説明

荷電粒子線装置、レンズパワー調整方法、及びデバイス製造方法

【課題】 偏向器の偏向中心と光学系の中間像を正確に一致させた荷電粒子線装置を提供する。
【解決手段】 荷電粒子線を偏向する偏向器107と、前記荷電粒子線を収束させるレンズ102と、前記レンズによる中間像103と共役な位置で、光軸に垂直な平面内における前記荷電粒子線の位置を計測する位置計測手段113と、前記位置計測手段により計測される荷電粒子線の位置情報に基づき前記レンズのパワーを調整するレンズパワー調整手段114とを備える。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、主に半導体集積回路等の露光に用いられる電子線露光装置やイオンビーム露光装置等の荷電粒子線露光装置、及び半導体集積回路の製造過程で回路等のパターンを検査する検査装置に関するものである。
【背景技術】
【0002】
複数の電子ビームを被露光基板上に照射し、その複数の電子ビームを偏向させて基板上を走査させるとともに、描画すべきパターンに応じて複数の電子ビームを個別にオンオフしてパターンを描画するマルチビーム方式の電子線露光装置については、例えば、特開平9−330870号公報(特許文献1)に開示されている。
【0003】
この例において、ブランキング用偏向器の偏向中心と光学系の中間像の位置とを一致させることが求められる。
【0004】
また、電子ビームを用いてウエハ上の回路等のパターンを検査する走査電子顕微鏡については、例えば、特開2004−31976号公報(特許文献2)に開示されている。
【0005】
この例においても、ブランキング用偏向器の偏向中心と電子ビームのクロスオーバーの位置とを一致させることが求められる。
【特許文献1】特開平9−330870号公報
【特許文献2】特開2004−31976号公報
【発明の開示】
【発明が解決しようとする課題】
【0006】
しかしながら、偏向器の偏向中心と光学系の中間像(クロスオーバー像)とを正確に合わせるのは、偏向器の偏向中心を正確に把握できないため、困難である。電子線露光装置の場合、偏向器の偏向中心と中間像とを正確に合わせないと、偏向器の偏向中心とウエハもしくは試料表面が光学系にとって共役な位置関係でなくなる。そのため、ウエハもしくは試料表面で電子ビームの像が動き、結果として電子ビームはぼけてしまう。走査電子顕微鏡の場合、ブランキングの最中に試料上の電子ビームによる照射位置が変化してしまい、照射領域に隣接した領域を帯電させてしまう。
【0007】
ウエハもしくは試料表面で電子ビームの像が動いてしまうのを避けるために、ステージを光軸方向に上下させて補正することも可能だが、電磁レンズもしくは静電レンズや偏向器を光学的に補正する必要がでてきて、煩雑な手順が増してしまう。
【0008】
本発明の目的は、意図しない照射位置の変化がなく、照射領域に隣接した領域を帯電させてしまうのを回避することができ、パターン寸法精度など描画性能の良い荷電粒子線装置を提供することである。
【課題を解決するための手段】
【0009】
上記目的を達成するために、本発明に係る荷電粒子線装置は、荷電粒子線を偏向する偏向器と、前記荷電粒子線を収束させるレンズと、前記レンズによる中間像の結像位置と共役な位置で、光軸に垂直な平面内における前記荷電粒子線の位置を計測する位置計測手段と、前記位置計測手段により計測される前記荷電粒子線の位置情報に基づき前記レンズのパワーを調整するレンズパワー調整手段と、を備えることを特徴とする。
【0010】
前記レンズパワー調整手段は、例えば、前記偏向器の動作時における前記荷電粒子線の位置と、前記偏向器の非動作時における前記荷電粒子線の位置と、を一致させるように、前記レンズのパワーを調整することを特徴とする。
【0011】
前記レンズは、例えば、電磁レンズもしくは静電レンズであることを特徴とすることができ、前記レンズは前記偏向器より光軸方向において上段に配置されることを特徴としてもよい。前記荷電粒子線装置は露光装置であることを特徴とすることもでき、前記荷電粒子線装置は電子ビームを用いた走査電子顕微鏡であることを特徴とすることもでき、前記露光装置は複数の荷電粒子線を用いて被露光基板上に所望のパターンを露光するマルチビーム露光装置であることを特徴とすることもできる。
【0012】
また、本発明は、前記露光装置を用いて前記被露光基板に露光を行う工程と、露光された前記被露光基板を現像する工程と、を備えることを特徴とするデバイス製造方法にも適用される。
【0013】
また、本発明に係るレンズパワー調整方法は、荷電粒子線を収束させるレンズによる中間像の結像位置と共役な位置で、光軸に垂直な平面内における前記荷電粒子線の位置を計測し、その位置情報に基づき前記レンズのパワーを調整することを特徴とする。前記レンズは前記荷電粒子線を偏向する偏向器より光軸方向において上段に配置されることを特徴とすることができる。
【発明の効果】
【0014】
本発明によれば、パターン寸法精度など描画性能の良い荷電粒子線装置を提供することができる。また、この装置を用いてデバイスを製造すれば、従来以上に高精度なデバイスを製造することができる。
【発明を実施するための最良の形態】
【0015】
以下、本発明の実施例について、図面を用いて説明する。荷電粒子線装置の例として以下の実施例では、(1)1本の電子ビームを用いてウエハなど被露光基板を露光する電子ビーム露光装置、(2)複数の電子ビームを用いてウエハなど被露光基板を露光する電子ビーム露光装置、(3)電子ビームを用いてウエハ上の回路等のパターンを検査する走査電子顕微鏡、の例を示す。なお、上記(1)と(2)の実施例では、電子ビームに限らずイオンビームを用いた露光装置にも同様に適用できる。また、マスクを用いてウエハなど被露光基板を露光する電子ビーム露光装置や、フォトカソードを持つ電子ビーム描画装置にも同様に適用できる。
【実施例1】
【0016】
本発明の実施例1は、(1)1本の電子ビームを用いてウエハなど被露光基板を露光する電子ビーム露光装置に係るものである。図1は、本発明の実施例1に係る電子ビーム露光装置の要部概略図である。
【0017】
電子源101から放出された電子ビームは電磁レンズ102によって電子源101の中間像103を形成する。その中間像103は、電磁レンズ105,108を備えて成る光学系を介してウエハ109上に投影され、像110を形成する。その際、中間像103と像110は光学系にとって共役な位置関係となっている。
【0018】
ブランカー104は中間像103の位置にある偏向器であり、ウエハ109に対する電子ビームの照射と遮蔽を制御する。すなわち、電子ビームをウエハ109に対して照射する場合は、ブランカー104を用いずに、ウエハ109上に電子ビームを照射する。一方、電子ビームをウエハ109に対して遮蔽する場合は、ブランカー104を用いて電子ビームを偏向させ、光学系の瞳上に位置するブランキングアパーチャ106で電子ビームを遮蔽する。また、電子ビームは静電偏向器107によってウエハ上を走査される。
【0019】
ウエハステージ111には、像110の位置を計測するためのマーク112が備えられており、反射電子検出器113が、マーク112からの反射電子を検出する。マーク112及び反射電子検出器113によって計測された像110の位置情報に基づき、電磁レンズパワー補正制御回路114において、電磁レンズ102のパワーが決定され、レンズパワーにフィードバックされる。
【0020】
偏向器の偏向中心とウエハの表面が光学系にとって共役な位置関係にある場合とない場合の、ウエハ近傍における像の位置について、図2と図3を用いて説明する。最初に、図2を用いて、偏向器の偏向中心と光学系の中間像の位置が一致している場合の、ウエハ近傍における像の位置について説明する。
【0021】
図2(A)は、偏向器203の偏向中心204と図示しないレンズの中間像205が一致していることを示す概観図である。このとき、光軸201と電子ビームの主光線202は一致している。そして、図2(B)は、図2(A)の状態のときの、ウエハ208の近傍における電子ビームの偏向中心206と電子ビームの像207の位置を示す概観図である。レンズの中間像205と電子ビームの像207は共役な関係となっており、偏向器203の偏向中心204とレンズの中間像205は一致しているため、ウエハ208の近傍における電子ビームの偏向中心206と電子ビームの像207は一致する。なお、図2(A)と同様に、光軸201と電子ビームの主光線202は一致している。
【0022】
一方、図2(C)は、図2(A)の状態から偏向器203を動作させた状態を示す概観図である。偏向中心204とレンズの中間像205は一致しているため、電子ビームはレンズの中間像205、つまり偏向中心204を基点に偏向される。そして、図2(D)は、図2(C)の状態のときの、ウエハ208の近傍における電子ビームの偏向中心206と電子ビームの像207の位置、及び電子ビームの主光線202が傾いていることを示す概観図である。電子ビームの主光線202は偏向中心206を基点に傾き、電子ビームの像207はウエハ208の表面でシフトしない。
【0023】
以上、図2(A)から図2(D)で説明したように、偏向器の偏向中心と光学系の中間像の位置が一致している場合、偏向器203を動作させないときと動作させたときとで、ウエハ208の表面における電子ビームの像207の位置はずれない。つまり、偏向器203をON/OFFさせながらウエハ208の表面上における電子ビームの位置を計測すると、その位置は偏向器203のON/OFFに従って動かない。
【0024】
次に、図3を用いて、偏向器の偏向中心と光学系の中間像の位置が一致していない場合の、ウエハ近傍における像の位置について説明する。
図3(A)は、偏向器303の偏向中心304よりも下側に図示しないレンズの中間像305があることを示す概観図である。このとき、光軸301と電子ビームの主光線302は一致している。そして、図3(B)は、図3(A)の状態のときの、ウエハ308の近傍における電子ビームの偏向中心306と電子ビームの像307の位置を示す概観図である。レンズの中間像305と電子ビームの像307は共役な関係となっているが、偏向器303の偏向中心304とレンズの中間像305が一致していないため、ウエハ308の近傍における電子ビームの偏向中心306と電子ビームの像307は一致していない。なお、図3(A)と同様に、光軸301と電子ビームの主光線302は一致している。
【0025】
一方、図3(C)は、図3(A)の状態から偏向器303を動作させた状態を示す概観図である。偏向中心304とレンズの中間像305は一致していないため、電子ビームはレンズの中間像305ではなく、偏向中心304を基点に偏向される。そして、図3(D)は、図3(C)の状態のときの、ウエハ308の近傍における電子ビームの偏向中心306と電子ビームの像307の位置、及び電子ビームの主光線302が傾いていることを示す概観図である。電子ビームの主光線302は偏向中心306を基点に傾くため、電子ビームの像307はウエハ308の表面でシフトする。
【0026】
以上、図3(A)から図3(D)を参照して説明したように、偏向器の偏向中心と光学系の中間像の位置が一致していない場合、偏向器303を動作させないときと動作させたときとで、ウエハ308の表面における電子ビームの像307の位置はずれる。つまり、偏向器303をON/OFFさせながらウエハ308の表面上における電子ビームの位置を計測すると、その位置は偏向器303のON/OFFに従って動くことになる。偏向器303より上側に位置する図示しないレンズのパワーを調整することで、偏向器の偏向中心と光学系の中間像の位置を一致させ、偏向器303を動作させないときと動作させたときにおけるウエハ308の表面での電子ビームの像307の位置を動かないようにさせることができる。
また、電子ビームの像307の位置を計測する場所は、ウエハの表面ではなく中間像305と光軸方向において共役な位置でも良い。
【0027】
ウエハ表面における電子ビームの位置は、ウエハ表面と同等の位置にあるマークをスキャンしたことにより得られる2次元像もしくは1次元プロファイルから計測する。2次元像による電子ビームの位置計測は、適切な評価領域内での像の重心を電子ビーム位置とする方法や、電子ビームの形状を円もしくは楕円として検出し、円の中心もしくは楕円の2つの焦点の中心を電子ビーム位置とする方法などがある。1次元プロファイルによる電子ビームの位置計測は、プロファイルの立ち上がりと立ち下がりを微分した部分をガウシアンとして検出し、それら2つのガウシアンの中心を電子ビーム位置とする方法などがある。
【0028】
図4を用いて、本実施例の電子ビーム露光装置において、光学系の中間像と偏向器の偏向中心を一致させる動作について説明する。
(ステップ41)では、偏向器に、あらかじめ決められた電圧のパルス信号を印加する。その際、印加する電圧は偏向器よりも下側にあるブランキングアパーチャによって遮蔽される電圧よりも低い電圧とする。つまり、偏向器にパルス信号を印加している間、ウエハの表面と同等の位置にあるマークを用いて、常に電子ビームの像の位置を計測することができる。偏向器にパルス信号を印加した後、ステップ42に移行する。
【0029】
(ステップ42)では、ウエハの表面と同等の位置にあるマークを用いて、電子ビームの像の位置を計測する。電子ビームの像の位置を計測した後、ステップ43へ移行する。
【0030】
(ステップ43)では、ウエハの表面と同等の位置において、電子ビームの像が動いているかどうかを判断する。電子ビームの像が動いている場合ステップ44へ、電子ビームの像が動いていない場合ステップ45へ、それぞれ移行する。
【0031】
(ステップ44)では、あらかじめ決められた範囲内で、偏向器の偏向中心にフォーカスさせたいレンズのパワーを微小量変化させる。レンズのパワーを微小量変化させた後、ステップ42へ移行する。
【0032】
(ステップ45)では、偏向器に印加されているパルス信号を停止する。偏向器に印加されているパルス信号を停止した後、処理終了へ移行する。
【実施例2】
【0033】
本発明の実施例2は、(2)複数の電子ビームを用いてウエハなど被露光基板を露光する電子ビーム露光装置に係るものである。図5は、本発明の実施例2に係る電子ビーム露光装置の要部概略図である。
【0034】
501から509は、複数の電子源像を形成し、その電子源像から電子ビームを放射するマルチソースモジュールであり、図5の場合、マルチソースモジュールは5×5の25個が2次元配列されている。501は、電子銃が形成する電子源(クロスオーバー像)である。この電子源501から放射される電子ビームは、コンデンサーレンズ502によって略平行な電子ビームとなる。503は、開口が2次元配列して形成されたアパーチャアレイであり、504は、同一の光学パワーを有する静電レンズが2次元配列して形成されたレンズアレイである。505,506,507,508は、個別に駆動可能な静電偏向器が2次元配列して形成されたマルチ偏向器アレイであり、509は、個別に駆動可能な静電のブランカーが2次元配列して形成されたブランカーアレイである。
【0035】
マルチソースモジュールの各機能について説明する。コンデンサーレンズ502からの略平行な電子ビームは、アパーチャアレイ503によって複数の電子ビームに分割される。分割された電子ビームは、対応するレンズアレイ504の静電レンズを介して、ブランカーアレイ509の対応するブランカー上に、電子源501の中間像523を形成する。この時、マルチ偏向器アレイ505,506,507,508は、ブランカーアレイ509上に形成される電子源の中間像523の位置(光軸と直交する面内の位置)を個別に調整する。また、ブランカーアレイ509で偏向された電子ビームは、ブランキングアパーチャ510によって遮断されるため、ウエハ520には照射されない。一方、ブランカーアレイ509で偏向されない電子ビームは、ブランキングアパーチャ510によって遮断されないため、ウエハ520には照射される。
【0036】
マルチソースモジュールで形成された電子源の複数の中間像は、磁界レンズ515,516,517,518の縮小投影系を介して、ウエハ520に投影される。この時、複数の中間像がウエハ520に投影される際、焦点位置は、ダイナミックフォーカスレンズ(静電もしくは磁界レンズ)511,512で調整できる。513と、514は各電子ビームを露光すべき個所へ偏向させる主偏向器と副偏向器である。519はウエハ520上に形成された電子源の各中間像の位置を計測するための反射電子検出器である。521はウエハを移動させるためのステージである。522は電子ビームの位置およびビーム形状を検出するためのマークである。524は、レンズアレイパワー補正制御回路であり、マーク522及び反射電子検出器519によって計測された像の位置情報に基づいて、レンズアレイ504のパワーを決定する。
【0037】
マルチ偏向器アレイ505〜508の偏向中心と中間像523とを正確に合わせるのは、マルチ偏向器アレイ505〜508の偏向中心を正確に把握できないため、困難である。マルチ偏向器アレイ505〜508の偏向中心と中間像523とを正確に合わせないと、上記実施例1で述べたように、ウエハ520の表面上で電子ビームの像が動いてしまう。特に、ブランカーアレイ509を動作させて電子ビームのON/OFFを行う際、ウエハ520の表面上で電子ビームの像が動いてしまい、電子ビームがぼけてしまう。その結果、描画したパターンの寸法精度などが悪化する。
【0038】
また、ウエハ520の表面上で電子ビームの像が動いてしまうのを避けるために、ステージ521を光軸方向に上下させて補正することも可能だが、縮小投影系の倍率が変化し、縮小投影系のレンズや偏向器を光学的に調整する必要がでてくる。
【0039】
マルチ偏向器アレイ505〜508の偏向中心と中間像523とを正確に合わせるために、実施例1の図4で説明した動作と同様の動作をここで行う。つまり、マルチ偏向器アレイ505〜508にパルス信号を印加し、マーク522及び反射電子検出器519によって計測された像525の位置情報に基づいて、レンズアレイパワー補正制御回路524においてレンズアレイ504のパワーを決定し、マルチ偏向器アレイ505〜508の偏向中心と中間像523とを正確に合わせる。その結果、電子ビームのON/OFFを行う際に、ウエハ520表面上で電子ビームの像が動かないようにすることができ、描画パターンの寸法精度などを向上させることができる。
【実施例3】
【0040】
本発明の実施例3は、(3)電子ビームを用いてウエハ上の回路等のパターンを検査する走査電子顕微鏡に係るものである。図6は、本発明の実施例3に係る走査電子顕微鏡の要部概略図である。
【0041】
この走査電子顕微鏡は、電子銃601に、電子源602、引出電極603、及び加速電極604を備えて構成される。電子源602と引出電極603の間には引出電圧V1が印加され、これによって電子源602から電子ビーム605が引き出される。加速電極604はアース電位に維持され、そして加速電極604と電子源602との間には加速電圧Vaccが印加されることで、電子ビーム605は加速される。加速された電子ビーム605は、電磁レンズ606によって、クロスオーバー608が生じるように収束され、さらに電磁レンズ610によって、試料ステージ613上にあるウエハ等の試料612の表面上に収束される。
【0042】
試料612の表面上に収束された電子ビーム605の像615が試料612の表面上を走査すると、試料612から2次電子及び反射電子が発生する。発生した2次電子は電子検出器614によって検出され、電気信号に変換される。
【0043】
電磁レンズ606とクロスオーバー608との間には、アパーチャ607が配置されており、このアパーチャ607によって電子ビーム605の開口角は決められる。また、クロスオーバー608と電磁レンズ610との間または電磁レンズ610の中には、電子ビーム走査用偏向器611が配置され、この電子ビーム走査用偏向器611は像615で試料612を走査するように電子ビーム605を偏向させる機能を持つ。本実施例の場合、電子ビーム走査用偏向器611は、電磁レンズ610の中に設けられており、電子ビーム走査用偏向器611の偏向中心と電磁レンズ610のレンズ中心とが一致させることで、偏向歪を低減させる構造となっている。像615で試料612を走査することで、試料612の各所から発生する2次電子を電子検出器614によって検出し、検出された情報に基づいて試料612上の回路等のパターンを検査する。
【0044】
ブランキング用偏向器609は、アパーチャ607と電子ビーム走査用偏向器611との間に配置されていて、電子ビーム605を、クロスオーバー608が形成される位置において偏向してブランキングする。電子ビーム605をブランキングするために、クロスオーバー608以外の点を支点として偏向すると、実施例1で説明したように、偏向時に試料612の表面上で電子ビーム605の照射位置が移動してしまう。また、電子ビーム605がある程度の面積を持つビームである場合にブランキングすると、ブランキングの最中にアパーチャ607で遮蔽できない電子ビームが存在し、照射したくない隣接した領域を照射してしまう場合がある。
【0045】
ブランキング用偏向器609の偏向中心とクロスオーバー608とを正確に合わせるために、実施例1の図4で説明した動作と同様の動作がここで行われる。つまり、ブランキング用偏向器609にパルス信号を印加し、電子検出器614によって計測された回路等のパターンの位置情報に基づいて、電磁レンズパワー補正制御回路616において電磁レンズ606のパワーを決定して、ブランキング用偏向器609の偏向中心とクロスオーバー608とは正確に合わせられる。その結果、ブランキングの最中に照射したくない隣接した領域を照射しないようにすることができる。
【実施例4】
【0046】
次に、本発明の実施例4として、上述の実施例1または実施例2で説明した電子ビーム露光装置を利用したデバイスの生産方法の一例を説明する。
【0047】
図7に微小デバイス(ICやLSI等の半導体チップ、液晶パネル、CCD、薄膜磁気ヘッド、マイクロマシン等)の製造のフローを示す。ステップ71(回路設計)では半導体デバイスの回路設計を行う。ステップ72(EBデータ変換)では設計した回路パターンに基づいて露光装置の露光制御データを作成する。一方、ステップ73(ウエハ製造)ではシリコン等の材料を用いてウエハを製造する。ステップ74(ウエハプロセス)は前工程と呼ばれ、上記ステップ72で用意した露光制御データが入力された露光装置とウエハを用いて、リソグラフィ技術によってウエハ上に実際の回路を形成する。次のステップ75(組み立て)は後工程と呼ばれ、ステップ74によって作製されたウエハを用いて半導体チップ化する工程であり、アッセンブリ工程(ダイシング、ボンディング)、パッケージング工程(チップ封入)等の工程を含む。ステップ76(検査)ではステップ75で作製された半導体デバイスの動作確認テスト、耐久性テスト等の検査を行う。こうした工程を経て半導体デバイスが完成し、これが出荷(ステップ77)される。
図8は上記ウエハプロセスの詳細なフローを示す。ステップ81(酸化)ではウエハの表面を酸化させる。ステップ82(CVD)ではウエハ表面に絶縁膜を形成する。ステップ83(電極形成)ではウエハ上に電極を蒸着によって形成する。ステップ84(イオン打込み)ではウエハにイオンを打ち込む。ステップ85(レジスト処理)ではウエハに感光剤を塗布する。ステップ86(露光)では上記説明した露光装置によって回路パターンをウエハに焼付露光する。ステップ87(現像)では露光したウエハを現像する。ステップ88(エッチング)では現像したレジスト像以外の部分を削り取る。ステップ89(レジスト剥離)ではエッチングが済んで不要となったレジストを取り除く。これらのステップを繰り返し行うことによって、ウエハ上に多重に回路パターンが形成される。
本実施例の製造方法を用いれば、高集積度の半導体デバイスをパターン寸法精度良く製造することが出来る。
【図面の簡単な説明】
【0048】
【図1】本発明の実施例1に係り、1本の電子ビームを用いてウエハなど被露光基板を露光する電子ビーム露光装置の要部概略を説明するための図である。
【図2】本発明の実施例1に係り、偏向器の偏向中心と光学系の中間像の位置が一致している場合のウエハ近傍における像の位置について説明するための図である。
【図3】本発明の実施例1に係り、偏向器の偏向中心と光学系の中間像の位置が一致していない場合のウエハ近傍における像の位置について説明するための図である。
【図4】本発明の実施例1に係り、光学系の中間像と偏向器の偏向中心を一致させるフローについて説明するための図である。
【図5】本発明の実施例2に係り、複数の電子ビームを用いてウエハなど被露光基板を露光する電子ビーム露光装置の要部概略を説明するための図である。
【図6】本発明の実施例3に係り、電子ビームを用いてウエハ上の回路等のパターンを検査する走査電子顕微鏡の要部概略を説明するための図である。
【図7】微小デバイスの製造フローを説明するための図である。
【図8】ウエハプロセスを説明するための図である。
【符号の説明】
【0049】
101:電子源、102:電磁レンズ、103:中間像、104:ブランカー、105:電磁レンズ、106:ブランキングアパーチャ、107:静電偏向器、108:電磁レンズ、109:ウエハ、110:像、111:ウエハステージ、112:位置検出用マーク、113:反射電子検出器、114:レンズパワー補正制御回路、201:光軸、202:電子ビームの主光線、203:偏向器、204:偏向器の偏向中心、205:中間像、206:ウエハ近傍での偏向中心、207:像、208:ウエハ、301:光軸、302:電子ビームの主光線、303:偏向器、304:偏向器の偏向中心、305:中間像、306:ウエハ近傍での偏向中心、307:像、308:ウエハ、501:電子源(クロスオーバー像)、502:コンデンサーレンズ、503:アパーチャアレイ、504:レンズアレイ、505:マルチ偏向器アレイ、506:マルチ偏向器アレイ、507:マルチ偏向器アレイ、508:マルチ偏向器アレイ、509:ブランカーアレイ、510:ブランキングアパーチャ、511:ダイナミックフォーカスレンズ、512:ダイナミックフォーカスレンズ、513:主偏向器、514:副偏向器、515:磁界レンズ、516:磁界レンズ、517:磁界レンズ、518:磁界レンズ、519:反射電子検出器、520:ウエハ、521:ステージ、522:マーク、523:中間像、524:レンズアレイパワー補正制御回路、525:像、601:電子銃、602:電子源、603:引出電極、604:加速電極、605:電子ビーム、606:電磁レンズ、607:アパーチャ、608:クロスオーバー、609:ブランキング用偏向器、610:電磁レンズ、611:電子ビーム走査用偏向器、612:試料、613:試料ステージ、614:電子検出器、615:像、616:電磁レンズパワー補正制御回路。

【特許請求の範囲】
【請求項1】
荷電粒子線を偏向する偏向器と、
前記荷電粒子線を収束させるレンズと、
前記レンズによる中間像の結像位置と共役な位置で、光軸に垂直な平面内における前記荷電粒子線の位置を計測する位置計測手段と、
前記位置計測手段により計測される前記荷電粒子線の位置情報に基づき前記レンズのパワーを調整するレンズパワー調整手段と、を備えることを特徴とする荷電粒子線装置。
【請求項2】
前記レンズパワー調整手段は、前記偏向器の動作時における前記荷電粒子線の位置と、前記偏向器の非動作時における前記荷電粒子線の位置と、を一致させるように、前記レンズのパワーを調整することを特徴とする請求項1に記載の荷電粒子線装置。
【請求項3】
前記レンズは電磁レンズもしくは静電レンズであることを特徴とする請求項1または2に記載の荷電粒子線装置。
【請求項4】
前記レンズは前記偏向器より光軸方向において上段に配置されることを特徴とする請求項1乃至3のいずれかに記載の荷電粒子線装置。
【請求項5】
前記荷電粒子線装置は露光装置であることを特徴とする請求項1乃至4のいずれかに記載の荷電粒子線装置。
【請求項6】
前記荷電粒子線装置は電子ビームを用いた走査電子顕微鏡であることを特徴とする請求項1乃至4のいずれかに記載の荷電粒子線装置。
【請求項7】
前記露光装置は複数の荷電粒子線を用いて被露光基板上に所望のパターンを露光するマルチビーム露光装置であることを特徴とする請求項5に記載の荷電粒子線装置。
【請求項8】
荷電粒子線を収束させるレンズによる中間像の結像位置と共役な位置で、光軸に垂直な平面内における前記荷電粒子線の位置を計測し、その位置情報に基づき前記レンズのパワーを調整することを特徴とするレンズパワー調整方法。
【請求項9】
前記レンズは前記荷電粒子線を偏向する偏向器より光軸方向において上段に配置されることを特徴とする請求項8に記載のレンズパワー調整方法。
【請求項10】
請求項5または7に記載の露光装置を用いて前記被露光基板に露光を行う工程と、露光された前記被露光基板を現像する工程と、を備えることを特徴とするデバイス製造方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate


【公開番号】特開2007−19193(P2007−19193A)
【公開日】平成19年1月25日(2007.1.25)
【国際特許分類】
【出願番号】特願2005−198092(P2005−198092)
【出願日】平成17年7月6日(2005.7.6)
【国等の委託研究の成果に係る記載事項】(出願人による申告)国等の委託研究の成果に係る特許出願(平成14年度新エネルギー・産業技術総合開発機構「基盤技術研究促進事業(民間基盤技術研究支援制度)ML2システム基本技術の開発」委託研究、産業再生法第30条の適用を受けるもの)
【出願人】(000001007)キヤノン株式会社 (59,756)
【出願人】(501387839)株式会社日立ハイテクノロジーズ (4,325)
【Fターム(参考)】