかつ清掃済みの領域も障害として扱う。
【0072】
前進をするとき、単位エリア(3,10)と単位エリア(3,11)では右方向に障害物を検知し、その時点では障害物のフラグを書き込む(6)。なお、単位エリア(3,1)〜(3,9)の移動時、進行方向右側には未走行かつ未清掃のエリアを検知しており、これらを表すフラグを書き込んでいる。同様に、後で単位エリア(8,9)〜(8,1)を移動する時、進行方向右側には未走行かつ未清掃のエリアを検知し、これらを表すフラグを書き込むことになる。
【0073】
また、単位エリア(4,12)では前方に障害物を検知して回避運動を行うが、このときは単位エリア(4,11)に障害物のフラグを書き込んであるので、移動に伴って単位エリア(4,11)には障害物のフラグを書き込む。
【0074】
ステップS414では走行した単位エリアにおいて上述したマーカー85から位置情報の通信を行ったか否かを判断し、マーカーとの通信を行ったときにはステップS416にてマーカーから得た情報に基づくフラグを書き込む。例えば、ユーザーが避難口を指定するためにマーカー85の操作キー85b〜85dで操作して特定の単位エリアに置いてあったとすると、本体BDが同単位エリアを通過するときに赤外線通信ユニット83にて同位置情報を取得するので、当該単位エリアには避難口を表すフラグを書き込む。
【0075】
前進や回避運動を繰り返し、単位エリア(10,20)では進行方向左方に障害を発見する。この場合は、単位エリア(10,21)が連続する壁と判断されているので、単位エリア(11,20)について壁を表すフラグを書き込み(4)、次いで交点(11,21)についても壁を表すフラグを書き込む(5)。
【0076】
前進や回避運動を繰り返す結果、単位エリア(10,1)では前方に障害を発見し、かつ、ターン方向にも障害があると判断される。従って、この場合はステップS418にて終端か否かを判断する。なお、単位エリア(10,1)については、前方の障害と進行方向左方に壁を発見する(7)(8)。
【0077】
終端か否かは、未走行かつ未清掃を表すフラグが書き込まれている単位エリアがあるか否かが第一の判断項目となる。未走行かつ未清掃を表すフラグが書き込まれている単位エリアが発見されなくなった場合には、スタートポイントで書き込んだ壁のフラグが連続して一周しているか判断する。一周していれば、室内をX方向とY方向にスキャンしてフラグが書き込まれていない領域を探す。なお、障害物と判断した領域についても壁と同様に一連続した領域として判断して障害物の検出の完了となる。
【0078】
終端でない場合は、ステップS420にて未走行エリアを検出し、ステップS422にて未走行エリアのスタートポイントへ移動し、上述した処理を繰り返す。そして、最終的に終端と判断されれば、マッピング処理を完了する。マッピングの完了時には室内の壁と走行エリアが一目瞭然となっており、これを各部屋の地図情報として利用する。
【0079】
全部屋と廊下について以上のマッピング処理を完了し、廊下などについては各部屋への入口をマーカー85にて指定しておく。図15は各部屋と廊下のそれぞれで形成した地図情報を連結する手法を示している。全部屋と廊下について、各部屋の部屋番号(1〜3)と出入口(E)と、廊下からの各部屋への入口(1〜3)などを指定しておくことにより、各部屋毎に得られた地図情報は平面的に連結することができる。
【0080】
(3)火災監視処理について:
図16は火災監視時刻と火災監視対象の設定画面を示している。
操作用スイッチ15aと液晶表示パネル15bを操作し、火災監視をする時刻とともに、各監視時にどの火災監視対象の所在地へ赴くかを指定する。巡回する時刻は5回まで設定でき、火災監視対象の所在地についてはマーカー85の特別位置SP1〜SP4により、4個の所在地まで設定できるようになっている。時刻の前に付している○と×は、それぞれの時刻の巡回を行うか否かを表している。図16に示す例では、時刻7時00分に1個目の火災監視対象と2個目の火災監視対象の所在地へ赴き、時刻12時00分に1個目の火災監視対象の所在地へ赴き、時刻19時00分に2個目の火災監視対象の所在地へ赴く設定を表している。なお、巡回時刻の設定に伴い、時計機能を備えていることはいうまでもない。
時刻の設定、及び巡回火災監視対象の指定のためのプログラムは当業者が通常の能力で実現しうるフローチャートに従って処理される。
【0081】
図17は火災監視処理の流れを示している。 操作パネルユニット15からの指示により、本処理の実施が指示されると、ステップS440では現在時刻とタイマーのセット時刻とを対比してタイマーセット時刻か否かを判断し、タイマーセット時刻であれば、以下の処理を実行する。
ステップS442では現在位置を保存する。ここで保存しておくことにより、最後の火災監視対象の所在地へ赴いた後で、現在地に戻ることができる。
【0082】
ステップS444では巡回する火災監視対象の所在地を取得し、配列変数へ保存する。現在時刻が7:00であるとすると、図16に示すように巡回する火災監視対象は1個目と2個目である。従って、2個の火災監視対象の所在位置を取得し、配列変数へ保存する。配列変数へ保存することにより、変数nにより、順次巡回していくことが可能となる。このため、変数nに「1」をセットする。
ステップS446では、現在位置から配列変数に保存されているn番目の火災監視対象の所在位置への走行経路を求める。
【0083】
上述したように、地図情報が完備しているときは、現在位置からn番目の火災監視対象の所在位置への走行経路を探索することが可能となる。走行経路を得るのは公知の迷路の解答手法を採用可能である。例えば、右手法などによって進行方向に沿って常に右手を壁面に触れながら進行していくと、いずれ入口からゴールへとたどり着ける。その後、冗長な経路を順次消していく。例えば、180度ターンして戻ったところを順次消していく。また、室内であるので、コの字形のターンをしている部位を探し、障害がない限りターン部位を手前側にしていって経路を詰めていく。むろん、このように自動的に走行経路を求めるのではなく、ユーザーに対して走行経路を指示するインターフェイスを提供しても良い。
【0084】
このようにして現在位置から火災監視対象の所在位置への走行経路が求められた後、ステップS448にて同走行経路に沿って移動する。移動の完了後、ステップS500では駆動および操舵を停止した状態で火災検出処理を実行する。図18は、火災検出処理の流れを示している。同図において、ステップS505ではAF用パッシブセンサ31CLにおけるモニターセル31b3を利用して明るさを取得する。なお、明るさを測定する前にモニターセル31b3に蓄積した電荷は予め排出する。ステップS510では、AF用パッシブセンサ31CLにおけるCCDラインセンサ31b1により正面前方の撮像を行う。撮像する前にCCDラインセンサ31b1に蓄積した電荷は予め排出する。そして、ステップS515においてはCCDラインセンサ31b1の各撮像画素に蓄積された電荷から各撮像画素に対応する色を特定する。すなわち、明るさ−色−電荷テーブルT2を参照することにより、各撮像画素に蓄積された電荷に基づいて色を特定する。このとき、もう一方のCCDラインセンサ31b2においても撮像を行い、測炬を行うようにしても良い。
【0085】
ステップS520では、CCDラインセンサ31b1の全撮像画素のなかから、ステップS515において炎色を示すと判断された撮像画素を、炎を受像した撮像画素として検出する。なお、ここでいう炎色は予め定義されており、例えば赤色やオレンジ色等とすることができる。むろん、燃焼物によって炎の色は異なるため、他の色を炎色として定義することも可能である。なお、明るさ−色−電荷テーブルT2を参照することにより、炎色に対応する電荷の値域も図4に示すように明るさに応じて変動する。すなわち、炎以外の周辺の外部光源からモニターセル31b3に入射される光の光量に応じて炎色に対応する電荷の値域も変動する。
【0086】
例えば、平均的に明るい環境においては、同じ炎の色でも炎以外の外部光源から入射する光量が多いために蓄積される電荷も多くなる傾向となるが、それに応じて炎色に対応する電荷の値域も多めにシフトされるため、適正に炎色を判定することができる。逆に、平均的に暗い環境においては、同じ炎の色でも炎以外の外部光源から入射する光量が少ないために蓄積される電荷も少なくなる傾向となるが、それに応じて炎色に対応する電荷の値域も少なめにシフトされるため、適正に炎色を判定することができる。すなわち、炎以外の外部の光源の光量に依存することなく、正確に炎色を判断することが可能となっている。
【0087】
また、炎が明るければ、炎から放射された光線が屋内で反射してモニターセル31b3に入射する反射光の光量も多くなる。すなわち、モニターセル31b3にて測定される光量によって、炎自体の明るさも、おおよそ予測することが可能であると言える。従って、炎自体が明るい場合には、同じ炎の色でも暗い場合よりも電荷が蓄積されやすいが、モニターセル31b3にて測定された明るさに応じて炎色に対応する電荷の値域も多めにシフトされるため、適正に炎色を判定することができる。例えば、図4において、明るさ50%における緑色光に対応する電荷の量の値域と、明るさ100%におけるオレンジ色光に対応する電荷の量の値域とが同等となっており、CCDラインセンサ31b1に蓄積された電荷のみでいずれの色の光を受像しているか判断することができない。しかし、予めモニターセル31bにて明るさが分かっているため、該当する明るさにおける色の値域を適用することができる。なお、本実施形態においては、一定時間に蓄積される電荷の量に基づいて色および明るさを判定しているが、一定の電荷が蓄積されるまでの所要時間によって色および明るさを判定するようにしても良い。
【0088】
ステップS520にて炎色を示す撮像画素が存在すると判定されると、ステップS525で30秒待機する。すなわち、この間にCCDラインセンサ31b1の視野が変動しないように、駆動および操舵を停止させる。そして、ステップS530では、ステップS510〜S525にわたって一定に保持された視野を再度CCDラインセンサ31b1によって撮像する。
【0089】
ステップS535において、ステップS515において炎色を示すと判定された画素領域に増減がないかどうかを判定する。図19は、CCDラインセンサ31b1による撮像イメージを模式的に示している。同図上段はステップS510における撮像イメージを示し、同図下段はステップ530における撮像イメージを示している。また、炎と赤色の置物が撮像対象として撮像されているものとする。CCDラインセンサ31b1において示すセルは各撮像画素を示しており、斜線で示すセルは炎色(赤色からオレンジ色)に対応する電荷が蓄積された撮像画素を示している。
【0090】
上段においてCCDラインセンサ31b1における炎と赤色の置物に対応するアドレスの撮像画素が炎色を示している。下段においては炎が拡大しており、炎を受像した撮像画素の画素領域Bも拡大している。一方、赤色の置物を示す撮像画素の画素領域Aは変動していない。ステップS535では、画素領域BのようにステップS510とステップS530の間に変動(増加・減少)する画素領域を検出する。そして、炎を示す画素領域が変動したと判断するとステップS540にて火災が発生したと判断する。一方、画素領域AのようにステップS510とステップS530との間で変動がないもののみである場合には、ステップS545にて火災の発生がないと判断する。
【0091】
すなわち、炎は常に形状を変えることから、炎色を示す画素領域が変動するかどうかによって炎の存在を判定することができる。従って、偶然、炎色を示す物が視野内に存在する場合であっても、火災のみを検出することができる。一方、ステップS520にて炎色を示す撮像画素が検出されない場合には、火災が発生している可能性がないため、ステップS545にて火災の発生がないと判断する。なお、より正確に火災を検出するために、ステップS525,S530を複数回繰り返すことにより、多くの撮像結果から炎の変動を確認するようにしても良い。むろん、撮像のインターバルも30秒に限られるものでもない。
【0092】
ステップS456では、以上説明した火災検出処理の結果を認識し、火災の発生があった場合には、ステップS453にて警報を発する。この警報は、オプションユニット80に備えられた火災警報装置84により行われる。火災警報装置84が警報を発するにあたっては音声やブザー音等を発することにより、使用者に火災発生を通知する。また、警報の開始とともに自走式掃除機は駆動輪モータ42R,42Lの駆動を開始し、各部屋を巡回する。このようにすることにより、どの部屋に使用者がいても確実に火災発生を通知することができる。
【0093】
一方、火災が検出されなかった場合には、ステップS454にて変数nをインクリメントし、ステップS455にて同変数の値から巡回が終わりか否かを判断する。すなわち、ステップS444にて取得した火災監視対象の所在地の数よりも多くなっていれば火災監視は終わりであり、ステップS456ではステップS442にて保存しておいた最初の現在位置へ戻る。一方、終わりでなければ、ステップS446に戻り、この時点での現在位置から次の火災監視対象の所在位置への走行経路を求めることになる。
【0094】
以上においては火災監視処理を独立した処理として行うものとしているが、通常の清掃動作中に火災を監視するようにしても良い。すなわち、ステップS520にて炎色を示す撮像画素を検出する際に必要なデータは、モニターセル31b3からの明るさデータとCCDラインセンサ31b1からの電荷のデータであり、通常の走行時にも取得することが可能なデータである。特に、障害物を回避するためにCCDラインセンサ31b1は断続的に撮像を実行している。従って、通常の動作の際に付随的に火災を監視することも可能である。通常動作時に炎色が検出された場合には、検出された同時に駆動および操舵をさせ、視野を変動させることなく再度撮像を行うようにすればよい。
【0095】
また、モニターセル31b3の代わりに照度計を備えることにより、明るさを取得するようにしても良い。さらに、モニターセル31b3による明るさ測定を、より正確に行うため、モニターセル31b3が明るさを測定するために撮像する範囲を所定の位置に規定するようにしても良い。すなわち、モニターセル31b3が明るさを検出するにあたっては、撮像された範囲の色がノイズとなるため、ある一定の色を有する位置を撮像することにより、正確に明るさを測定することができる。例えば、モニターセル31b3が明るさを検出する場合には、毎回、白色の壁に正面が対向するように自走式掃除機を駆動・停止させることにより、色によるノイズの影響を受けることなく明るさを測定することができる。むろん、その場合は白色の壁を撮像して得られた明るさデータに基づいて明るさ−色−電荷テーブルT2が作成されていることが前提となる。
【0096】
さらに、モニターセル31b3による明るさ測定においては、あくまでも照明や日光等による外部に依存する明るさが測定される。しかしながら、炎は、自らが発光しているのであり、外部の明るさに依存度することなく特定の光量で特定波長の光線を発しているものと考えることができる。従って、明るさ測定を行うことが好ましいが、必ずしも明るさ測定を行わなくても本発明を実現することは可能である。また、炎は可視光以外の光線も放射するため、炎の色に拘泥されることなく、蓄積された電荷のみに基づいて炎を検出するようにしても良い。この場合、炎から放射される光線のエネルギーに応じて蓄積される電荷の値域は、予め炎を撮像した実験に基づいて用意されることが望ましい。
【0097】
この場合、ステップS515にて、炎を撮像したときに蓄積される電荷の取り得る値域を規定したテーブルを参照することにより、炎の有無を検出することができる。すなわち、本発明において必ずしも写像の色が特定されている必要はなく、少なくとも写像が炎に対応した電荷を生成させたかどうかが判定できれば良い。ただし、この場合であっても光路における外部光の影響は避けられないため、明るさごとに異なる値域が規定されたテーブルを用意しておくことが望ましい。さらに、火災監視対象によって予め実験を行う炎を異なる物としても良い。例えば、火災監視対象がキッチンである場合に、ガスを燃焼させた炎を撮像した結果に基づいたテーブルを参照するようにしても良い。
【0098】
以上説明したように、本発明によれば自走式掃除機に備えられる測距用のAF用パッシブセンサ31CLを利用して炎の検出を行うことができる。従って、火災検出用のカメラ等を新たに搭載する必要がなくて済む。また、AF用パッシブセンサ31CLにより少なくとも2回以上(ステップS510,S530)撮像を行い、炎に対応する撮像画素領域の増減を判断基準としているため、炎のみを確実に検出することができる。従って、炎に似た色の障害物を炎として検出してしまうこともない。
【図面の簡単な説明】
【0099】
【図1】本発明にかかる自走式掃除機の概略構成を示すブロック図である。
【図2】同自走式掃除機のより詳細なブロック図である。
【図3】AF用パッシブセンサのブロック図である。
【図4】明るさと色と電荷の関係を示すグラフである。
【図5】AF用パッシブセンサを床面に対して斜め下方に配向した場合における床面の状況と測距距離の変化の状況を示す説明図である。
【図6】直前位置用のAF用パッシブセンサを床面に対して斜め下方に配向した場合における撮像範囲の測距距離を示す説明図である。
【図7】それぞれのAF用パッシブセンサの配置位置と測距部位を示す図である。
【図8】走行制御のフローチャートである。
【図9】清掃走行のフローチャートである。
【図10】室内の走行経路を示す図である。
【図11】オプションユニットの構成を示す図である。
【図12】マーカーの外観を示すである。
【図13】マッピング処理のフローチャートである。
【図14】マッピングを説明する図である。
【図15】マッピング後に各部屋の地図情報を連結する手法を説明する図である。
【図16】火災監視時刻と火災監視対象の設定画面を示す図である。
【図17】火災監視処理のフローチャートである。
【図18】火災検出処理のフローチャートである。
【図19】火災検出処理の様子を示す模式図である。
【符号の説明】
【0100】
10…制御ユニット
20…人体感知ユニット
30…障害物監視ユニット
40…走行系ユニット
50…クリーナ系ユニット
60…カメラ系ユニット
70…無線LANユニット
80…オプションユニット

【特許請求の範囲】
【請求項1】
掃除機構を備えた本体と、障害物との距離を検出する測距機構と、同測距機構により測定された距離に基づいて操舵と駆動を実現する駆動機構とを備える自走式掃除機において、
上記測距機構は、
それぞれ複数の撮像画素によって構成され、異なる位置に備えられた2個以上のCCDラインセンサにおける撮像ずれから上記障害物との距離を測定する測距手段と、
上記CCDラインセンサの各撮像画素に蓄積される電荷の蓄積度合いを取得し、同取得した蓄積度合いが炎に対応する値域となる撮像画素を、炎を受像した撮像画素として検出する炎検出手段と、
明るさを取得する明るさ検出手段と、
同明るさ検出手段によって取得された明るさに応じて炎に対応する上記値域を変動させる値域変動手段と、
上記炎検出手段により炎を受像した撮像画素が検出されたとき、上記駆動機構による操舵および駆動を停止させるとともに、上記CCDラインセンサにより再度撮像し、その撮像結果から炎を受像した撮像画素領域の変動を検出する火災検出手段と、
上記火災検出手段が炎を受像した撮像画素領域の変動を認識したとき、上記駆動機構に操舵および駆動を行わせつつ、警報を発する警報手段とを具備することを特徴とする自走式掃除機。
【請求項2】
掃除機構を備えた本体と、障害物との距離を検出する測距機構と、同測距機構により測定された距離に基づいて操舵と駆動を実現する駆動機構とを備える自走式掃除機において、
上記測距機構は、
それぞれ複数の撮像画素によって構成され、異なる位置に備えられた2個以上のラインセンサにおける撮像ずれから上記障害物との距離を測定する測距手段と、
上記ラインセンサによる撮像結果から炎を受像した撮像画素を検出する炎検出手段と、
上記炎検出手段により炎を受像した撮像画素が検出されたとき、上記ラインセンサにより再度撮像し、その撮像結果から炎を受像した撮像画素領域の変動を検出する火災検出手段と、
上記火災検出手段が炎を受像した撮像画素領域の変動を認識したとき、警報を発する警報手段とを具備することを特徴とする自走式掃除機。
【請求項3】
上記炎検出手段は、
上記ラインセンサに蓄積される電荷の蓄積度合いを取得し、同取得した蓄積度合いが炎に対応する値域となる撮像画素を、炎を受像した撮像画素として検出することを特徴とする請求項2に記載の自走式掃除機。
【請求項4】
明るさを取得する明るさ検出手段と、
同明るさ検出手段によって取得された明るさに応じて炎に対応する上記値域を変動させる値域変動手段とを具備することを特徴とする請求項3に記載の自走式掃除機。
【請求項5】
上記駆動機構は、上記炎検出手段が炎を検出した後、上記火災検出手段が再度の撮像を完了させるまで操舵および駆動を停止させることを特徴とする請求項2から請求項4のいずれかに記載の自走式掃除機。
【請求項6】
上記ラインセンサは、CCDセンサであることを特徴とする請求項2から請求項5のいずれかに記載の自走式掃除機。
【請求項7】
上記警報手段は、上記駆動機構に上記自走式掃除機の操舵および駆動を行わせつつ、警報を発することを特徴とする請求項2から請求項6のいずれかに記載の自走式掃除機。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate

【図18】
image rotate

【図19】
image rotate


【公開番号】特開2006−11845(P2006−11845A)
【公開日】平成18年1月12日(2006.1.12)
【国際特許分類】
【出願番号】特願2004−188370(P2004−188370)
【出願日】平成16年6月25日(2004.6.25)
【出願人】(000201113)船井電機株式会社 (7,855)
【Fターム(参考)】