説明

試料保持体、試料検査装置及び試料検査方法

【課題】培養された細胞等からなる試料の観察又は検査を良好に行うことのできる試料保持体、試料検査装置及び試料検査方法を提供する。
【解決手段】試料保持体40は、外部からアクセス可能なように開放された試料保持面37aを有する本体部37と、第1の面32aを試料保持面とする膜32とを備え、該膜32の第1の面32aに配置された試料38に、該膜32を介して試料観察又は検査のための一次線7が照射可能であり、該本体部37における試料保持面37aの反対側の面(下面305)に、導電性を有する領域(導電膜301により覆われた領域)が存在するとともに、光が透過可能な領域302が設けられている。ここで、光が透過可能な当該領域302は、導電膜301により覆われていない。当該領域302を利用すれば、光学顕微鏡による試料38の観察・検査を良好に行うことができる。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、培養された動植物の組織又は細胞等からなる試料の観察又は検査を良好に行うことのできる試料保持体、試料検査装置及び試料検査方法に関する。
【背景技術】
【0002】
生命科学や、製薬分野では、細胞に刺激(電気、化学物質、薬等)を与え、その反応を観察することが重要となっている。従来、このような観察には光学顕微鏡が、細胞の刺激にはマニピュレータやピペットが用いられていたが、観察すべき重要な箇所は光学顕微鏡では観察不可能な0.1μm以下の微小領域であることも多い。
【0003】
例えば、細胞間の物質のやり取りが正常に行えなくなることに起因する病気に高血圧症、尿崩症、不整脈、筋肉疾患、糖尿病、うつ病等がある。この細胞間の物質のやり取りは細胞膜にある10nm程度の大きさのイオンチャンネルにより行われる。このようなイオンチャンネルは、光学顕微鏡では観察困難である為、分解能の高い走査型電子顕微鏡(以下、「SEM」(Scanning Electron Microscope)という)を用いた観察が望まれていた。
【0004】
しかし、SEMの構成を備える検査装置において、検査対象となる試料は、通常、真空引きにより減圧された試料室内に配置される。そして、このように減圧雰囲気とされた試料室内に配置された試料に電子線(荷電粒子線)が照射され、当該照射により試料から発生する二次電子や反射電子(後方散乱電子)等の二次的信号が検出される。
【0005】
このようなSEMによる試料検査では、試料が減圧雰囲気に晒されることとなる。よって、試料から水分が蒸発して細胞が死んでしまい、生きた状態の細胞における刺激に対する反応を観察することは不可能であった。また、蛋白の固定された細胞(死細胞)においても、真空に試料を載置する際には、真空中での水分蒸発に伴う形状変化を防止する為、手間と、熟練の必要な脱水、乾燥、及び金属蒸着の前処理が必要であった。その為、観察までには膨大な時間が必要で、高スループット観察は不可能であった。
【0006】
このようなことから、生物試料を観察する為には、水分の蒸発を防止すると便利である。試料に水分が含まれた状態で検査を行う際には、試料から水分が蒸発しないように、試料を減圧雰囲気に晒されることがないようにする必要がある。このように試料が減圧雰囲気に晒されることなくSEMを用いて検査を行う例の一つとして、膜により開口(アパーチャ)が密封された試料容器(サンプルカプセル)の内部に試料を配置し、減圧雰囲気とされたSEMの試料室内に、このサンプルカプセルを設置する手法が考えられている。
【0007】
ここで、試料が配置されるサンプルカプセルの内部は減圧されない。そして、サンプルカプセルに形成された当該開口を覆う膜は、SEMの試料室内の減圧雰囲気とサンプルカプセル内の減圧されていない雰囲気(例えば、大気圧雰囲気)との間の圧力差に耐えられるとともに、電子線が透過するものとなっている(特許文献1参照)。
【0008】
試料検査を行う際には、減圧雰囲気とされたSEMの試料室内に配置されたサンプルカプセルの当該膜を介して、サンプルカプセルの外部からサンプルカプセル内の試料に電子線が照射される。電子線が照射された試料からは反射電子が発生し、この反射電子はサンプルカプセルの当該膜を通過して、SEMの試料室内に設けられた反射電子検出器によって検出される。これにより、SEMによる像(SEM画像)が取得されることとなる。
【0009】
しかしながら、この発明では試料は閉じた空間内に封入させるので、外部から細胞に刺激を与えることは不可能であった。また、試料である細胞をこのサンプルカプセルに封入した後に、その細胞を生きた状態で長時間観察・検査をする場合には問題があった。
【0010】
さらに、SEM画像の分解能は高いが、白黒の情報しかないので、観察した組織の同定が困難であった。一方、光学顕微鏡は蛍光ラベリング技術が確立しており、組織の同定が容易であった。SEM画像と光学顕微鏡像をほぼ同時に同位置を観察できれば、高分解能なSEM画像で組織同定が可能となる。しかし、上記サンプルカプセルでは、光学顕微鏡像取得の為にはカプセルを開放、SEM画像取得の為には密閉する必要があり、同時観察は不可能であった。
【0011】
細胞は、通常直径35mm以上の大きさのシャーレ(皿)上に吸着させてその上に培養液を満たし、温度36〜38℃(通常37℃,昆虫細胞の場合は28℃前後)、二酸化炭素濃度3〜10%(通常5%)の雰囲気下に置いて培養させている。細胞の観察の際には、この細胞をシャーレから剥がし、このサンプルカプセルに入れることになる。しかし、サンプルカプセル内の環境がシャーレ内とは異なるため、試料容器内で細胞が生存する確率が低かった。すなわち、特許文献1に記載のサンプルカプセルでは、溶液を15μl程度しかその内部に入れることができず、短時間で環境雰囲気(pH、浸透圧等)が変化する為、細胞培養は困難であった。
【0012】
なお、このように真空と大気圧との圧力差に耐えられる膜を介して試料に電子線を照射し、試料から発生する反射電子を検出してSEM画像を取得する例は、非特許文献1(当該文献のChapter1 Introduction)や特許文献2にも記載されている。
【0013】
また、このような膜を対向して設置して一対の膜を構成し、該一対の膜の間に試料を配置して透過型電子顕微鏡による像を取得する例は、特許文献3及び特許文献4に記載されている。特に、特許文献3には、このような一対の膜を利用して、その間に配置された試料のSEM画像を取得する場合についても述べられている。
【0014】
【特許文献1】特表2004−515049号公報
【特許文献2】特開昭51−42461公報
【特許文献3】特開昭47−24961号公報
【特許文献4】特開平6−318445号公報
【非特許文献1】「Atmospheric scanning electron microscopy」 Green, Evan Drake Harriman, Ph.D., Stanford University, 1993
【発明の開示】
【発明が解決しようとする課題】
【0015】
マニピュレータやピペットを用いて細胞に刺激を与えた後の細胞の反応に基づいて生ずる構造変化は、細胞内の微小領域で生じる為、光学顕微鏡では観察不可能でSEMによる高分解能観察が必須となる。液体を保持したまま細胞をSEMで観察する為には、シャーレ上で培養していた試料(細胞)をサンプルカプセルに封入し、サンプルカプセルに備えられた膜を介して電子線を試料に照射することで像を得ていた。
【0016】
しかし、サンプルカプセルは閉じた空間である為、刺激を与える為のマニピュレータやピペットを用いることが不可能であった。また、サンプルカプセル内では、封入後の細胞が生存している確率は低かった。さらに、SEMで高分解能観察ができたとしても組織の同定は不可能で、組織の同定が可能な光学顕微鏡像との同時観察が望まれていた。
【0017】
本発明は、このような点に鑑みてなされたものであり、培養された細胞等からなる試料の観察又は検査を良好に行うことのできる試料保持体、試料検査装置及び試料検査方法を提供することを目的としている。
【0018】
この場合、細胞を長時間培養することができ、これにより生きたままの状態での試料の観察又は検査を良好に行うことができるようにすることが望ましい。また、培養させた細胞にマニピュレータやピペットを用いて刺激を与えることができ、その際の試料の観察又は検査を良好に行うことができるように、光学顕微鏡とSEMの同時観察も可能であることが望ましい。
【0019】
細胞の培養が可能な試料容器(試料保持体)内に置かれた細胞のSEMによる観察又は検査を行う場合、試料容器にも電子線が照射される可能性がある。試料容器に電子線が照射されると、試料容器に帯電が生じることとなり、試料観察・検査に支障をきたす要因となる。よって、試料容器において、電子線が照射される可能性のある箇所(特に、試料容器底面)に導電性の膜(導電膜)を形成しておき、該導電膜を介して電荷を逃がすことにより、帯電を防止することが求められている。
【0020】
一方、試料容器の底面側からも、光学顕微鏡により試料の観察・検査が行えるようにすることも望まれている。
【0021】
しかしながら、帯電防止用の導電膜を試料容器底面に設けておくと、該導電膜が通常の金属から構成される場合には、該導電膜が設けられた箇所に対応する位置にある細胞等の試料を試料容器底面側から光学顕微鏡により観察することが困難となる。
【0022】
すなわち、該導電膜が通常の金属からなる場合では、該導電膜が遮光性を有することとなるので、該導電膜が設けられた試料容器底面から光を試料に当てて、光学顕微鏡による光学像の取得が困難となる。
【0023】
本発明は、このような点に鑑みてなされたものであり、電子線が照射されても試料保持体(試料容器)の帯電を防止することができるとともに、試料保持体の底面等から光を当てて、光学顕微鏡による試料の観察・検査を良好に行うことのできる試料保持体を提供することを目的とする。
【0024】
また、本発明は、このような試料保持体を用いた試料検査装置及び試料検査方法を提供することを目的とする。
【課題を解決するための手段】
【0025】
本発明に基づく第一の試料保持体は、外部からアクセス可能なように開放された試料保持面を有する本体部と、第1の面を試料保持面とする膜とを備え、該膜の第1の面に配置された試料に、該膜を介して試料観察又は検査のための一次線が照射可能である試料保持体であって、該本体部における試料保持面の反対側の面に、導電性を有する領域が存在するとともに、光が透過可能な領域が設けられていることを特徴とする。
【0026】
本発明に基づく第二の試料保持体は、外部からアクセス可能なように開放された試料保持面を有する本体部と、第1の面を試料保持面とする膜とを備え、該膜の第1の面に配置された試料に、該膜を介して試料観察又は検査のための一次線が照射可能である試料保持体であって、該本体部における試料保持面の反対側の面に、導電膜により覆われた領域が存在するとともに、光が透過可能な領域が設けられていることを特徴とする。
【0027】
本発明に基づく試料検査装置は、前記何れかの試料保持体を用いて試料の観察又は検査を行う試料検査装置であって、該試料保持体が載置される載置手段と、該試料保持体の膜の試料保持面に配置された試料に、該膜を介して一次線を照射する一次線照射手段と、該一次線の照射により該試料から発生する二次的信号を検出する信号検出手段とを備えることを特徴とする。
【0028】
本発明に基づく試料検査方法は、前記何れかの試料保持体の試料保持面に試料を培養し、これにより培養された試料に前記膜を介して一次線を照射し、この一次線の照射により該試料から発生する二次的信号を検出することを特徴とする。
【発明の効果】
【0029】
本発明においては、開放された試料保持面に位置する膜上に培養された試料に、該膜を介して、試料観察又は検査のための一次線を照射することができる。
【0030】
これにより、培養後の細胞等の試料を生きたまま、もしくは蛋白を固定する処理をした状態で、液中での該試料の観察又は検査を良好に行うことができる。特に、一次線として電子線を用いれば、SEM観察・検査を良好に行うことができる。
【0031】
また、当該試料保持面は開放されているので、ピペットやマニピュレータによる試料へのアクセス(接触又は接近)が可能となり、マニピュレータを用いて試料への刺激(化学物質散布、電気刺激)を行い、その反応を観察・検査することも可能になる。さらに一次線照射する側の反対側から光学顕微鏡の観察も可能になり、ほぼ同時に同一場所の観察ができる。
【0032】
特に、試料保持体の本体部における試料保持面の反対側の面(試料保持体の底面に相当する面)には、導電性を有する領域又は導電膜により覆われた領域が存在するとともに、光が透過可能な領域が設けられている。
【0033】
これにより、試料保持面の反対側の面に電子線が照射されても帯電を防止することができるとともに、当該反対側の面から光を試料に当てて、倒立型光学顕微鏡(透過型光学顕微鏡)等の光学顕微鏡による試料の観察・検査を良好に行うことができる。
【発明を実施するための最良の形態】
【0034】
以下、図面を参照して、本発明における試料保持体及び試料検査装置等について説明する。
【実施例1】
【0035】
図1は、本発明における試料検査装置を示す概略構成図である。この図において、一次線照射手段である鏡筒1には、電子銃(電子源)2が配置されている。電子銃2から加速された状態で放出された一次線としての電子線(荷電粒子線)7は、集束レンズ(対物レンズ)3により集束される。
【0036】
これにより集束された電子線7は、試料保持体40に形成された試料保持膜32(後述)を介して、試料保持体40に保持されたサンプル20に照射される。このサンプル20には、試料(本実施例では細胞)と液体(本実施例では培養液)が含まれている。
【0037】
当該照射時において、電子線7は図示しない偏向手段により偏向され、これにより電子線7はサンプル20を走査する。このときには、サンプル20に含まれる試料も電子線7により走査される。
【0038】
なお、鏡筒1の先端側は真空室11に接続されている。また、電子銃2が設けられた鏡筒1の基端側は真空室11の下方に位置している。この構成により、電子銃2から放出された電子線7は、鏡筒1内を上方向に進み、鏡筒1の先端に設けられた開口1aを介して、真空室11内の空間及び試料保持膜32を通過し、サンプル20に到達する。
【0039】
このように、この鏡筒1は、一次線照射手段を構成し、本実施例では倒立型鏡筒となっている。真空室11内であって鏡筒1の先端側には、反射電子検出器4が設けられている。反射電子検出器4は、電子線7がサンプル20内の試料に照射された際に発生する反射電子を検出するものである。反射電子検出器4は、例えばPN接合を利用した半導体型検出器やYAG結晶を用いたシンチレータ型検出器が用いられる。
【0040】
鏡筒1内は排気手段8により真空引きされて、所定の圧力まで減圧される。また、真空室11内は、図示しない排気手段により真空引きされ、これにより所定の圧力まで減圧される。ここで、真空室11は、除振装置13を介して、架台10に載置されている。
【0041】
真空室11の上部には、試料保持体載置部12が設けられている。試料保持体載置部12には、電子線7が通過するための孔12aが形成されている。この試料保持体載置部12には、Oリング(図示せず)を介して、試料保持体40が載置されている。これにより、試料保持体40は真空室11に着脱自在に支持される。
【0042】
また、真空室11の上側部分には、開閉バルブ14が設置されている。この開閉バルブ14は、真空室11内において、試料保持体40と鏡筒(一次線照射手段)1の先端部との間の空間19を仕切るためのものである。図1は、開閉バルブ14が開かれた状態である。開閉バルブ14を閉じると、図2のように真空室11内の当該空間19が仕切られることとなる。このように開閉バルブ14により仕切られた当該空間19が仕切られることにより、開閉バルブ14と試料保持膜32との間において密閉された空間部19aが形成される。この空間部19aは、開閉バルブ14を境として試料保持体40側に位置する空間となる。
【0043】
当該空間部19aに連通して排気手段(減圧手段)9が設けられている。この排気手段9は、当該空間部19aを個別に排気できる。また、当該空間部19aには、図示しないガス供給手段が接続されている。このガス供給手段は、窒素やエアー等のガスを当該空間部19aに供給し、この空間部19a内を減圧状態から常圧(大気圧)状態に復帰させる。これにより、当該空間部19aは、独立して減圧状態からの常圧復帰が可能となる。
【0044】
さらに、当該空間部19aには、図示しない洗浄手段が接続されている。この洗浄手段は、当該空間部19a内に洗浄剤を供給し、当該空間部19aを洗浄する。これにより、当該空間部19aを構成する壁面は洗浄される。
【0045】
このとき使用される洗浄剤としては、洗剤、エタノール、アルコール、アセトン、過酸化水素水の少なくとも一つからなる洗浄液、又はこれらの物質の蒸気を使用できる。当該空間部19aに供給された洗浄剤は、この空間部19aの洗浄を実施後、排出管15により該空間部19aから排出される。排出管15には、開閉弁16が設けられている。この開閉弁16が開放されることにより、洗浄剤は排出管15を介して外部に排出される。なお、後述する試料の検査を実行する際には、開閉弁16は閉じられる。
【0046】
また、上記洗浄剤を用いずに、当該空間部19aに紫外光や放射線を照射することにより、当該空間部19aの殺菌を行うこともできる。
【0047】
試料保持体40は、図3のような構成となっている。この試料保持体40は、プラスチック又はガラスからなる皿状の本体部37と、電子線7が透過する試料保持膜32が設けられた膜保持体(枠状部材)18とから構成される。本体部37の内側に位置する凹部の底面は、試料保持面37aを構成する。この試料保持面37aは、開放されている。
【0048】
本体部37の試料保持面37aの一部(図3の例では中央部)には、貫通孔37bが形成されている。この孔37bの試料保持面37a側には、段差部37cが設けられている。この段差部37cに、膜保持体18が配置されている。膜保持体18は試料保持膜32を備えており、この試料保持膜32の第1の面32aは試料保持面37aを構成し、本体部37の試料保持面37aとほぼ面一となっている。これにより、試料保持体40の試料保持面37aの少なくとも一部は試料保持膜32により構成されている。
【0049】
また、孔37bの試料保持面37a側の反対側には、テーパ部37dが設けられている。このテーパ部37dは、試料保持面37aの反対側の面に向けて広がるように開いているテーパ構造となっており、その開き角度は90度〜120度に設定されている。
【0050】
試料保持体40を試料保持体載置部12に載置した際、試料保持体40の下面(本体部37の下面:試料保持面37aとは反対の面)305は、真空雰囲気に晒される。当該下面305において、電子線7が照射される可能性のある領域は、導電膜301で覆われている(膜保持体18はシリコン製なので導電性を持ち、導電膜で覆う必要はない)。これは、電子線7の照射に伴う帯電を防止するためである。
【0051】
導電膜301は膜保持体18に接しており、電子線7の照射により蓄積された電荷を膜保持体18(シリコン製)を介してサンプル20へ逃がすことができる。電荷の蓄積を確実に防止するためには、サンプル20へのアース線の接続や、導電膜301を試料保持体載置部12と電気的に繋げておくことが有効である。
【0052】
導電膜301は、例えばアルミニウムや金を蒸着することによって形成させても、銀ペーストで塗りつけてもよい。この導電膜301があることにより電子線照射による試料保持体40の帯電を防止ないし低減させ、電子線7の軌道変位や、反射電子の軌道変位により生ずるSEM画像の歪や輝度斑を防止することができる。
【0053】
また、試料保持体40の下面305には、導電膜301により覆われずに露出されている領域302が設けられている。この領域302は、試料保持体40を試料保持体載置部12に載置したときに、試料保持体載置部12と接触する部分に対応させることもできる。
【0054】
ここで、当該下面305において、導電膜301が形成されている領域と、導電膜301が形成されていない領域302の区分けは、例えば図4(A)や図4(B)のように設定することができる。図4(A)に示す例の場合、当該下面305において導電膜301が形成されている領域の外周の径は、試料保持体載置部12の孔12aの内径よりも大きく設定することが望ましい。これは、試料保持体40の帯電を防止するために、当該導電膜301と試料保持体載置部12との電気的接触を担保するためである。
【0055】
また、図4(B)に示す例では、試料保持体40の下面305のほぼ全面に導電膜301が形成されているが、当該導電膜301により覆われていない領域302が2箇所設けられている。図4(A)及び図4(B)に示す例において、当該領域302は、通常の透過型光学顕微鏡の一種である倒立型光学顕微鏡を用いて試料保持体40上の試料38を観察するときに用いられる。
【0056】
なお、上記導電膜301として、可視光に対して透明で且つ導電性を有する物質、例えば酸化インジウムスズ(ITO)、酸化亜鉛又は酸化スズからなる導電膜を用いれば、試料保持体40の下面305のほぼ全面に当該導電膜301を形成するのみよい。すなわち、この場合では、当該下面305に、導電膜301により覆われていない領域302を設ける必要はない。当該物質は遮光性を有しないので、これから構成される導電膜を介して試料38に観察用の光を当てることができるからである。この場合、上記領域302を形成する必要がないので、当該導電膜301のパターニング加工が不要となり、本発明の試料保持体40を効率良く作製することができる。
【0057】
また、試料保持体40を構成する本体部37自体を、このような可視光に対して透明で且つ導電性を有する物質から構成すれば、導電膜301を形成する必要もない。
【0058】
上記において、導電膜301の比抵抗は10Ωm以下であれば良い。また、当該本体部37自体を可視光に対して透明で且つ導電性を有する物質から構成する場合にも、当該物質の比抵抗は10Ωm以下であれば良い。これにより、電子線照射時における試料保持体40の帯電を十分に防止することができる。
【0059】
膜保持体18には、図5(B)のように試料保持膜32が形成されており、この試料保持膜32の第1の面32a(図5(B)では下面、図3では上面)は露出されている。この試料保持膜32の第1の面(試料保持面)32aには、培養液等の液体及び試料(細胞)を含むサンプル20が配置される。第一の面32aは大気圧下にあるので、サンプル20からの水分の蒸発を極力抑えることができる。
【0060】
また、膜保持体18は、試料保持膜32の第2の面32b(図5(B)では上面、図3では下面)に設けられた基板部34を備えている。基板部34の中央には開口34aが形成されており、この開口34aは、試料保持膜32により覆われている。ここで、試料保持膜32における第2の面32bの中央部は、該開口34aを介して真空室11の内部雰囲気に露出されている。
【0061】
次に、膜保持体18の作成方法について説明する。まず、図5(A)に示すように、基板部34を構成するシリコン層33と、該シリコン層33の一方の面(同図では下面)に設けられた窒化シリコン膜36とを有する基板を用意する。この窒化シリコン膜36は、プラズマCVD等の化学気相成長法により、シリコン層33(基板部34)上に成膜されて形成される。窒化シリコン膜36の第1の面(同図では下面)は露出されており、窒化シリコン膜36の第2の面はシリコン層33に覆われている。この窒化シリコン膜36は、膜保持体18の試料保持膜32を構成することとなる。
【0062】
次いで、図5(A)におけるシリコン層33の他方の面(上面)の中央部33aを選択的にエッチングする。シリコン層33の中央部33aには、図5(B)に示すように、開口34aが形成される。これにより、窒化シリコン膜36における第2の面の一部が該開口34aにより露出されるとともに、該開口34aは窒化シリコン膜36により覆われた状態となる。窒化シリコン膜36は膜保持体18の試料保持膜32を構成し、シリコン窒化膜36の第2の面は試料保持膜32の第2の面32bに対応する。これにより、開口34aを備える枠状部材からなる膜保持体18が作成される。
【0063】
このようにして作成された膜保持体18は、図5(B)の状態から上下反転され、試料保持膜32である窒化シリコン膜36の第1の面を上面とする。この窒化シリコン膜36の上面である第1の面は、膜保持体18における試料保持膜32の第1の面32aとなる。なお、第2の面32bを上面にすることも可能である。図4では膜保持体18の外形は四角であるが、必要に応じて円形にしても良い。
【0064】
この膜保持体18を、試料保持体40を構成する本体部37に形成された孔37bの上記段差部37cに固着し、これにより試料保持体40を作成する。この固着には、シリコーン系やエポキシ系の接着剤による接着、又は熱、超音波若しくはレーザによる融着によって行うことができる。これにより、膜保持体18は、本体部37aの試料保持面37aにおける孔37bに対応する位置に固着される。
【0065】
また、本実施例では、本体部37と膜保持体18を組み合わせて試料保持体40を製作したが、本体部37に試料保持膜を直接固着したり、本体部37と試料保持膜を一体的に形成したりしてもよい。さらに、少なくとも試料保持膜32の第1の面32aを含む試料保持面37aに、試料付着用分子としての細胞接着分子(後述)を塗布することができる。
【0066】
ここで、窒化シリコン膜36の厚みは、10〜1000nmの範囲に設定される。なお、膜保持体18の試料保持膜32として用いられる膜としては、窒化シリコン膜の他に、酸化シリコン、窒化ボロン、ポリマー、ポリエチレン、ポリイミド、ポリプロピレン、若しくはカーボンからなる膜を用いても良い。これらの膜を用いた場合でも、その膜厚は10〜1000nmに設定される。上述した素材からなる試料保持膜32は、電子線7が透過するが気体や液体は透過しないものとなる。さらに、膜の両面で少なくとも一気圧の圧力差に耐えられる必要がある。なお、このような試料保持膜32は、その厚さが薄ければ電子線7の散乱が少なくなるので分解能が向上するが破損しやすくなり、また、その厚さが厚くなれば電子線7の散乱が増加して分解能が低下するが破損しにくくなる。好適な膜厚としては20〜200nmとなる。
【0067】
次に、図1に戻って、試料検査装置の構成をさらに説明する。反射電子検出器4により検出された検出信号は、真空室11の外部に配置された画像形成装置22に送られる。画像形成装置22は、当該検出信号に基づいて、画像データを形成する。この画像データは、SEM画像に対応する画像データとなる。
【0068】
当該画像データは、表示装置23に送られる。表示装置23は、送られた画像データに基づく画像を表示する。表示された画像は、SEM画像となる。また、画像形成装置22により形成された画像データは、必要に応じてコンピュータ25に送られる。コンピュータ25は、画像処理を当該画像データに対して施すとともに、当該画像処理の結果に基づく判定を実行する。
【0069】
ここで、鏡筒1及び真空室11を備える電子線装置部29(試料保持体40より下の部分)は電子線制御部24により制御される。また、試料保持体載置部12には、試料に刺激(電圧、化学物質、薬等)を与え、必要に応じて試料を移動させるマニピュレータ26と、試料の観察やマニピュレータ26の位置を確認する光学顕微鏡27が載置されている。これらは制御部28で制御されている。
【0070】
なお、光学顕微鏡27と電子線7の光軸は一致しており、もしくは、光学顕微鏡27とSEM画像の視野中心は一致しており、光学顕微鏡の観察領域がSEM画像にほぼ一致させることができる。さらに、SEM画像の視野と光学顕微鏡27の視野調整は、マニピュレータ26や、試料保持体40が搭載されている試料保持体載置部12を移動させる(移動機構は図示していない)ことによって行う。
【0071】
本発明における試料検査装置は、電子線装置部29、マニピュレータ26、光学顕微鏡27、電子線制御部24、制御部28、画像形成装置22、及び表示装置23を備えており、各部とコンピュータ25が接続され、各部の情報がやり取りされることも可能である。
【0072】
次に、本発明における検査方法について説明する。まず、図3のように試料保持体40を用いて、試料となる細胞38を培養液39中で培養させる。細胞38をこの図3のように培養させるには、予め細胞を培養してあるシャーレから試料保持体40へ植え接ぎを行う必要がある。それには、以下に示す通常の方法を用いる。
【0073】
すなわち、予め細胞の培養してあるシャーレ内から培養液を捨て、Tripsin+EDTA(ethylenediaminetetraacetic acid)混合液を当該シャーレの中に入れることで、このシャーレに吸着した細胞を剥がす。
【0074】
次に、剥がれた細胞を遠沈管に回収して培養液を加え、Tripsinの活性度を止めた後に遠沈させる。その後、遠沈管内から上澄み液を捨て、培養液で加えて攪拌する。その攪拌された液(細胞38を含む)の例えば1/10濃度を試料保持体40に入れ、必要に応じて培養液39を継ぎ足す。この状態で、培養室に静置させることで、数時間で試料保持体40の試料保持面37a(試料保持膜32の表面32aを含む)に細胞38が吸着し、増殖し始める。
【0075】
培養の様子を観察する為には図6のように倒立型光学顕微鏡を用いる。倒立顕微鏡の対物レンズ303と光源304が試料保持体40を挟んで設置される。細胞の培養の様子を確認する為には、多数の細胞を観察することが必要となる。試料保持体40の試料保持膜32は、例えば10〜1000nmの厚みである為、光が透過可能でその領域での細胞を確認できる。しかし、差圧で一気圧の圧力に耐えるために、試料保持膜の面積を小さく(例えば0.5mm x 0.5mm)している。その為、その領域では多数の細胞の様子を確認することができない。試料保持体40の下面305における領域302は透明であり、倒立型光学顕微鏡で容易に多数の細胞が観察可能である。本作業は、一般に市販されているシャーレで培養された細胞を観察する方法と比較して、ほぼ同等の作業性を確立する。これにより、従来の方法で慣れた作業者に対してもストレスを与えることがない。
【0076】
これにより、試料保持体40内において、観察・検査対象である試料となる細胞38が培養され、培養された細胞38と培養液39を含有するサンプル20が構成されることとなる。なお、細胞によっては試料保持体40の試料保持面37a、特に電子線による観察領域である試料保持膜32の第一の面(試料保持面)32aに細胞接着分子(試料付着用分子)を塗布しておくと培養が容易になる。細胞接着用分子とは、培養のために配置された細胞及び培養により増殖した細胞を試料保持面に吸着させる作用を有し、例えば、コラーゲン、フィブロネクチン、ビトロネクチン、カドヘリン、インテグリン、クローディン、デスモグレイン、ニューロリギン、ニューレキシン、セレクチン、ラミニン、ポリLリジンである。このような細胞接着用分子を介して細胞が試料保持膜32に付着することによって、試料保持膜32を介して細胞に電子線7が照射される際、電子線7の散乱による分解能低下を最低限にすることができる。
【0077】
上述のように試料保持体40内で試料となる細胞が培養された後、試料保持体載置部12に当該試料保持体40を載置する。このとき、開閉バルブ14は閉じられており、図2の状態になっている。この開閉バルブ14と試料保持膜32との間において密閉された空間部19aは、常圧である大気圧雰囲気となっている。また、真空室11内において、開閉バルブ14の下側に位置する空間は所定の真空状態(減圧状態)となっている。さらに、当該空間に連通する鏡筒1内は、真空排気手段8により排気されて減圧され、所定の真空状態となっている。真空室11内の圧力(真空度)は、例えば、10−3Pa〜10−4Pa程度に設定される。鏡筒11内(特に電子銃2周囲)の圧力(真空度)は、例えば、10−4Pa〜10−5Pa程度に設定される。
【0078】
この状態で、排気手段9を用いて上記空間部19aを減圧して真空にする。真空にする際、大気圧状態からの急激な圧力変化による試料保持膜32の破損を防ぐ為、図示しないニードルバルブ等を用いて1秒〜100秒の間の時間かけて、大気圧である1気圧(101325Pa)から1/2気圧〜1/10気圧程度の圧力(50kPa〜10kPa)にまで減圧する。この工程で、試料保持体40の試料保持膜32が破壊されないことの確認を行う。
【0079】
上記工程により試料保持膜32の破壊がないことの確認をした後、光学顕微鏡27で細胞(試料)38とマニピュレータ26の位置を確認する。マニピュレータ先端は微小電極とガラス微小管が設置してあり、微小電極により電圧の印加が、ガラス微小管により液体の流出及流入が可能になっている。
【0080】
この状態で、光学顕微鏡27で観察しながら細胞38とガラス微小管が近接するようにマニピュレータ26を移動させる。その後、ガラス微小管に負の圧力を掛けて細胞膜と密着させる。これにより、電位応答が測定可能となる。
【0081】
以上のようなマニピュレータ26の移動の際、誤って試料保持膜32を破損させることがあっても、開閉バルブ14が閉まっているので、サンプル20の拡散による汚染は当該空間部19a内のみで済む。万が一にも試料保持膜32が破壊されて、当該空間部19a内がサンプル20の拡散により汚染された場合、上述したように、当該空間部19aの洗浄は実施可能である。
【0082】
そして、洗浄で用いた洗浄剤である液体又は蒸気は、開閉弁16を開けることにより、排出管15を介して排出及び廃棄可能である。なお、当該空間部19aを構成する壁面を、窒化ボロンもしくは、フッ素樹脂でコーティング(被膜)することにより、汚染されにくくすることができる。
【0083】
当該空間部19aが減圧(真空)状態において、サンプル20が載置された試料保持膜32が破壊されないことを確認した後、開閉バルブ14を開ける。これにより、真空室11内の空間の仕切りが解除され、真空室11内の下側の空間と当該空間部19aとが連通される。その後、光が試料保持膜32を介して反射電子検出器4に入射させない為に、光学顕微鏡27の光の照射を止め、他の外光の遮蔽(図への記載は略)を行う。この遮蔽は、膜保持体18やサンプル20に電子線7が照射した際に発生する放射線の防護の役目も果たしている。
【0084】
次に、図1のように鏡筒1から電子線7をサンプル20(細胞38を含む)に向けて照射して撮像を行う。電子線7は試料保持体40の試料保持膜32を透過して細胞38に照射され、当該照射に基づいて細胞38から発生する反射電子(後方散乱電子)は反射電子検出器4で検出される。
【0085】
このとき、試料保持体40を構成する本体部37の孔37bには、上述したテーパ部37dが設けられているので、反射電子がテーパ部37dの内側面に衝突して遮られることを極力防止することができ、反射電子検出器4による反射電子の検出を効率的に行うことができる。
【0086】
反射電子検出器4からの検出信号は、画像形成装置22に送られる。画像形成装置22は、当該検出信号に基づいて、画像データを形成する。この画像データに基づいて、表示装置23が画像(SEM画像)を表示する。
【0087】
これに引き続き、細胞38に、マニピュレータ26の先端に設置してある微小電極を用いて電気刺激を加え、先ほどと同様にSEM画像を取得し、刺激に対する細胞38の応答性を確認する。
【0088】
撮像後は開閉バルブ14を閉じることにより、万が一にでも試料保持膜32が破壊される場合での鏡筒1への汚染を防止する。なお、上記のように細胞38に刺激を与えた後の変化をSEMで観察する前に、光学顕微鏡27で観察する場合もある。その際も、開閉バルブ14を閉じておくと、試料保持膜32が破れた際の汚染のリスクを低減できる。いずれにせよ、電子線7をサンプル20に照射させない時は開閉バルブ14を閉じる等、検査中における開閉バルブ14の開放時間を短縮することで、装置内部の汚染確立を低減させることができる。
【0089】
刺激に対する細胞38の反応速度が遅い場合、一旦開閉バルブ14を閉じ、反応した頃合を見計らって再度開放バルブ14を開放し、電子線7による撮像を行っても良い。反応の確認は光学顕微鏡27で行うことができる。
【0090】
また、マニピュレータ26には、化学物質や薬物をサンプル20中に散布可能な機構を有すことができ、SEMで細胞を観察しながら化学物質(薬物を含む)に対する細胞38の挙動も観察・検査することができる。
【0091】
さらに、マニピュレータ26には、液体の流出機能を有することもでき、これにより散布した物質の回収を行うことや、培養液のpHや浸透圧を一定にすることが可能になる。
【0092】
上記において、像を形成する電子には反射電子を用いた。反射電子は原子番号に比例した信号強度を持つ。その為、生物試料のようにほぼ全体が低原子番号の物質で構成されている場合、像のコントラストが非常に弱く、分解能を向上させることが困難である。そこで、細胞38の挙動で注目すべき部位に、金などの重金属を吸着させておくと良い。具体的には、該部位(抗原)に吸着する性質を持つ金粒子を標識した抗体を細胞に散布することで、抗原抗体反応を利用して、その部位(抗原)に該抗体を介して金を吸着させる。また、予め、電子線が照射されると発光する蛍光色素や量子ドット(例えばSiのナノ粒子、CdSeをZnSでコーティングした10〜20nmの粒子)を細胞38の特定部位に吸着させ発光を光学顕微鏡で観察しても良い。
【0093】
上記実施例において、通常用いられる金粒子は10〜30nmの粒径である。しかし、抗体と金粒子との吸着力が弱く、10〜30nmの金粒子を付けられないこともある。その場合には、まず粒径数nmと非常に小さな金(ナノゴールド)を抗体に付ける。このままでは金が小さすぎ、SEMでの観察は困難であるが、銀増感を利用して該金の周りに銀を吸着させることで、SEMで検出し易くする方法を用いても良い。
【実施例2】
【0094】
ここでは光学顕微鏡とSEMでの同一場所のほぼ同時観察を行った例について述べる。
【0095】
実施例1で記述した方法で図3のように試料保持体40で細胞を培養する。その後、グルタールアルデヒドやホルムアルデヒドを用いた細胞の固定を行う。さらに細胞を光学顕微鏡やSEMで観察しやすいように染色を行う。まず、光学顕微鏡用に細胞の組織を染め分ける。例えば小胞を染色するためには、Invitrogen社のSelectFX Alexa Fluor 488 Endoplasmic Reticulum Labeling Kit(S34253)を使用すればよい。引き続き、SEM用には例えばリンタングステン酸や白金ブルー染色を用い、反射電子の放出効率を増加させる。
【0096】
このようにして前処理を終了した後、図1のように試料保持体40を試料保持体載置部12に設置し、実施例1と同様に観察する。試料保持体40の上方は開放されている為、SEMで観察しながら、光学顕微鏡27の観察も可能である。さらに、光学顕微鏡27と鏡筒1の光軸が合っているので同じ場所をほぼ同時に観察可能である。これにより、光学顕微鏡で目的の組織(例えば小胞)の位置を特定し、SEMでその高分解能像を得ることが可能になる。
【0097】
なお、上記においては、予めシャーレにおいて培養されていた細胞を取り出して、試料保持体40に植え接ぎをして培養を行っていた。別の試料として、生体から細胞を取り出して、この取り出された細胞を直接試料保持体40の試料保持面32aに配置し培養をしてもよい。
【0098】
以上、上述した実施例において、開放された試料保持体40を使用しているので、従来技術では不可能であった生きた細胞の刺激に対する反応を、SEMを用いて高分解能で観察・検査が可能になる。また、細胞を培養させたまま該試料検査装置で検査可能な試料保持体の使用が可能になる。さらに、(生、死問わず)細胞を光学顕微鏡とSEMで同位置をほぼ同時に観察可能で、光学顕微鏡で細胞組織の染色分けを行い、SEM画像で高分解能像を取得することで高分解能像の組織同定ができる。液中観察が可能で、従来の真空観察用の脱水、乾燥、及び金属蒸着が不要で、前処理が高速になり高スループット観察が可能になる。
【0099】
ここで、上記各例での細胞とは、神経細胞、副腎皮質細胞、心筋細胞、胃や腸、血管の細胞等さまざまな組織細胞のことである。
【0100】
なお、上記各実施例では二次的信号として反射電子を用いたが、それ以外でも試料38への電子線7の照射により生ずる二次電子、X線、若しくはカソードルミネッセンス光、及び試料38への吸収電流を検出することにより、細胞等からなる試料38の情報を得ることが可能である。なお、吸収電流の測定はマニピュレータ26を用いると便利である。
【0101】
本実施例での試料保持膜32は、少なくとも一気圧の圧力差に耐えることができ、気体や液体の流入出がないことが必要である。具体的な物質としては、ポリマー、ポリエチレン、ポリイミド、ポリプロピレン、カーボン、酸化シリコン、窒化シリコン、又は窒化ボロンのうちの少なくとも一つを含むものを用いることができる。
【0102】
また、上記各実施例においては、一次線として電子線を用いたが、試料保持膜32が他の荷電粒子(ヘリウムイオンビーム等)の照射に対する耐衝撃性及び強度が十分に高ければ、当該他の荷電粒子線を用いた場合でも適用可能である。さらに、本発明では倒立型SEMを用いたが、試料によっては通常の正立型SEMでも問題は無い。
【0103】
このように、本発明における試料保持体は、外部からアクセス可能なように開放された試料保持面37aを有する本体部37と、第1の面32aを試料保持面とする膜32とを備え、該膜32の第1の面32aに配置された試料38に、該膜32を介して試料観察又は検査のための一次線7が照射可能であり、該本体部37における試料保持面37aの反対側の面(下面305)に、導電性を有する領域(導電膜301により覆われた領域)が存在するとともに、光が透過可能な領域302が設けられている。ここで、光が透過可能な当該領域302は、導電膜301により覆われていない。
【0104】
そして、膜32の第1の面32aとは反対側で真空雰囲気に接する該膜32の第2の面32b側から、該膜32を介して、開放雰囲気に接する該膜32の第1の面32aに配置された試料38に、試料観察又は検査のための一次線が照射可能となっている。
【0105】
本体部37の試料保持面37aの一部には孔37bが形成されており、該孔37bを覆うように膜32が配置されている。ここで、膜32は、枠状部材18の開口を覆って該枠状部材18に設けられており、該枠状部材18が本体部37の孔37bに対応して配置されている。枠状部材18は、本体部37の孔37bに設けられた段差部37cに配置されており、枠状部材18と本体部37とは、接着剤による接着、又は熱、超音波若しくはレーザによる融着により固着されている。
【0106】
上述の導電性を有する領域又は導電膜301は、金、銀、アルミニウム、酸化インジウムスズ、酸化亜鉛、酸化スズのうちの少なくとも一つより構成できる。当該導電性を有する領域又は導電膜301の比抵抗は、10Ωm以下としている。
【0107】
また、本体部37は、プラスチック、ガラス、酸化インジウムスズ、酸化亜鉛若しくは酸化スズのうちの少なくとも一つより構成できる。本体部37は皿状に形成されており、その凹部の底面が試料保持面37aとなっている。試料保持体40において、試料38を含むサンプルを保持することのできる容積は、1ml以上となっている。
【0108】
膜32の膜厚は、10nm〜1000nmの間に設定でき、特に、20nm〜200nmの間にあることが望ましい。膜32は、ポリマー、ポリエチレン、ポリイミド、ポリプロピレン、カーボン、酸化シリコン、窒化シリコン又は窒化ボロンのうちの少なくとも一つを含むように構成することができる。
【0109】
一次線7は、電子線又はイオン線とすることができ、試料保持面では、細胞又は生体組織の培養が可能である。
【0110】
また、本発明における試料検査装置は、上述した試料保持体40を用いて試料の観察又は検査を行う試料検査装置であって、該試料保持体40が載置される載置手段12と、該試料保持体40の膜32の試料保持面32aに配置された試料38に、該膜32を介して一次線7を照射する一次線照射手段1と、該一次線7の照射により該試料32から発生する二次的信号を検出する信号検出手段4とを備えている。
【0111】
ここで、試料保持体40の膜32における第1の面32aの反対側の面(第2の面)32bに接する雰囲気を真空雰囲気とするための真空室11がさらに備えられている。
【0112】
一次線7は、電子線又はイオン線であり、二次的信号は、二次電子、反射電子、吸収電流、カソードルミネッセンス光又はX線とすることができる。試料保持体40の膜32における第1の面32aが該膜32の上面となっており、その反対側の面(第2の面)32bが該膜32の下面となっている。
【0113】
そして、本発明における試料検査方法は、上述した試料保持体40の試料保持面に試料38を培養し、これにより培養された試料38に膜32を介して一次線7を照射し、この一次線7の照射により試料38から発生する二次的信号を検出するものである。
【0114】
一次線7の照射時には、試料保持体40の膜32における第1の面32aの反対側の面(第2の面)32bが真空雰囲気に接しており、該真空雰囲気を通して一次線7が照射される。
【図面の簡単な説明】
【0115】
【図1】本発明における試料検査装置を示す概略構成図である。
【図2】本発明における試料検査装置を示す概略構成図である。
【図3】本発明における試料保持体の構成を示す断面図である。
【図4】本発明における試料保持体の下面を示す図である。
【図5】本発明における試料保持体を構成する枠状部材の作成方法を示す図である。
【図6】本発明における試料保持体を倒立型光学顕微鏡で観察する事を示す図である。
【符号の説明】
【0116】
1…鏡筒(一次線照射手段)、1a…開口、2…電子銃、3…集束レンズ、4…反射電子検出器(信号検出手段)、7…電子線(一次線)、8…排気手段、9…排気手段、10…架台、11…真空室、12…試料保持体載置部(載置手段)、12a…孔、13…除震装置、14…開閉バルブ、15…排出管、16…開閉弁、18…膜保持体(枠状部材)、19…空間、19a…空間部、20…サンプル、22…画像形成装置、23…表示装置、24…電子線制御部、25…コンピュータ、26…マニピュレータ、27…光学顕微鏡(光学像取得手段)、28…制御部、29…電子線装置部、32…試料保持膜(膜)、32a…第1の面(試料保持面)、32b…第2の面、33…シリコン層、33a…中央部、34…基板部、34a…開口、36…窒化シリコン膜、37…本体部、37a…試料保持面、37b…孔、37c…段差部、37d…テーパ、38…細胞(試料)、39…培養液、40…試料保持体、301…導電膜、302…領域、303…対物レンズ、304…光源、305…下面

【特許請求の範囲】
【請求項1】
外部からアクセス可能なように開放された試料保持面を有する本体部と、第1の面を試料保持面とする膜とを備え、該膜の第1の面に配置された試料に、該膜を介して試料観察又は検査のための一次線が照射可能である試料保持体であって、該本体部における試料保持面の反対側の面に、導電性を有する領域が存在するとともに、光が透過可能な領域が設けられていることを特徴とする試料保持体。
【請求項2】
外部からアクセス可能なように開放された試料保持面を有する本体部と、第1の面を試料保持面とする膜とを備え、該膜の第1の面に配置された試料に、該膜を介して試料観察又は検査のための一次線が照射可能である試料保持体であって、該本体部における試料保持面の反対側の面に、導電膜により覆われた領域が存在するとともに、光が透過可能な領域が設けられていることを特徴とする試料保持体。
【請求項3】
光が透過可能な前記領域は、前記導電膜により覆われていないことを特徴とする請求項2記載の試料保持体。
【請求項4】
前記膜の第1の面とは反対側で真空雰囲気に接する該膜の第2の面側から、該膜を介して、開放雰囲気に接する該膜の第1の面に配置された試料に、試料観察又は検査のための一次線が照射可能であることを特徴とする請求項1乃至3何れか記載の試料保持体。
【請求項5】
前記本体部の試料保持面の一部には孔が形成されており、該孔を覆うように前記膜が配置されていることを特徴とする請求項1乃至4何れか記載の試料保持体。
【請求項6】
前記膜は、枠状部材の開口を覆って該枠状部材に設けられており、該枠状部材が前記本体部の孔に対応して配置されていることを特徴とする請求項5記載の試料保持体。
【請求項7】
前記枠状部材は、前記本体部の孔に設けられた段差部に配置されていることを特徴とする請求項6記載の試料保持体。
【請求項8】
前記枠状部材と前記本体部とは、接着剤による接着、又は熱、超音波若しくはレーザによる融着により固着されていることを特徴とする請求項6又は7記載の試料保持体。
【請求項9】
前記導電性を有する領域又は前記導電膜は、金、銀、アルミニウム、酸化インジウムスズ、酸化亜鉛、酸化スズのうちの少なくとも一つより構成されることを特徴とする請求項1乃至8何れか記載の試料保持体。
【請求項10】
前記導電性を有する領域又は前記導電膜の比抵抗は、10Ωm以下であることを特徴とする請求項1乃至9何れか記載の試料保持体。
【請求項11】
前記本体部は、プラスチック、ガラス、酸化インジウムスズ、酸化亜鉛若しくは酸化スズのうちの少なくとも一つより構成されていることを特徴とする請求項1乃至10何れか記載の試料保持体。
【請求項12】
前記本体部は皿状に形成されており、その凹部の底面が試料保持面となっていることを特徴とする請求項1乃至11何れか記載の試料保持体。
【請求項13】
試料を含むサンプルを保持することのできる容積が、1ml以上であることを特徴とする請求項1乃至12何れか記載の試料保持体。
【請求項14】
前記膜の膜厚は、10nm〜1000nmの間にあることを特徴とする請求項1乃至13何れか記載の試料保持体。
【請求項15】
前記膜の膜厚は、20nm〜200nmの間にあることを特徴とする請求項1乃至13何れか記載の試料保持体。
【請求項16】
前記膜は、ポリマー、ポリエチレン、ポリイミド、ポリプロピレン、カーボン、酸化シリコン、窒化シリコン又は窒化ボロンのうちの少なくとも一つを含むことを特徴とする請求項1乃至15何れか記載の試料保持体。
【請求項17】
前記一次線は、電子線又はイオン線であることを特徴とする請求項1乃至16何れか記載の試料保持体。
【請求項18】
前記試料保持体の試料保持面では、細胞又は生体組織の培養が可能であることを特徴とする請求項1乃至17何れか記載の試料保持体。
【請求項19】
請求項1乃至18何れか記載の試料保持体を用いて試料の観察又は検査を行う試料検査装置であって、該試料保持体が載置される載置手段と、該試料保持体の膜の試料保持面に配置された試料に、該膜を介して一次線を照射する一次線照射手段と、該一次線の照射により該試料から発生する二次的信号を検出する信号検出手段とを備えることを特徴とする試料検査装置。
【請求項20】
前記試料保持体の膜における第1の面の反対側の面(第2の面)に接する雰囲気を真空雰囲気とするための真空室を備えることを特徴とする請求項19記載の試料検査装置。
【請求項21】
前記一次線は、電子線又はイオン線であり、前記二次的信号は、二次電子、反射電子、吸収電流、カソードルミネッセンス光又はX線であることを特徴とする請求項19又は20記載の試料検査装置。
【請求項22】
前記試料保持体の膜における第1の面が該膜の上面となっており、その反対側の面(第2の面)が該膜の下面となっていることを特徴とする請求項19乃至21何れか記載の試料検査装置。
【請求項23】
請求項1乃至18何れか記載の試料保持体の試料保持面に試料を培養し、これにより培養された試料に前記膜を介して一次線を照射し、この一次線の照射により該試料から発生する二次的信号を検出することを特徴とする試料検査方法。
【請求項24】
前記一次線の照射時には、前記試料保持体の膜における第1の面の反対側の面(第2の面)が真空雰囲気に接しており、該真空雰囲気を通して一次線が照射されることを特徴とする請求項23記載の試料検査方法。
【請求項25】
前記一次線は、電子線又はイオン線であり、前記二次的信号は、二次電子、反射電子、吸収電流、カソードルミネッセンス光又はX線であることを特徴とする請求項23又は24記載の試料検査方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate


【公開番号】特開2010−27488(P2010−27488A)
【公開日】平成22年2月4日(2010.2.4)
【国際特許分類】
【出願番号】特願2008−189574(P2008−189574)
【出願日】平成20年7月23日(2008.7.23)
【出願人】(000004271)日本電子株式会社 (811)
【Fターム(参考)】