説明

薄膜形成方法および薄膜形成装置

【課題】
本発明は、減圧雰囲気内で絶縁性のフィルムを連続的に繰り出し薄膜を蒸着する薄膜形成方法において、冷却ローラへ安定して直流電圧を印加し、フィルムを十分冷却することによってフィルムの熱変形を防止し薄膜を形成する方法を提供する。
【解決手段】
冷却ローラへ導入する冷却媒体の体積抵抗率が1MΩ・m以上であって、+25℃から−30℃までの範囲における動粘度が200mm2/s以下である液体を用いることにより、前記冷却ローラへ安定的に電圧を印加し、前記フィルムを前記冷却ローラへ静電引力で密着させて成膜することを特徴とする薄膜形成方法。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、減圧雰囲気内で絶縁性のフィルムを連続的に繰り出し、フィルムを冷却用ローラに密着させ冷却しながら前記フィルムに薄膜を蒸着する薄膜形成方法および薄膜形成装置に関する。
【背景技術】
【0002】
巻出しロールから連続的に繰り出した長尺の原料フィルムを冷却用ローラに巻き付けながら、前記冷却用ローラに対向配置される蒸発源からの蒸発物質を原料フィルム上に蒸着させ、蒸着後の原料フィルムを巻取りローラで巻き取る薄膜形成装置が知られている。(例えば特許文献1参照)
この種の薄膜形成装置においては、蒸着時におけるフィルムの熱変形を防止するため、フィルムを冷却用ローラの周面に密着させて冷却しながら成膜処理を行うようにしている。冷却用ロールは常にフィルムを一定に冷却するため、冷却媒体(冷媒)を循環させている。したがってフィルムの熱変形を防止するためには、冷却ローラに対するフィルムの密着作用をいかに確保するかが重要な問題となっている。
【0003】
そこで、特許文献1に記載の薄膜形成装置においては、冷却ローラと巻取りロールとの間にフィルムの成膜面に接触する補助ローラを配置し、この補助ローラと冷却ローラとの間に直流電圧を印加することで、フィルムを冷却ローラに対して静電気的に密着させる方法が開示されている。これにより冷却ローラに対するフィルムの密着作用が得られるため、蒸着時におけるフィルムの熱変形が効果的に防止される。また特許文献2は冷却ローラへ導入する冷媒にエチレングリコールやシリコーンオイルを用いた記載がある。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】特開2006−152448号公報
【特許文献2】特開2010−242217号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
しかしながら特許文献1に記載の構成とするためには冷却用ローラと補助ローラを支持筐体のアース電位から電気的に切り離し、絶縁化する必要がある。しかし冷却用ローラはフィルムを冷却するため、冷媒を循環させる必要があり、冷却用ローラを機械構造的に絶縁支持しても、内部を循環する冷媒と配管設備を通じてアースへ電流が流れてしまい、冷却用ローラへ安定的に直流電圧を印加することが困難となる。例えば特許文献2に記載の冷媒材料であるエチレングリコールは不凍液として一般に広く用いられているが、主として水と希釈して粘度を下げた状態で使用される。(希釈しないと粘度が高く循環困難となる)。しかし水−エチレングリコール溶液は導電性流体であるため冷却用ローラの冷媒とした場合、冷却用ローラと補助ローラの間に直流電源を接続して電圧を印加すると、冷却用ローラ内部のエチレングリコール溶液から金属配管や金属継手を伝ってアースへ向けて電流が流れてしまい、電流地落状態となって電圧は0Vとなってしまう。
【0006】
この問題を防止するために冷媒の循環器や金属配管経路自体を冷却用ローラと共に絶縁化し、アースと電気的に切り離す方法があるが、冷媒の接液部をすべて絶縁化するには絶縁材料の制約や過大な絶縁設備構造を必要とするため現実的ではない。よって冷却用ローラと補助ローラへ電圧を印加するためには絶縁性流体の冷媒が望まれていた。前記冷媒の体積抵抗は高抵抗であるほど望ましく、体積抵抗が下がるほど冷却用ローラから冷媒を伝いアースに向かって電流が流れ、電流量が直流電源の電流容量に達すると印加した電圧が降下しはじめ、徐々に密着力が低下して蒸着フィルムに熱変形が発生してしまう。この場合は電流出力損失に耐えられるような電流容量の大きな直流電源に変更する必要があるが、体積抵抗が下がるほど大容量の直流電源が必要とされるため、電源コストが非常に高くなってしまう。 よって小型直流電源を用いることが出来るような、1MΩ・m以上の高抵抗な冷媒が望まれていた。
また冷媒の冷却能力は主に熱伝導度と循環量で決定されるが、冷媒に絶縁性が必要な場合、水を混合出来ない為、低温では高粘度となってしまうものが多かった。そして高粘度冷媒の循環は冷媒循環機ポンプの負荷が過大となり、また循環量が下がって冷却効率も下がってしまう課題があった。よって通常フィルム冷却に必要とされる冷媒温度である+25℃から−30℃の範囲において、絶縁性を有した上で低粘度な冷媒が望まれていた。
【0007】
例えば特許文献2に記載のシリコーンオイルは絶縁性流体であるが、低温での粘度上昇が大きく、低温時の冷却性能に問題があるものが多く、冷媒の高粘度化による冷媒循環量低下でもフィルムは熱変形を生じてしまう課題があった。よって本発明は上述の問題に鑑みてなされ、簡易な設備で冷却ローラへ安定して直流電圧を印加し、フィルムを十分冷却することによってフィルムの熱変形を防止し薄膜を形成することを課題とする。
【課題を解決するための手段】
【0008】
本発明は上記目的を達成し、絶縁性のフィルムへ薄膜を形成する薄膜形成方法であって、
真空チャンバとこの真空チャンバの内部でフィルムを搬送する搬送手段と、前記フィルムと密着して当該フィルムを冷却するための冷却用ローラと、前記冷却用ローラに対向配置され当該フィルムに薄膜を成膜する成膜手段と、前記フィルムの成膜面に接触して当該フィルムの走行をガイドする補助ローラと、前記冷却用ローラと前記補助ローラとの間に直流電圧を印加する電圧印加手段とを有する絶縁性フィルムの薄膜形成手段において、前記冷却用ローラは支持部材によって前記真空チャンバと電気的に絶縁された状態で保持され、ローラ内に体積抵抗率が1MΩ・m以上であって、+25℃から−30℃までの範囲における動粘度が200mm2/s以下である液体の冷却媒体を環流させることを特徴とする。また前記冷却媒体がポリシロキサンを主体とした液体であることを特徴とする。
【発明の効果】
【0009】
以上述べたように、本発明の薄膜形成方法によって、冷却ローラを簡易な構造で絶縁化することが出来るため、安価で安定して直流電圧を印加でき、フィルムを十分冷却することによってフィルムの熱変形を防止して成膜することが可能となる。
【図面の簡単な説明】
【0010】
【図1】本発明における薄膜形成方法の構成と直流バイアス電源の接続構成を示す図。
【図2】図1の中央より巻出し側ローラへ向かって直角方向から見た状態で、冷却用ローラの断面構造と冷媒の循環経路について示した図。
【発明を実施するための形態】
【0011】
以下、本発明の実施形態について図面を参照して説明する。本実施形態では、薄膜形成手段として成膜源に蒸着物質の蒸発源が用いられる一般的な薄膜形成方法を例に挙げて説明する。
【0012】
図1は本実施形態の薄膜形成装置1の概略構成図である。薄膜形成装置1は、真空チャンバ10と、フィルム13の搬送手段である巻出しロール11と搬送ローラ14と冷却用ローラ15と、補助ローラ18と巻取りロール12とを備える。またフィルムに薄膜を成膜する成膜手段である蒸着物質の蒸発源16とを備えている。真空チャンバ10の内部空間は、仕切り板19により巻出しローラ14、補助ローラ18が設置される室と、蒸発源16が配置される室とに仕切られている。両室はそれぞれ真空ポンプ50に接続され、所定の真空度に減圧排気されている。
【0013】
フィルム13は所定幅に裁断された長尺の絶縁性フィルムからなり、本実施形態では、PP(ポリプロピレン)フィルム、PET(ポリエチレンテレフタレート)フィルム、PPS(ポリフェニレンサルファイド)フィルム、ナイロンフィルム、ポリイミドフィルム等のプラスチックフィルムが用いられるが、これ以外にも他の絶縁性フィルムや紙シート等が適用可能である。
【0014】
フィルム13は巻出しロール11から繰り出され、複数の搬送ローラ14、冷却用ローラ15、補助ローラ18を介して巻取りロール12に巻き取られるようになっている。
図2は図1において中央付近から各ローラに対し直角方向から見た構成を示している。真空チャンバ10は移動台車30と対向して密着し、シール部材23にてシールすることで内部に真空閉鎖空間を形成する。移動台車30には図1にも示した巻出しロール11、搬送ローラ14、冷却ローラ15、補助ローラ18(図示無し)、巻取りロール12(図示無し)が設置され、ベアリング22を介して回転自在に支持されている。移動台車30は成膜時には真空チャンバ10へ密着し、成膜終了後の大気圧復帰状態中に真空チャンバ10から離れる方向に移動することができ、移動後には巻出しロール11、巻取りロール12を取り外し、取り付けすることができる。また図2では冷却用ローラ15の内部構造を示す。冷却用ローラ15は内筒25の外側に外筒24を有する2重構造の筒状で、鉄あるいはステンレス等の金属からなる。移動台車18には冷媒循環器26が設置してあり、冷媒循環器26から内筒25の一方の端部へ冷媒供給管20を接続し、冷却用ローラ15の内筒25へ冷媒を導入する。内筒25へ導入された冷媒はもう一方の端部から外筒24側へ循環し、冷却用ローラ15の表面を冷却する。循環した冷媒は導入端側の外筒端部から排出され、冷媒排出管21を通って冷媒循環器26へ戻る。冷媒循環器26の内部には熱交換器(図示無し)および循環ポンプ27および循環ポンプ27を駆動するモータ28が設置され、戻った冷媒を所定の温度へ再冷却し、再び冷媒供給管20から吐出させる。このように冷媒を冷却用ローラ15へ繰り返し循環させることにより、冷却用ローラ15の表面温度を所定の温度に冷却し、調整する。
図1あるいは図2に示す蒸発源16は、蒸着物質を収容するとともに、蒸着物質を抵抗加熱、誘導加熱、電子ビーム加熱等の公知の手法で加熱蒸発させる機構を備えている。この蒸発源16は冷却用ローラ15の下方に配置され、蒸着物質の蒸気を対向する冷却用ローラ15上のフィルム13上へ付着させ被膜を形成する。蒸着物質としてはAl、Co、Cu、Ni、Ti等の金属元素単体のほか、Al−Zn、Cu−Zn、Fe−Co等の二種以上の金属あるいは多元系合金が適用される。蒸発源16は1個でも良く、あるいは複数設けられてもよい。またフィルム13上に形成された蒸着被膜と冷却ローラ15とが、電気的に短絡しないように、フィルム13の走行方向に対する両端エッジは未蒸着部分を形成することが好ましい。また未蒸着幅は5〜10mm程度が好ましい。
冷却用ローラ15と補助ローラ18は図2の絶縁支持部材51によって移動台車プレートと端部支持プレート31から絶縁支持され、両ローラは機械構造としてアース電位に対して電気的に独立して切り離される。絶縁支持部材51の材質は絶縁性のセラミックやエンジニアリングプラスチックが好適であり、特にナイロン樹脂、ポリアセタール樹脂、フッ素樹脂などが好適である。本発明の絶縁性冷媒を用いることによって冷媒排出管21や冷媒循環器26を大がかりに絶縁化することなく前記絶縁支持部材51を組み込むだけで冷却ローラ15を簡易に絶縁化することができる。
【0015】
さらに図1、図2へ示すとおり、冷却用ローラ15と補助ローラ18の間へ電圧印加手段である直流バイアス電源17を接続し、両ローラ間に直流電圧を印加する。例えば図2には直流バイアス電源17からブラシ29を介して冷却ローラ15へ電気接続する状況を示している。補助ローラ18は図示しないが電気接続は冷却ローラ15と同様であり直流バイアス電源17の一方の極性が接続されている。冷却用ローラ15への接続は正極側でも負極側でも良いが、正極側へ接続する方が好適である。よって補助ローラは負極側へ接続することが好適で、アース電位と接続することがバイアス電位レベルの安定面から好適であるが、アース電位と接続しなくても使用できる。フィルム13は蒸発源16から飛翔した蒸着物質蒸気によって成膜されると、冷却用ローラ15へ印加された電圧と補助ローラ18と接触する成膜面との間に発生する静電引力によって電気的に吸着され密着し、冷却されることとなる。なお直流バイアス電源17は、出力固定式、出力可変式のいずれであっても良い。また、冷却用ローラ15に印加した電圧を維持するためには冷却ローラ15自体の絶縁状態が維持される必要がある。冷媒循環器26から冷却用ローラ15へ循環させる冷媒は一般には水溶性不凍液が用いられるが、水溶性不凍液は導電性があるため、水溶性不凍液から冷媒供給管20や冷媒排出管21あるいは図示しない配管用金属継手などを通じてアース側へ電流漏れが発生し、冷却用ローラ15への印加電圧が維持できない状態となる。よって本発明では絶縁性流体の冷媒を用いることにより冷却用ローラ15の絶縁性を確保する。冷媒の絶縁性は体積抵抗率が1MΩ・m以上であることが望ましく、1MΩ・mより低いと冷却ローラ15への電圧印加時に冷媒を通じて電流がアースへ向かって流れてしまい、直流バイアス電源17に必要以上に過大な電流容量の電源を用いなければならなくなってしまう。また冷媒供給管20および冷媒排出管21はゴムホースなど絶縁材料製の配管とし、前記絶縁配管を冷媒循環器26へ接続することによって、冷媒循環器26の接液部がアース電位であっても問題無く本発明の効果を得ることができる。
【0016】
また冷媒の粘度については低温で高粘度となるものはモータ28の負荷が過大となり、循環ポンプ27で送液する流量が低下しフィルムへの冷却効率が下がるため、ジメチルポリシロキサンの低粘度品を絶縁性流体として用いることが好適である。ジメチルポリシロキサンは(C2H6OSi)nで示されるもので、シロキサン結合が2000以下のものがオイルの性質を示すが、低分子量のものほど低粘度となる、本発明に用いる冷媒としては動粘度が200m/s以下のものを使用することが好ましい。これは前記のとおりフィルム冷却不足が発生し、フィルムが熱変形してしまう問題が発生するためである。
【実施例】
【0017】
(実施例1)
図1および図2の構成の蒸着機を用い、冷媒循環器26の冷媒の材料には松村石油株式会社製 バーレルシリコーンフールドM−2(シ゛メチルポリシロキサン主体の冷媒)を用いた。本冷媒の体積抵抗率について川口電機製作所製、液体用電極LP−05を用いて測定したところ、温度25℃で1TΩ・mであった。また草野科学社製のJIS K−2283およびJIS Z-8803に準拠した毛細管粘度計を用いて粘度を測定し、冷媒密度から動粘度を算出したところ、25℃で2.0mm2/s、−30℃で6.5mm2/sであった。本冷媒を用いて冷却用ローラ15の内部へ冷媒循環させ、冷却ローラ15の表面温度が−30℃になるよう、冷媒循環器26の温度制御を行った。冷媒循環器26の温度制御は冷媒排出管21内に温度センサーを設置し、本位置の冷媒温度が−30℃になるように温度制御するものである。直流バイアス電源17は高砂製作所製直流電源KX-100H(100W)を用いて接続し、冷却用ローラ15へ+100Vを印加した。フィルムはOPP(延伸ポリプロピレン)フィルム(東レ株式会社製 商品名トレファン)の3μm厚みのものを使用し、速度400m/分で搬送させながら蒸発源16からアルミニウムを蒸発させ、10nm膜厚の成膜を行った。その結果、フィルムには熱変形なく品位の良い成膜ができた。直流バイアス電源17の電圧表示値は100Vであり、電流表示値は0.01A以下であった。また冷媒循環器26の循環ポンプ27のモータ28の使用電流値を測定し、使用電流値/最大許容電流値×100=負荷率(%)としてモータの負荷率を確認したところ、約30%であり、冷媒循環温度も−30℃で安定していたため、冷媒循環器26は冷媒流量の低下も少なく良好に運転できていることを確認した。
【0018】
(実施例2)
冷媒の絶縁抵抗の下限を確認するため、実施例1の冷媒にカーボンパウダーを添加した。三菱化学社製カーボンブラック #3030BをバーレルシリコーンフールドM−2へ22重量%混入したところ、体積抵抗率が1MΩ・mとなった。本冷媒を冷媒循環器26へ導入し、その他は実施例1と同様の条件でアルミニウム薄膜を成膜した。その結果、フィルムには軽微な熱変形が見られたが、必要品位レベルを満足する成膜であった。直流バイアス電源17の電圧表示値は100Vであり、電流表示値は0.1Aであった。冷媒循環器26のモータ負荷率や冷媒循環温度も実施例1と同等であった。
【0019】
(実施例3)
冷媒の材料に松村石油株式会社製 バーレルシリコーンフールドM−50 を用い、その他の条件は実施例1と同等の条件で成膜した。冷媒材料は実施例1と同様のジメチルポリシロキサンであり体積抵抗率も同等であるが、動粘度は実施例1と同様の方法で測定した結果、25℃で50mm2/sであり−30℃では約200mm2/sであった。成膜した結果、フィルムには軽微な熱変形が見られたが、必要品位レベルを満足する成膜であった。直流バイアス電源17の電圧表示値は100Vであり、電流表示値は0.01A以下であったが、冷媒循環器26のモータ負荷率は約90%であり、これ以上の上昇はモータの破損が懸念された。冷媒循環温度は−30℃から約−20℃までをハンチングしながら変動しているため、冷媒流量が若干低下した状態で冷媒循環運転していると判断した。
【0020】
(比較例1)
実施例1の冷媒へカーボンパウダーを23重量%まで添加したところ、体積抵抗が100kΩ・mまで低下した。本冷媒を冷媒循環器26へ導入し、その他は実施例1と同様の条件でアルミニウム薄膜を成膜した。その結果、フィルムの中央にフィルム走行方向に平行な線状の熱変形が見られ、必要品位レベルを満足しなかった。直流バイアス電源17の電圧表示値は79Vであり、電流表示値は1.26Aであった。冷媒循環器26のモータ負荷率や冷媒循環温度も実施例1と同等であった。
【0021】
(比較例2)
冷媒の材料には濃度80%のエチレングリコール冷媒を用い、その他の条件は実施例1と同等の条件で成膜を実施した。本冷媒はエチレングリコール80%と水、防錆剤からなり体積抵抗値を実施例1と同様の方法で測定したところ、25℃で10Ω・mであった。また動粘度を実施例1と同様の方法で測定したところ、25℃で4mm2/sであり、−30℃で約100mm2/sであった。成膜を実施した結果、フィルム全面においてフィルム走行方向に平行な線状の熱変形が発生し、きわめて品位の悪い成膜となった。直流バイアス電源17の電圧表示値は3V、電流表示値は2.5Aであり、直流バイアス電源17の電流容量上限まで電流が流れ、電圧が大きく低下した。冷媒循環器26のモータ負荷率はモータ使用電流値から測定したところ50%まで上昇したが設備上の問題はなく、冷媒循環温度は−30℃で一定であった。
【0022】
(比較例3)
冷媒の材料に松村石油株式会社製 バーレルシリコーンフールドM−100 を用い、その他の条件は実施例1と同等の条件で成膜した。冷媒材料は実施例1と同様のジメチルポリシロキサンであり体積抵抗率も同等であるが、動粘度は実施例1と同様の方法で測定した結果、25℃で100mm2/s、−30℃で約300mm2/sであった。その結果、フィルムの中央にフィルム走行方向に平行な線状の熱変形が見られ、必要品位レベルを満足しなかった。直流バイアス電源17の電圧表示値は100Vであり、電流表示値は0.01A以下であったが、冷媒循環器26のモータ負荷率は約98%であり、連続運転するには危険な状態であった。冷媒循環温度は−15℃から約+10℃までをハンチングしながら変動した。
【産業上の利用可能性】
【0023】
本発明は成膜形成装置として蒸着機やCVD成膜装置の利用に限らず、薄膜付きフィルムの搬送・冷却工程全般などにも適用でき、さらにこれらの適用範囲に限定されるものではない。
【符号の説明】
【0024】
1 薄膜形成装置
10 真空チャンバ
11 巻出しロール
12 巻取りロール
13 フィルム
14 搬送ローラ
15 冷却用ローラ
16 蒸発源
17 直流バイアス電源
18 補助ローラ
19 仕切り板
20 冷媒供給管
21 冷媒排出管
22 ベアリング
23 シール部材
24 外筒
25 内筒
26 冷媒循環器
27 循環ポンプ
28 モータ
29 ブラシ
30 移動台車
31 端部支持プレート
50 真空ポンプ
51 絶縁支持部材

【特許請求の範囲】
【請求項1】
真空チャンバとこの真空チャンバの内部でフィルムを搬送する搬送手段と、前記フィルムと密着して当該フィルムを冷却するための冷却用ローラと、前記冷却用ローラに対向配置され当該フィルムに薄膜を成膜する成膜手段と、前記フィルムの成膜面に接触して当該フィルムの走行をガイドする補助ローラと、前記冷却用ローラと前記補助ローラとの間に直流電圧を印加する電圧印加手段とを有する絶縁性フィルムの薄膜形成手段において、前記冷却用ローラは支持部材によって前記真空チャンバと電気的に絶縁された状態で保持され、ローラ内に体積抵抗率が1MΩ・m以上であって、+25℃から−30℃までの範囲における動粘度が200mm2/s以下である液体の冷却媒体を環流させることを特徴とする薄膜形成方法。
【請求項2】
前記冷却媒体がポリシロキサン構造を主体とする液体であることを特徴とする請求
項1に記載の薄膜形成方法。
【請求項3】
真空チャンバとこの真空チャンバの内部で絶縁性のフィルムを搬送する搬送手段と、前記フィルムと密着して当該フィルムを冷却するための冷却媒体を環流させた冷却用ローラと、前記冷却用ローラに対向配置され当該フィルムに薄膜を成膜する成膜手段と、前記フィルムの成膜面に接触して当該フィルムの走行をガイドする補助ローラと、前記冷却用ローラと前記補助ローラとの間に直流電圧を印加する電圧印加手段とを備えた薄膜形成装置において、前記冷却ローラへ導入する冷却媒体の体積抵抗率が1MΩ・m以上であって、+25℃から−30℃までの範囲における動粘度が200mm2/s以下である液体を用いることを特徴とする薄膜形成装置。


【図1】
image rotate

【図2】
image rotate


【公開番号】特開2013−36104(P2013−36104A)
【公開日】平成25年2月21日(2013.2.21)
【国際特許分類】
【出願番号】特願2011−174493(P2011−174493)
【出願日】平成23年8月10日(2011.8.10)
【出願人】(000222462)東レフィルム加工株式会社 (142)
【Fターム(参考)】