説明

酸化亜鉛系透明導電膜の形成方法、酸化亜鉛系透明導電膜および透明導電性基板

【課題】 イオンプレーティング法による、優れた導電性と化学的耐久性とを兼ね備えた酸化亜鉛系透明導電膜の形成方法を提供する。
【解決手段】 イオンプレーティング法により酸化亜鉛系透明導電膜を形成する方法であって、実質的に亜鉛、チタンおよび酸素からなり、亜鉛とチタンとの合計に対するチタンの原子数比Ti/(Zn+Ti)が0.02を超え0.1以下である酸化物焼結体または酸化物混合体を加工して得られるターゲットを用いる方法

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、良好な導電性を有する酸化亜鉛系透明導電膜の形成方法と、該方法により形成される酸化亜鉛系透明導電膜と、該膜を備えた透明導電性基板とに関する。
【背景技術】
【0002】
導電性と光透過性とを兼ね備えた透明導電膜は、これまでから、太陽電池、液晶表示素子、その他各種受光素子における電極などとして利用されているほか、自動車窓や建築用の熱線反射膜、帯電防止膜、冷凍ショーケース等における防曇用透明発熱体など、幅広い用途に利用されている。特に、低抵抗で導電性に優れた透明導電膜は、太陽電池や、液晶、有機エレクトロルミネッセンス、無機エレクトロルミネッセンスなどの液晶表示素子や、タッチパネルなどに好適であることが知られている。
【0003】
従来、透明導電膜としては、例えば、酸化スズ(SnO2)系の薄膜、酸化亜鉛(ZnO)系の薄膜、そして酸化インジウム(In23)系の薄膜が知られている。具体的には、酸化スズ系の透明導電膜としては、アンチモンをドーパントとして含むもの(ATO)やフッ素をドーパントとして含むもの(FTO)が知られており、酸化亜鉛系の透明導電膜としては、アルミニウムをドーパントとして含むもの(AZO)やガリウムをドーパントとして含むもの(GZO)が知られており、酸化インジウム系の透明導電膜としては、スズをドーパントとして含むもの(ITO;Indium Tin Oxide)が知られている。中でも、最も工業的に利用されているのは酸化インジウム系の透明導電膜であり、とりわけITO膜は、低抵抗で導電性に優れることから、幅広く実用化されている。
【0004】
ところが、ITO膜の如き酸化インジウム系の透明導電膜は、その必須原料であるIn(インジウム)が、希少金属であるため高価で且つ資源枯渇のおそれがあり、しかも毒性を有し環境や人体に対して悪影響を及ぼす可能性があるため、近年、ITO膜に代替し得る工業的に汎用可能な透明導電膜が要望されている。そのような中、工業的製造も可能である酸化亜鉛系透明導電膜が注目されており、その導電性能を高めるべく研究が進められている。具体的には、導電性を高めるべくZnOに種々のドーパントをドープさせる試みがなされており、種々のドーパントごとに最適ドープ量と最低抵抗率が報告されている(非特許文献1)。
この報告によれば、例えば、TiO2をドープさせる場合には、ドープ量は2質量%が最適であり、その時の最低抵抗率は5.6×10-4Ω・cmであることが示されている。このように、酸化亜鉛系透明導電膜は、実験室レベルではITO膜に遜色のない程度の低抵抗が得られるよう改善されてきている。
【0005】
しかしながら、実験室レベルで報告されている酸化亜鉛系透明導電膜の高い性能は、レーザビームアブレーション法や分子線エピタキシー法などの精密な成膜方法で達成されたものであり、これらの方法は、成膜速度や成膜面積の点で工業的な量産に適しているとは言えなかった。
【0006】
酸化亜鉛系透明導電膜を工業的に量産レベルで製造する代表的な方法としては、直流マグネトロンスパッタリング法が知られている。
この直流マグネトロンスパッタリング法は、成膜速度や成膜面積の点で優れているが、その反面、形成された酸化亜鉛系透明導電膜には、大きな抵抗率分布(エロージョン対向部での表面抵抗率の増大)が生じることがあった。しかも、一般に、スパッタリング法では、比抵抗の膜厚依存性が大きく、例えば、膜厚が数十nm〜数百nm程度の極薄レベルになると、低い比抵抗が得られないといった問題もあった。
これに対し、イオンプレーティング法を用いれば、スパッタリング法のように大きな抵抗率分布を生じることなく、表面抵抗の小さい酸化亜鉛系透明導電膜を、高い成膜速度(前述した直流マグネトロンスパッタリング法の3〜5倍程度)で大きな成膜面積に形成できることが知られている。ここで、イオンプレーティング法とは、プラズマガンや電子銃によりターゲットなどの蒸着材料(膜形成材料)にプラズマビームや電子ビームを照射し、蒸着物質を蒸発(出射)させるとともに、その蒸着物質が基板に到達する前に蒸着物質をイオン化させ、電位勾配を利用して蒸着物質のエネルギーを制御したうえで基板上に蒸着(入射)させる方法である。
【先行技術文献】
【非特許文献】
【0007】
【非特許文献1】月刊ディスプレイ、1999年9月号、p10〜「ZnO系透明導電膜の動向」
【発明の概要】
【発明が解決しようとする課題】
【0008】
しかしながら、これまでの酸化亜鉛系透明導電膜は、導電性の点では優れるものの、耐熱性、耐湿性、耐薬品性(耐アルカリ性、耐酸性)などの化学的耐久性に劣るといった欠点があった。特に、イオンプレーティング法では、膜中に不足する酸素を補って透明な導電膜を得るため、イオンプレーティング装置内に酸素を供給しながら成膜するので、ターゲットの表面が酸化されて表面抵抗が上昇し、その結果、酸化亜鉛系導電膜の表面抵抗も上昇し、耐熱性や耐湿性が低下することになる。
そこで、本発明の課題は、イオンプレーティング法による、優れた導電性と化学的耐久性とを兼ね備えた酸化亜鉛系透明導電膜の形成方法と、該方法により形成される酸化亜鉛系透明導電膜と、該膜を備えた透明導電性基板とを提供することにある。
【課題を解決するための手段】
【0009】
本発明者らは、前記課題を解決するべく鋭意検討を行った結果、酸化亜鉛にチタンをドープさせたチタンドープ酸化亜鉛からなる膜において、チタンのドープ量(含有量)を、これまで低抵抗を実現するうえで最適とされていたドープ量よりも増量し、亜鉛に比べ化学的耐久性に優れるチタンをより多く含有させるようにすれば、酸化亜鉛系透明導電膜の化学的耐久性を向上させることができるのではないかと考えるとともに、その際、チタンのドープ量が従来報告されている最適値から外れることで膜の抵抗率は高くなってしまうであろうことも予測した。ところが、検討を重ねたところ、この予測に反し、チタンのドープ量が従来の最適値よりも多くなるように、イオンプレーティング法により酸化亜鉛系透明導電膜を形成する際の膜形成材料中に含まれるチタンと亜鉛との原子数比を特定範囲に設定すると、得られる膜の導電性(低抵抗)と化学的耐久性を両立させることが可能になることを見出し、本発明を完成した。
【0010】
すなわち、本発明は、以下の構成からなる。
(1)イオンプレーティング法により酸化亜鉛系透明導電膜を形成する方法であって、実質的に亜鉛、チタンおよび酸素からなり、亜鉛とチタンとの合計に対するチタンの原子数比Ti/(Zn+Ti)が0.02を超え0.1以下である酸化物焼結体または酸化物混合体を加工して得られるターゲットを用いることを特徴とする方法。
(2)前記チタンは、式TiO2-X(X=0.1〜1)で表される低原子価酸化チタン由来のチタンである、(1)に記載の方法。
(3)上記(1)または(2)に記載の方法により形成されることを特徴とする酸化亜鉛系透明導電膜。
(4)透明基材上に、上記(3)に記載の酸化亜鉛系透明導電膜を備えることを特徴とする透明導電性基板。
(5)前記透明基材が、ガラス板、樹脂フィルムまたは樹脂シートである、上記(4)に記載の透明導電性基板。
【発明の効果】
【0011】
本発明によれば、イオンプレーティング法によって、優れた導電性と化学的耐久性とを兼ね備えた酸化亜鉛系透明導電膜を形成することができる。しかも、このようにして形成された透明導電膜は、希少金属であり毒性を有するインジウムを必須としないという利点も有するので、工業的に極めて有用である。
【図面の簡単な説明】
【0012】
【図1】本発明において好適に用いることができるイオンプレーティング装置の一例を示す概略図である。
【発明を実施するための形態】
【0013】
(酸化亜鉛系透明導電膜の形成方法)
本発明の酸化亜鉛系透明導電膜の形成方法は、特定の酸化物焼結体または酸化物混合体を膜形成材料(以下、「蒸着材料」と称することもある)として、イオンプレーティング法により成膜する方法である。前記膜形成材料は、亜鉛およびチタンを両方含む酸化物焼結体または酸化物混合体を加工してなる1種のターゲットとしてもよい。
まず、膜形成材料を構成する特定の酸化物混合体について説明する。
【0014】
(酸化物混合体)
前記特定の酸化物混合体は、実質的に亜鉛、チタンおよび酸素からなり、亜鉛とチタンを特定の割合で含有する原料粉末を混合し、成形された混合体である。ここで、「実質的」とは、酸化物混合体を構成する全原子の99%以上が亜鉛、チタンまたは酸素からなることを意味する。
本発明の酸化亜鉛系透明導電膜の形成方法において用いる膜形成材料中に含まれるチタンと亜鉛との原子数比、すなわち亜鉛とチタンとの合計に対するチタンの原子数比Ti/(Zn+Ti)は、0.02を超え0.1以下である。このTi/(Zn+Ti)の値が0.02以下であると、チタンのドープ効果が不充分となり、形成される透明導電膜の導電性が低下するとともに、化学的耐久性の改善効果が不充分となり、一方、Ti/(Zn+Ti)の値が0.1を超えると、成膜時の不純物散乱要因が増し、移動度が低下し、導電性が低下する。好ましくは、膜形成材料中もしくは酸化物混合体中のチタンと亜鉛との原子数比は、Ti/(Zn+Ti)=0.025〜0.09であり、より好ましくはTi/(Zn+Ti)=0.03〜0.08である。
【0015】
前記特定の酸化物混合体は、酸化亜鉛相と酸化チタン相とから構成されることが好ましい。酸化チタンが低原子価である、チタン(III)、チタン(II)を含む、後述する低原子価酸化チタンの状態で、あることが重要である。焼結してもよいが、チタン酸亜鉛化合物相との複合酸化物が生成しないことが重要である。
ここで、チタン酸亜鉛化合物相とは、具体的には、ZnTiO3、Zn2TiO4のほか、これらの亜鉛サイトにチタン元素が固溶されたものや、酸素欠損が導入されているものや、Zn/Ti比がこれらの化合物から僅かにずれた非化学量論組成のものも含むものとする。
また、酸化亜鉛相とは、具体的には、ZnOのほか、これにチタン元素が固溶されたものや、酸素欠損が導入されているものや、亜鉛欠損により非化学量論組成となったものも含むものとする。なお、酸化亜鉛相は、通常、ウルツ鉱型構造をとる。
【0016】
前記特定の酸化物混合体は、実質的に酸化亜鉛と酸化チタンの結晶相の混合物であることが好ましい。また、酸化チタンの結晶相とは、具体的には、TiO2、Ti23、TiOのほか、これらの結晶にZnなど他の元素が固溶された物質も含むものとする。
【0017】
前記特定の酸化物混合体は、ガリウム、アルミニウム、錫、シリコン、ゲルマニウム、ジルコニウムおよびハフニウムからなる群より選ばれる少なくとも1種の元素(以下、これらを「添加元素」と称することもある)をも含有することが好ましい。このような添加元素を含有することによって、形成される透明導電膜の比抵抗が低下し、導電性を向上させることができる。
添加元素を含有する場合、その全含有量は、原子数比で、酸化物混合体を構成する全金属元素の総量に対して0.05%以下であることが好ましい。添加元素の含有量が前記範囲よりも多いと、酸化物混合体をターゲットとして形成される膜の比抵抗が増大するおそれがある。
前記添加元素は、酸化物の形態で酸化物混合体中に存在していてもよいし、前記酸化亜鉛相の亜鉛サイトに置換した(固溶した)形態で存在していてもよいし、前記酸化チタン相のチタンサイトに置換した(固溶した)形態で存在していてもよい。
【0018】
前記特定の酸化物混合体は、必須元素である亜鉛およびチタンや前記添加元素のほかに、例えば、インジウム、イリジウム、ルテニウム、レニウムなどの他の元素を、不純物として含有していてもよい。不純物として含有される元素の合計含有量は、原子数比で、酸化物混合体を構成する全金属元素の総量に対して0.5%以下であることが好ましい。
【0019】
前記原料粉末としては、チタン源として、酸化チタン粉、チタン金属粉等から選ばれる1種以上と、亜鉛源として、酸化亜鉛粉、水酸化亜鉛粉、亜鉛金属粉等から選ばれる1種以上とを、それぞれ組合わせたものを用いることができる。特に、前記原料粉末としては、酸化チタン粉と酸化亜鉛粉もしくは水酸化亜鉛粉との混合粉を含むものがよい。例えば、チタン金属粉と酸化亜鉛粉とを組み合わせたものや、酸化チタン粉と亜鉛金属粉とを組み合わせたものを原料粉末とした場合、酸化物混合体中にチタンや亜鉛の金属粒が存在しやすくなり、これを膜形成材料として成膜すると、成膜中に膜形成材料表面の金属粒が溶融してしまい膜形成材料から放出されず、得られる膜の組成と膜形成材料の組成とが大きく異なる傾向がある。
【0020】
前記酸化チタン粉としては、4価のチタンからなる酸化チタン(TiO2)、3価のチタンからなる酸化チタン(Ti23)、2価のチタンからなる酸化チタン(TiO)等の粉末を用いることができるが、TiO2を含まない低原子価酸化チタンの粉末、特に前記膜形成材料は、3価のチタンからなる酸化チタン(Ti23)をチタン源として得られたものであることが好ましく、その点で、前記酸化チタン粉としてはTi23の粉末を用いるのが好ましい。Ti23をチタン源とすることが好ましい理由は、Ti23の結晶構造は三方晶であり、これと混合する酸化亜鉛は六方晶のウルツ鉱であるため、結晶構造の対称性が一致し、固相焼結する際に置換固溶しやすいからである。なお、酸化チタン粉としては、純度が99重量%以上であるものを用いるのがよい。
低原子価酸化チタンとは、TiO(II)、Ti23(III)という整数の原子価を有するものばかりでなく、Ti35、Ti47、Ti611、Ti59、Ti815等も含む、式TiO2-X(X=0.1〜1)で表される範囲のものである。
この低原子価酸化チタンの構造は、X線回折装置(X−ray diffraction、 XRD)、X線光電子分光装置(X−ray Photoelectron Spectroscopy、 XPS)などの機器分析の結果によって確認することができる。
【0021】
前記式TiO2-X(X=0.1〜1)で示される低原子価酸化チタンは、低原子価酸化チタンの混合物であってもよい。通常、酸化チタン(TiO2)を水素雰囲気等の還元雰囲気にて、還元剤としてカーボン等を用いて、加熱することにより作製することができる。水素濃度、還元剤としてカーボン量、加熱温度を調製することにより、低原子価酸化チタンの混合物の割合を制御することができる。
【0022】
前記酸化亜鉛粉としては、通常、ウルツ鉱構造のZnO等の粉末が用いられ、さらにこのZnOを予め還元雰囲気で焼成して酸素欠損を含有させたものを用いてもよい。なお、酸化亜鉛粉としては、純度が99重量%以上であるものを用いるのがよい。
前記水酸化亜鉛としては、アモルファスもしくは結晶構造のいずれであってもよい。
前記原料粉末として各々用いる化合物(粉)の平均粒径は、それぞれ5μm以下であることが、酸化物混合体の密度を向上させるうえで好ましい。また、そのBET比表面積は、特に限定されない。
【0023】
前記原料粉末として酸化チタン粉と酸化亜鉛粉もしくは水酸化亜鉛粉との混合粉を用いる場合の各粉の混合割合は、各々用いる化合物(粉)の種類に応じて、得られる酸化物混合体に含まれるチタンと亜鉛との原子数比が、Ti/(Zn+Ti)の値が上述した範囲である比率となるように適宜設定すればよい。なお、原料粉末として各々用いる化合物(粉)は、それぞれ1種のみであってもよいし、2種以上であってもよい。
【0024】
前記原料粉末を成形する際の方法は、特に制限されるものではないが、例えば、原料粉末を混合し、得られた混合物を成形すればよい。
混合は、例えば、ボールミル、振動ミル、アトライター、ダイノミル、ダイナミックミル等の公知の混合方法を用いて行うことができ、乾式で行なってもよいし、湿式で行ってもよい。成形の際の操作性の観点からは、混合物に、バインダー(例えば、ポリビニルアルコール、酢酸ビニル等)、分散剤、離型剤等を添加してもよい。また、混合を湿式で行う際には、成形に供する前に得られるスラリー状の混合物を乾燥してもよく、その場合、乾燥は、例えば、加熱乾燥機、真空乾燥機、凍結乾燥機等を用いて行えばよい。
得られた混合物の成形は、例えば、一軸プレス、冷間静水圧プレス(CIP)などを用いて、通常1ton/cm2以上の圧力をかけて行なうことができる。成形に際しては、後述するイオンプレーティング法に適した形状にすればよく、例えば、円板、四角板等の形状とすればよい。また、成形後、切断や研削等を適宜組合わせて行うことにより、寸法を調整することもできる。
【0025】
なお、混合物を成形するにあたり、酸化物混合体の機械的強度を高めるため、上述のように混合物を成形した成形体に熱アニールを施すようにしてもよい。得られた成形体のアニールは、例えば、成形体を非酸化性雰囲気(真空雰囲気、還元雰囲気(二酸化炭素、水素、アンモニア等))または酸化性雰囲気にて静置し、アニール温度(最高到達温度)を50〜600℃とし、この加熱温度での保持時間を0.5〜48時間とする条件で行ってもよい。アニールすることにより、成形体の強度を向上させることができる。そして、酸化雰囲気中でアニールした場合、さらに還元雰囲気中で600℃以下、好ましくは400℃以下でアニール処理を行うことが望ましい。これは、TiO、Ti23がTiO2に酸化されてしまうからである。
酸化チタン粉としてTiO2を用いた場合、アニール温度が600℃未満であれば、大気雰囲気、還元雰囲気どちらで熱アニールを施しても構わない。
上記したいずれの雰囲気中でアニールする際も、アニール時間(すなわち、アニール温度での保持時間)は、1時間〜15時間とすることが好ましい。アニール時間が1時間未満であると、機械的強度の向上が十分ではない。
アニールは、例えば、電気炉、ガス炉、還元炉等を用いて行うことができる。また、アニールは、ホットプレス、熱間等圧プレス(HIP)、放電プラズマ焼結(SPS)、ミリ波焼結、マイクロ波焼結等を用いて、上述した成形と同時に行ってもよい。なお、アニール後、切断や研削等を適宜組合わせて行うことにより、寸法を調整することもできる。
【0026】
本発明の酸化亜鉛系透明導電膜の形成方法に用いられる膜形成材料は、前記特定の酸化物混合体を加工してターゲット、タブレットとしてもよい。
加工方法は、特に制限されず、適宜公知の方法を採用すればよい。例えば、酸化物混合体に平面研削等を施した後、所定の寸法に切断してから、イオンプレーティング装置の所定の位置に設置すればよい。
【0027】
(酸化物焼結体)
本発明では、前記特定の酸化物混合体に代えて、前記成形体を焼結することにより得られる酸化物焼結体を使用することができる。
膜形成材料中もしくは酸化物焼結体中のチタンと亜鉛との原子数比Ti/(Zn+Ti)は0.02を超え0.1以下であり、好ましくはTi/(Zn+Ti)は0.025〜0.09であり、より好ましくはTi/(Zn+Ti)は0.03〜0.08である。
【0028】
前記特定の酸化物焼結体は、酸化亜鉛相とチタン酸亜鉛化合物相とから構成されるか、または、チタン酸亜鉛化合物相から構成されることが好ましい。このように酸化物焼結体中にチタン酸亜鉛化合物相が含まれていると、酸化物焼結体自体の強度が増すので、過酷な条件(高電力など)で成膜条件においても膜形成材料にクラックが生じたりすることがない。
なお、ここで、チタン酸亜鉛化合物相とは、具体的には、ZnTiO3、Zn2TiO4のほか、これらの亜鉛サイトにチタン元素が固溶されたものや、酸素欠損が導入されているものや、Zn/Ti比がこれらの化合物から僅かにずれた非化学量論組成のものも含むものとする。
前記特定の酸化物焼結体は、実質的に酸化チタンの結晶相を含有しないことが好ましい。
【0029】
前記特定の酸化物焼結体は、例えば、酸化物混合体におけるチタン源と亜鉛源とを含む原料粉末を前記と同様にして混合し、成形した後、得られた成形体を焼結することにより、得ることができる。
得られた成形体の焼結は、例えば、成形体を非酸化性雰囲気(真空雰囲気、不活性雰囲気、還元雰囲気)にて静置し、焼成温度(最高到達温度)を600〜1700℃とし、この焼成温度での保持時間を0.5〜48時間とする条件で行えばよい。通常、酸化物焼結体を不活性雰囲気、真空雰囲気または還元雰囲気にて焼結した場合は、酸素欠損を生じさせるため、酸化物焼結体の比抵抗は低くなり、酸化雰囲気にて焼結した場合は、比抵抗は高くなる。
焼成温度は、好ましくは1000〜1500℃、より好ましくは1100〜1300℃とし、保持時間は、好ましくは15時間以上、より好ましくは20時間以上とするのがよい。
焼結は、例えば、電気炉、ガス炉、還元炉等を用いて行うことができる。
また、焼結は、ホットプレス、熱間等圧プレス(HIP)、放電プラズマ焼結(SPS)、ミリ波焼結、マイクロ波焼結等を用いて、上述した成形と同時に行ってもよい。なお、焼成後、切断や研削等を適宜組み合わせて行うことにより、寸法を調整することもできる。
【0030】
なお、焼結を行うに際しては、例えば、成形体をZnO粉体内に埋めた状態で分解を防止しつつ行なうことにより、得られる酸化物焼結体の密度を、好ましくは80%以上、より好ましくは90%の高密度とすることが好ましい。
【0031】
本発明の酸化亜鉛系透明導電膜の形成方法に用いられる膜形成材料は、前記酸化物焼結体を加工してターゲット、タブレットとしてもよい。
加工方法は、上述した酸化物混合体を加工する場合と同様に、特に制限されず、適宜公知の方法を採用すればよい。例えば、酸化物焼結体に平面研削等を施した後、所定の寸法に切断してから、イオンプレーティング装置の所定の位置に設置すればよい。
【0032】
(イオンプレーティング法)
本発明の酸化亜鉛系透明導電膜の形成方法は、イオンプレーティング法により成膜を行うものである。イオンプレーティング法は、成膜室に配設した電極部としてのハース等に、膜形成材料(蒸着材料)を配置し、この蒸着材料に例えばアルゴンプラズマを照射して蒸着材料を加熱し、蒸発させ、プラズマを通過した蒸着材料の各粒子をハース等に対向する位置に置かれた基板に成膜させるものであるが、その際の具体的手法や条件などについては、上述した膜形成材料を用いること以外、特に制限はなく、公知のイオンプレーティング法の手法や条件を適宜採用すればよい。
【0033】
以下、イオンプレーティング法の一実施形態について図面を用いて説明する。
図1は、イオンプレーティング法を実施するのに好適なイオンプレーティング装置の一例を示す。イオンプレーティング装置10は、成膜室である真空容器12と、真空容器12中にプラズマビームPBを供給するプラズマ源であるプラズマガン(プラズマビーム発生器)14と、真空容器12内の底部に配置されてプラズマビームPBが入射する陽極部材16と、成膜の対象である基板Wを保持する基板保持部材WHを陽極部材16の上方で適宜移動させる搬送機構18とを備える。
プラズマガン14は、圧力勾配型であり、その本体部分は真空容器12の側壁に備えられる。プラズマガン14の陰極14a、中間電極14b、14c、電磁石コイル14dおよびステアリングコイル14eへの給電を調整することにより、真空容器12中に供給されるプラズマビームPBの強度や分布状態が制御される。
なお、参照符号20aは、プラズマビームPBのもととなる、Ar等の不活性ガスからなるキャリアガスの導入路を示す。
陽極部材16は、プラズマビームPBを下方に導く主陽極であるハース16aと、その周囲に配置された環状の補助陽極16bとからなる。
【0034】
ハース16aは、適当な正電位に制御されており、プラズマガン14から出射したプラズマビームPBを下方に吸引する。ハース16aは、プラズマビームPBが入射する中央部に貫通孔THが形成されており、貫通孔THに蒸着材料22が装填されている。蒸着材料22は、柱状若しくは棒状に成形されたタブレットであり、プラズマビームPBからの電流によって加熱されて昇華し、蒸着物質を生成する。ハース16aは蒸着材料22を徐々に上昇させる構造を有しており、蒸着材料22の上端は常に一定量だけハース16aの貫通孔THから突出している。
補助陽極16bは、ハース16aの周囲に同心に配置された環状の容器で構成され、容器内には、永久磁石24aとコイル24bとが収容されている。これら永久磁石24aおよびコイル24bは、磁場制御部材であり、ハース16aの直上にカスプ状磁場を形成し、これにより、ハース16aに入射するプラズマビームPBの向きが制御され、修正される。
【0035】
搬送機構18は、搬送路18a内に水平方向に等間隔で配列されて基板保持部材WHを支持する多数のコロ18bと、コロ18bを回転させて基板保持部材WHを所定の速度で水平方向に移動させる図示しない駆動装置とを備える。基板保持部材WHに基板Wが保持される。この場合、基板Wを搬送する搬送機構18を設けることなく、真空容器12の内部の上方に基板Wを固定して配置してもよい。
真空容器12には、酸素ガス容器19中の酸素ガスがマスフローメータ21によって流量を所定量に調整されながら供給される。なお、参照符号20bは酸素以外の雰囲気ガスを供給するための供給路を示し、また、参照符号20cはAr等の不活性ガスをハース16aに供給するための供給路を示し、また、参照符号20dは排気系を示す。
【0036】
以上のような図1のイオンプレーティング装置10を用いたイオンプレーティング方法を説明する。
まず、真空容器12の下部に配置されたハース16aの貫通孔THに蒸着材料22を装着する。一方、ハース16aの上方の対向する位置に基板Wを配置する。次に、成膜条件に応じたプロセスガスを真空容器12の内部に導入する。プラズマガン14の陰極14aおよびハース16a間に直流電圧を印加する。そして、プラズマガン14の陰極14aとハース16aとの間で放電を生じさせ、これにより、プラズマビームPBを生成する。プラズマビームPBは、ステアリングコイル14と補助陽極16b内の永久磁石24a等とによって決定される磁界に案内されてハース16aに到達する。この際、蒸着材料22の周囲にアルゴンガスが供給されるので、容易にプラズマビームPBがハース16aに引き寄せられる。
【0037】
プラズマに曝された蒸着材料22は、徐々に加熱される。蒸着材料22が十分に加熱されると、蒸着材料22が昇華し、蒸着物質が蒸発(出射)する。蒸着物質は、プラズマビームPBによりイオン化され、基板Wに付着(入射)し、成膜される。なお、永久磁石24aおよびコイル24bによってハース16aの上方の磁場を制御することにより、蒸着物質の飛行方向を制御することができるため、ハース16aの上方におけるプラズマの活性度分布や基板Wの反応性分布に合わせて基板Wの上の成膜速度分布を調整でき、広い面積にわたって均一な膜質の薄膜を得ることができる。
なお、真空容器12の酸素分圧は、特に制限されないが、0.012Pa以下に調整することが好ましい。また、必要に応じて、プラズマビームを複数個用意して、区画された複数の真空室で、連続的に成膜を行うこともできる。
【0038】
(酸化亜鉛系透明導電膜)
本発明の酸化亜鉛系透明導電膜は、上述した酸化亜鉛系透明導電膜の形成方法により成膜されたチタンドープ酸化亜鉛からなる透明導電膜である。かかる酸化亜鉛系透明導電膜中に含まれるチタンと亜鉛の原子数比Ti/(Zn+Ti)は0.02を超え0.1以下、好ましくはTi/(Zn+Ti)は0.025〜0.09、より好ましくはTi/(Zn+Ti)は0.03〜0.08である。これにより、チタンのドープ効果により優れた導電性を発現しうるとともに、化学的耐久性にも優れた膜となる。この酸化亜鉛系透明導電膜は、チタンが酸化亜鉛のウルツ鉱の結晶構造の亜鉛サイトに置換固溶したものある。
【0039】
本発明の酸化亜鉛系透明導電膜は、良好な透明性を有し、かつ、上述したように優れた導電性と化学耐久性(耐熱性、耐湿性、耐薬品性(耐アルカリ性、耐酸性)など)を兼ね備えたものである。詳しくは、本発明の酸化亜鉛系透明導電膜は、従来の酸化亜鉛系透明導電膜(すなわち、本発明の如く特定量のチタンを含有しない酸化亜鉛系透明導電膜)における最大の欠点であった化学耐久性を、透明性および導電性を損なうことなく改善したものである。具体的には、従来の酸化亜鉛系透明導電膜は、膜厚にもよるが、耐熱性については、200℃の大気雰囲気で30分間加熱すると比抵抗は急激に増大し、耐湿性については、恒温恒湿雰囲気(温度60℃、相対湿度90%)に保持すると急激に増大してしまうものであった。また、従来の酸化亜鉛系透明導電膜の耐薬品性は、例えば40℃の3%塩酸水溶液や40℃の3%水酸化ナトリウム溶液に浸漬すると10分後には完全に消失してしまうものであった。
本発明の酸化亜鉛系透明導電膜の膜厚は、用途に応じて適宜設定すればよく、特に制限されないが、好ましくは50〜600nm、より好ましくは100〜500nmである。膜厚が50nm未満であると、充分な比抵抗が確保できないおそれがあり、一方、膜厚が600nmを超えると膜に着色が生じてしまうおそれがある。
【0040】
(透明導電性基板)
本発明の透明導電性基板は、透明基材上に、上述した透明導電膜の形成方法により成膜された酸化亜鉛系透明導電膜を備えるものである。
前記透明基材は、イオンプレーティング法による成膜条件において形状を維持しうるものであれば、特に限定されない。例えば、各種ガラス等の無機材料、熱可塑性樹脂や熱硬化性樹脂(例えば、エポキシ樹脂、ポリメチルメタクリレート、ポリカーボネート、ポリスチレン、ポリエチレンサルファイド、ポリエーテルスルホン、ポリオレフィン、ポリエチレンテレフタレート、ポリエチレンナフタレート、トリアセチルセルロース、ポリイミドなどのプラスチック類)等の樹脂などで形成された板状物、シート状物、フィルム状物等を用いることができるが、特に、ガラス板、樹脂フィルムおよび樹脂シートのいずれかであるのが好ましい。イオンプレーティング法は、スパッタ法と比べ低温で結晶性の良い膜を得ることができる成膜方法であるから、樹脂フィルムや樹脂シートの上にも成膜することができるのである。透明基材の可視光透過率は、通常、90%以上、好ましくは95%以上であるのがよい。
【0041】
なお、前記透明基材として樹脂フィルムや樹脂シートを用いる場合、イオンプレーティング法による成膜で受けるダメージを分散均一化するために、工業的に行われているロールツーロールの成膜方法で、巻き出し速度と巻取り速度をコントロールしながら引張応力をかけた状態で成膜することが好ましい。さらに、あらかじめ樹脂フィルムまたは樹脂シートを加熱した状態で成膜してもよいし、成膜最中に樹脂フィルムまたは樹脂シートを冷却するようにしてもよい。また、イオンプレーティング法による成膜でダメージを受ける時間を短縮するため、樹脂フィルムまたは樹脂シートの搬送速度の高速化(例えば1.0m/分以上で)を図ることも効果的であり、この場合は、例えば成膜する樹脂フィルムまたは樹脂シートとターゲットとの距離が短くても成膜が可能となり、工業的プロセスとしては有利である。
前記透明基材には、必要に応じて、単層または多層からなる絶縁層、半導体層、ガスバリア層および保護層のいずれかが形成されていてもよい。
絶縁層としては、例えば、酸化珪素膜や窒化酸化珪素膜などが挙げられる。
半導体層としては、例えば、薄膜トランジスター(TFT)などが挙げられ、主にガラス基板に形成される。
ガスバリア層としては、例えば、酸化珪素膜、窒化酸化珪素膜、アルミニウム酸マグネシウム膜などが挙げられ、水蒸気バリア膜などとして樹脂板もしくは樹脂フィルムに形成される。
保護層は、基材の表面を傷や衝撃から守るためのものであり、Si系、Ti系、アクリル樹脂系など各種コーティング層が挙げられる。
【0042】
本発明の酸化亜鉛系透明導電性基板の比抵抗は、通常2×10-3Ω・cm以下、好ましくは8×10-4Ω・cm以下である。また、その表面抵抗(シート抵抗)は、用途によって異なるが、通常5〜10000Ω/□、好ましくは10〜300Ω/□であるのが好ましい。なお、比抵抗および表面抵抗は、例えば実施例で後述する方法によって測定することができる。
本発明の酸化亜鉛系透明導電性基板の透過率は、可視光領域で、通常85%以上、好ましくは90%以上である。また、その全光線透過率は、好ましくは80%以上、より好ましくは85%以上であり、そのヘイズ値は、好ましくは10%以下、より好ましくは5%以下であるのがよい。なお、透過率は、例えば実施例で後述する方法によって測定することができる。
【0043】
本発明の透明導電性基板における酸化亜鉛系透明導電膜の膜厚は、50〜600nmであることが好ましい。この膜厚の範囲では、用途によって異なるが、可撓性が保たれた連続的な膜を得る事ができる。さらに、本発明の透明導電膜の膜厚は用途に応じて100〜500nmとすることが望ましい。
【0044】
本発明の透明導電性基板には、必要に応じて、最外層として、保護膜、反射防止膜、フィルター等の役割や、液晶の視野角の調整、曇り止め等の機能を発揮する任意の樹脂または無機化合物の層を、1層または2層以上積層することができる。
本発明の透明導電性基板は、上述したように、良好な透明性を有し、かつ、上述したように優れた導電性と化学的耐久性(耐熱性、耐湿性、耐薬品性(耐アルカリ性、耐酸性)など)を兼ね備えたものであるので、例えば、液晶ディスプレイ・プラズマディスプレイ・無機EL(エレクトロルミネセンス)ディスプレイ・有機ELディスプレイ・電子ペーパーなどの透明電極、太陽電池の光電変換素子の窓電極、透明タッチパネル等の入力装置の電極、電磁シールドの電磁遮蔽膜、透明電波吸収体、紫外線吸収体、さらには透明半導体デバイスとして他の金属膜/金属酸化膜と組み合わせて活用することができる。
【実施例】
【0045】
以下、実施例により本発明をより詳細に説明するが、本発明は、かかる実施例により限定されるものではない。
なお、得られた透明導電性基板の評価は以下の方法で行なった。
<比抵抗>
比抵抗は、抵抗率計(三菱化学(株)製「LORESTA−GP、MCP−T610」)を用いて、四端子四探針法により測定した。詳しくは、サンプルに4本の針状の電極を直線上に置き、外側の二探針間に一定の電流を流し、内側の二探針間に一定電流を流し、内側の二探針間に生じる電位差を測定し、抵抗を求めた。
<表面抵抗>
表面抵抗(Ω/□)は、比抵抗(Ω・cm)を膜厚(cm)で除することにより算出した。
<透過率>
透過率は、紫外可視近赤外分光光度計(日本分光(株)製「V−670」)を用いて測定した。
<耐湿性>
透明導電性基板を、温度60℃、相対湿度90%の雰囲気中に1000時間保持する耐湿試験に付した後、表面抵抗を測定した。耐湿試験後の表面抵抗が、耐湿試験前の表面抵抗の2倍以下であると、耐湿性に優れると言える。
<耐熱性>
透明導電性基板を、温度200℃の大気中に5時間保持する耐熱試験に付した後、表面抵抗を測定した。耐熱試験後の表面抵抗が、耐熱試験前の表面抵抗の1.5倍以下であると、耐熱性に優れると言える。
<耐アルカリ性>
透明導電性基板を、3%のNaOH水溶液(40℃)中に10分間浸漬し、浸漬前後の基板上の膜質の変化の有無を目視にて確認した。
<耐酸性>
透明導電性基板を、3%のHCl水溶液(40℃)中に10分間浸漬し、浸漬前後の基板上の膜質の変化の有無を目視にて確認した。
【0046】
(実施例1)
酸化亜鉛粉末(ZnO;和光純薬工業(株)製、特級)および酸化チタン粉末(Ti23;(株)高純度化学研究所製、純度99.99%)を原料粉末とし、これらをZn:Tiの原子数比が96:4となる割合で混合し、原料粉末の混合物を得た。次いで、得られた混合物を金型に入れ、一軸プレスにより成形圧500kg/cm2にて成形し、直径30mm、厚さ5mmの円盤状の成形体を得た。この成形体を常圧(100Pa)のアルゴン雰囲気下、500℃で3時間アニールして、酸化物混合体(1)を得た。
得られた酸化物混合体(1)をエネルギー分散型蛍光X線装置((株)島津製作所製「EDX−700L」)にて分析したところ、ZnとTiの原子数比はZn:Ti=96:4(Ti/(Zn+Ti)=0.04)であった。
次に、得られた酸化物混合体(1)を20mmφの円盤状に加工することにより、タブレットを作製し、これを用いてイオンプレーティング法により透明導電膜を成膜し、透明導電基板を得た。
すなわち、イオンプレーティング装置(中外炉工業(株)製「SUPLaDUO」)を用い、下記の条件でイオンプレーティングを行い、透明基材(厚み0.7mmの無アルカリガラス基板)上に、膜厚200nmの透明導電膜を形成した。
成膜前の基板の予備加熱温度:250℃
成膜時の圧力 :0.3Pa
成膜時の雰囲気ガス条件 :アルゴン=160sccm、酸素=2sccm
成膜時の放電電流 :100A
成膜時間 :200秒
【0047】
形成した透明導電膜中の組成(Zn:Ti)について、波長分散型蛍光X線装置((株)島津製作所製「XRF−1700WS」)を用い蛍光X線法により検量線を用いて定量分析を行ったところ、Zn:Ti(原子数比)=96:4であった。また、この透明導電膜について、X線回折装置(理学電機(株)製「RINT2000」)を用い薄膜測定用のアタッチメントを使用したX線回折を行うとともに、エネルギー分散型X線マイクロアナライザー(TEM−EDX)を用いて亜鉛へのチタンのドープ状態を調べ、さらに電界放射型電子顕微鏡(FE−SEM)を用いて結晶構造を調べたところ、C軸配向したウルツ鉱型の単相であり、チタンが亜鉛に置換固溶していることがわかった。
【0048】
得られた透明導電性基板上の透明導電膜の比抵抗は7.3×10-4Ω・cmであり、表面抵抗は36.5Ω/□であった。なお、透明基板上の比抵抗の分布は面内均一であった。
得られた透明導電性基板の透過率は、可視領域(380nm〜780nm)で平均90%、赤外領域(780nm〜2700nm)で平均65%であった。なお、成膜前のガラス基板の可視領域(380nm〜780nm)における透過率は平均94%であり、赤外領域(780nm〜2700nm)における透過率は平均94%であった。
得られた透明導電性基板の耐湿性を評価したところ、耐湿試験後の表面抵抗は、耐湿試験前の表面抵抗の1.6倍であり、耐湿性に優れることがわかった。また、得られた透明導電性基板の耐熱性を評価したところ、耐熱試験後の表面抵抗は、耐熱試験前の表面抵抗の1.3倍であり、耐熱性に優れることがわかった。
得られた透明導電性基板の耐アルカリ性を評価したところ、浸漬前後で膜質に変化はなく耐アルカリ性に優れていることがわかった。また、得られた透明導電性基板の耐酸性を評価したところ、浸漬後、膜厚が薄くなっており溶解していたが、浸漬前後で膜質に変化はなく耐酸性に優れていることがわかった。
以上のことから、得られた透明導電性基板上の膜は、透明かつ低抵抗であるとともに、化学的耐久性(耐熱性、耐湿性、耐アルカリ性、耐酸性)をも兼ね備えた透明導電膜であることが明らかである。
【0049】
(比較例1)
酸化亜鉛粉末(ZnO;和光純薬工業(株)製、特級)および酸化チタン粉末(Ti23;(株)高純度化学研究所製、純度99.99%)を原料粉末とし、これらをZn:Tiの原子数比が99:1となる割合で混合し、原料粉末の混合物を得た。次いで、得られた混合物を金型に入れ、一軸プレスにより成形圧500kg/cm2にて成形し、直径30mm、厚さ5mmの円盤状の成形体を得た。この成形体を常圧(100Pa)のアルゴン雰囲気下、400℃で3時間アニールして、酸化物混合体(C1)を得た。
得られた酸化物混合体(C1)をエネルギー分散型蛍光X線装置((株)島津製作所製「EDX−700L」)にて分析したところ、ZnとTiの原子数比はZn:Ti=99:1(Ti/(Zn+Ti)=0.01)であった。
次に、得られた酸化物混合体(C1)を20mmφの円盤状に加工することにより、タブレットを作製し、これを用いてイオンプレーティング法により透明導電膜を成膜し、透明導電基板を得た。
すなわち、イオンプレーティング装置(中外炉工業(株)製「SUPLaDUO」)を用い、下記の条件でイオンプレーティングを行い、透明基材(厚み0.7mmの無アルカリガラス基板)上に、膜厚150nmの透明導電膜を形成した。
成膜前の基板の予備加熱温度:250℃
成膜時の圧力 :0.3Pa
成膜時の雰囲気ガス条件 :アルゴン=160sccm、酸素=2sccm
成膜時の放電電流 :100A
成膜時間 :150秒
【0050】
形成した透明導電膜中の組成(Zn:Ti)について、波長分散型蛍光X線装置((株)島津製作所製「XRF−1700WS」)を用い蛍光X線法により検量線を用いて定量分析を行ったところ、Zn:Ti(原子数比)=99:1であった。また、この透明導電膜について、X線回折装置(理学電機(株)製「RINT2000」)を用い薄膜測定用のアタッチメントを使用したX線回折を行うとともに、エネルギー分散型X線マイクロアナライザー(TEM−EDX)を用いて亜鉛へのチタンのドープ状態を調べ、さらに電界放射型電子顕微鏡(FE−SEM)を用いて結晶構造を調べたところ、C軸配向したウルツ鉱型の単相であり、チタンが亜鉛に置換固溶していることがわかった。
【0051】
得られた透明導電性基板上の透明導電膜の比抵抗は7.0×10-3Ω・cmであり、表面抵抗は467Ω/□であった。なお、透明基板上の比抵抗の分布は面内均一であった。
得られた透明導電性基板の透過率は、可視領域(380nm〜780nm)で平均91%、赤外領域(780nm〜2700nm)で平均70%であった。なお、成膜前のガラス基板の可視領域(380nm〜780nm)における透過率は平均94%であり、赤外領域(780nm〜2700nm)における透過率は平均94%であった。
得られた透明導電性基板の耐湿性を評価したところ、耐湿試験後の表面抵抗は、耐湿試験前の表面抵抗の3.1倍であり、耐湿性に劣ることがわかった。また、得られた透明導電性基板の耐熱性を評価したところ、耐熱試験後の表面抵抗は、耐熱試験前の表面抵抗の3.0倍であり、耐熱性に劣ることがわかった。
得られた透明導電性基板の耐アルカリ性を評価したところ、浸漬後には膜は完全に溶解し、消失していた。また、得られた透明導電性基板の耐酸性を評価したところ、膜は完全に溶解し、消失していた。
以上のことから、得られた透明導電性基板上の膜は、透明であるが、高抵抗であり、化学的耐久性(耐熱性、耐湿性、耐アルカリ性、耐酸性)に劣る透明導電膜であることが明らかである。
【0052】
(実施例2)
実施例1と同様にして得られた酸化物混合体(1)を20mmφの円盤状に加工することにより、タブレットを作製し、これを用いてイオンプレーティング法により透明導電膜を成膜し、透明導電基板を得た。
すなわち、イオンプレーティング装置(中外炉工業(株)製「SUPLaDUO」)を用い、下記の条件でイオンプレーティングを行い、透明基材(厚み0.7mmの無アルカリガラス基板)上に、膜厚50nmの透明導電膜を形成した。
成膜前の基板の予備加熱温度:250℃
成膜時の圧力 :0.3Pa
成膜時の雰囲気ガス条件 :アルゴン=160sccm、酸素=2sccm
成膜時の放電電流 :100A
成膜時間 :50秒
【0053】
形成した透明導電膜中の組成(Zn:Ti)について、波長分散型蛍光X線装置((株)島津製作所製「XRF−1700WS」)を用い蛍光X線法により検量線を用いて定量分析を行ったところ、Zn:Ti(原子数比)=96:4であった。また、この透明導電膜について、X線回折装置(理学電機(株)製「RINT2000」)を用い薄膜測定用のアタッチメントを使用したX線回折を行うとともに、エネルギー分散型X線マイクロアナライザー(TEM−EDX)を用いて亜鉛へのチタンのドープ状態を調べ、さらに電界放射型電子顕微鏡(FE−SEM)を用いて結晶構造を調べたところ、C軸配向したウルツ鉱型の単相であり、チタンが亜鉛に置換固溶していることがわかった。
【0054】
得られた透明導電性基板上の透明導電膜の比抵抗は8.0×10-4Ω・cmであり、表面抵抗は160Ω/□であった。なお、透明基板上の比抵抗の分布は面内均一であった。
得られた透明導電性基板の透過率は、可視領域(380nm〜780nm)で平均91%、赤外領域(780nm〜2700nm)で平均70%であった。なお、成膜前のガラス基板の可視領域(380nm〜780nm)における透過率は平均94%であり、赤外領域(780nm〜2700nm)における透過率は平均94%であった。
得られた透明導電性基板の耐湿性を評価したところ、耐湿試験後の表面抵抗は、耐湿試験前の表面抵抗の1.8倍であり、耐湿性に優れることがわかった。また、得られた透明導電性基板の耐熱性を評価したところ、耐熱試験後の表面抵抗は、耐熱試験前の表面抵抗の1.5倍であり、耐熱性に優れることがわかった。
得られた透明導電性基板の耐アルカリ性を評価したところ、浸漬前後で膜質に変化はなく耐アルカリ性に優れていることがわかった。また、得られた透明導電性基板の耐酸性を評価したところ、浸漬後、膜厚が薄くなっており溶解していたが、浸漬前後で膜質に変化はなく耐酸性に優れていることがわかった。
以上のことから、得られた透明導電性基板上の膜は、膜厚が100nm以下であっても、透明かつ低抵抗であるとともに、化学的耐久性(耐熱性、耐湿性、耐アルカリ性、耐酸性)をも兼ね備えた透明導電膜であることが明らかである。
【0055】
(実施例3)
実施例1と同様にして得られた酸化物混合体(1)を20mmφの円盤状に加工することにより、タブレットを作製し、これを用いてイオンプレーティング法により透明導電膜を成膜し、透明導電基板を得た。すなわち、イオンプレーティング装置(中外炉工業(株)製「SUPLaDUO」)を用い、下記の条件でイオンプレーティングを行い、透明基材(200℃以上で耐熱性を示す厚み0.3mmの耐熱透明樹脂フィルム)上に、膜厚200nmの透明導電膜を形成した。
成膜前の基板の予備加熱温度:200℃
成膜時の圧力 :0.3Pa
成膜時の雰囲気ガス条件 :アルゴン=160sccm、酸素=2sccm
成膜時の放電電流 :100A
成膜時間 :200秒
【0056】
形成した透明導電膜中の組成(Zn:Ti)について、波長分散型蛍光X線装置((株)島津製作所製「XRF−1700WS」)を用い蛍光X線法により検量線を用いて定量分析を行ったところ、Zn:Ti(原子数比)=96:4であった。また、この透明導電膜について、X線回折装置(理学電機(株)製「RINT2000」)を用い薄膜測定用のアタッチメントを使用したX線回折を行うとともに、エネルギー分散型X線マイクロアナライザー(TEM−EDX)を用いて亜鉛へのチタンのドープ状態を調べ、さらに電界放射型電子顕微鏡(FE−SEM)を用いて結晶構造を調べたところ、C軸配向したウルツ鉱型の単相であり、チタンが亜鉛に置換固溶していることがわかった。
【0057】
得られた透明導電性基板上の透明導電膜の比抵抗は8.5×10-4Ω・cmであり、表面抵抗は42.5Ω/□であった。なお、透明基板上の比抵抗の分布は面内均一であった。
得られた透明導電性基板の透過率は、可視領域(380nm〜780nm)で平均85%、赤外領域(780nm〜2700nm)で平均65%であった。なお、成膜前の耐熱透明樹脂フィルムの可視領域(380nm〜780nm)における透過率は平均90%であり、赤外領域(780nm〜2700nm)における透過率は平均90%であった。
得られた透明導電性基板の耐湿性を評価したところ、耐湿試験後の表面抵抗は、耐湿試験前の表面抵抗の1.8倍であり、耐湿性に優れることがわかった。また、得られた透明導電性基板の耐熱性を評価したところ、耐熱試験後の表面抵抗は、耐熱試験前の表面抵抗の1.5倍であり、耐熱性に優れることがわかった。
得られた透明導電性基板の耐アルカリ性を評価したところ、浸漬前後で膜質に変化はなく耐アルカリ性に優れていることがわかった。また、得られた透明導電性基板の耐酸性を評価したところ、浸漬後、膜厚が薄くなっており溶解していたが、浸漬前後で膜質に変化はなく耐酸性に優れていることがわかった。
以上のことから、得られた透明導電性基板上の膜は、基板が耐熱性フィルムであっても、透明かつ低抵抗であるとともに、化学的耐久性(耐熱性、耐湿性、耐アルカリ性、耐酸性)をも兼ね備えた透明導電膜であることが明らかである。
【0058】
(比較例2)
平均粒径が1μmの酸化亜鉛粉末97.7重量部と、平均粒径が0.2μmの酸化アルミニウム粉末2.3重量部とを、ポリエチレン製ポットに入れ、乾式ボールミルを用いて72時間混合し、原料粉末の混合物を得た。得られた混合物を金型に入れ、成形圧300kg/cm2の圧力でプレスを行い、成形体を得た。
この成形体に3ton/cm2の圧力でCIPによる緻密化処理を施した後、以下の条件で焼結して、アルミニウムドープ酸化亜鉛の酸化物焼結体(C2)を得た。
焼結温度 :1500℃
昇温速度 :50℃/時間
保持時間 :5時間
焼結雰囲気:大気中
【0059】
得られた酸化物焼結体(C2)は、X線回折で分析したところ、ZnOとZnAl24との2相の混合組織であった。
次に、得られた酸化物焼結体(C2)を4インチφ、6mmtの形状に加工し、インジウム半田を用いて無酸素銅製バッキングプレートにボンディングすることにより、ターゲットを作製した。
そして、このターゲットを用いて、以下の条件でスパッタリング法による成膜を行い、透明基材(石英ガラス基板)上に膜厚300nmの透明導電膜を形成し、透明導電性基板を得た。形成した膜中のAl含有量は2.3重量%であった。
装置 :dcマグネトロンスパッタ装置
磁界強度 :1000Gauss(ターゲット直上、水平成分)
基板温度 :200℃
到達真空度 :5・10-5Pa
スパッタリングガス :Ar
スパッタリングガス圧:0.5Pa
DCパワー :300W
得られた透明導電性基板上の透明導電膜の比抵抗は7.6×10-4Ω・cmであり、表面抵抗は25.3Ω/□であった。
得られた透明導電性基板の透過率は、可視領域(380nm〜780nm)で平均88%、赤外領域(780nm〜2700nm)で平均55%であった。
得られた透明導電性基板の耐湿性を評価したところ、耐湿試験後の表面抵抗は、耐湿試験前の表面抵抗の3.2倍であり、耐湿性に劣ることがわかった。また、得られた透明導電性基板の耐熱性を評価したところ、耐熱試験後の表面抵抗は、耐熱試験前の表面抵抗の7.0倍であり、耐熱性に劣ることがわかった。
得られた透明導電性基板の耐アルカリ性を評価したところ、浸漬後には膜は完全に溶解し、消失していた。また、得られた透明導電性基板の耐酸性を評価したところ、膜は完全に溶解し、消失していた。
以上のことから、得られた透明導電性基板上の膜は、透明かつ低抵抗ではあるが、化学的耐久性(耐熱性、耐湿性、耐アルカリ性、耐酸性)に劣る透明導電膜であることが明らかである。
【0060】
(実施例4)
酸化亜鉛粉末(ZnO;和光純薬工業(株)製、特級)および酸化チタン粉末(Ti23;(株)高純度化学研究所製、純度99.99%)を原料粉末とし、これらをZn:Tiの原子数比が96:4となる割合で混合し、原料粉末の混合物を得た。次いで、得られた混合物を金型に入れ、一軸プレスにより成形圧500kg/cm2にて成形し、直径30mm、厚さ5mmの円盤状の成形体を得た。この成形体を常圧(1.01325・102kPa)のアルゴン雰囲気下、800℃で4時間焼結して、酸化物焼結体(4)を得た。
得られた酸化物焼結体(4)をエネルギー分散型蛍光X線装置((株)島津製作所製「EDX−700L」)にて分析したところ、ZnとTiの原子数比はZn:Ti=96:4(Ti/(Zn+Ti)=0.04)であった。この酸化物焼結体(4)の結晶構造をX線回折装置(理学電機(株)製「RINT2000」)により調べたところ、酸化亜鉛(ZnO)とチタン酸亜鉛(Zn2TiO4)の結晶相の混合物であり、酸化チタンは全く存在していなかった。
【0061】
次に、得られた酸化物焼結体(4)を20mmφの円盤状に加工することにより、タブレットを作製し、これを用いてイオンプレーティング法により透明導電膜を成膜し、透明導電基板を得た。
すなわち、イオンプレーティング装置(中外炉工業(株)製「SUPLaDUO」)を用い、下記の条件でイオンプレーティングを行い、透明基材(厚み0.7mmの無アルカリガラス基板)上に、膜厚200nmの透明導電膜を形成した。
成膜前の基板の予備加熱温度:250℃
成膜時の圧力 :0.3Pa
成膜時の雰囲気ガス条件 :アルゴン=160sccm、酸素=2sccm
成膜時の放電電流 :100A
成膜時間 :200秒
【0062】
形成した透明導電膜中の組成(Zn:Ti)について、波長分散型蛍光X線装置((株)島津製作所製「XRF−1700WS」)を用い蛍光X線法により検量線を用いて定量分析を行ったところ、Zn:Ti(原子数比)=96:4であった。また、この透明導電膜について、X線回折装置(理学電機(株)製「RINT2000」)を用い薄膜測定用のアタッチメントを使用したX線回折を行うとともに、エネルギー分散型X線マイクロアナライザー(TEM−EDX)を用いて亜鉛へのチタンのドープ状態を調べ、さらに電界放射型電子顕微鏡(FE−SEM)を用いて結晶構造を調べたところ、C軸配向したウルツ鉱型の単相であり、チタンが亜鉛に置換固溶していることがわかった。
得られた透明導電性基板上の透明導電膜の比抵抗は7.8×10-4Ω・cmであり、表面抵抗は39.0Ω/□であった。なお、透明基板上の比抵抗の分布は面内均一であった。
得られた透明導電性基板の透過率は、可視領域(380nm〜780nm)で平均90%、赤外領域(780nm〜2700nm)で平均65%であった。なお、成膜前のガラス基板の可視領域(380nm〜780nm)における透過率は平均94%であり、赤外領域(780nm〜2700nm)における透過率は平均94%であった。
得られた透明導電性基板の耐湿性を評価したところ、耐湿試験後の表面抵抗は、耐湿試験前の表面抵抗の1.5倍であり、耐湿性に優れることがわかった。また、得られた透明導電性基板の耐熱性を評価したところ、耐熱試験後の表面抵抗は、耐熱試験前の表面抵抗の1.3倍であり、耐熱性に優れることがわかった。
得られた透明導電性基板の耐アルカリ性を評価したところ、浸漬前後で膜質に変化はなく耐アルカリ性に優れていることがわかった。また、得られた透明導電性基板の耐酸性を評価したところ、浸漬後、膜厚が薄くなっており溶解していたが、浸漬前後で膜質に変化はなく耐酸性に優れていることがわかった。
以上のことから、得られた透明導電性基板上の膜は、透明かつ低抵抗であるとともに、化学的耐久性(耐熱性、耐湿性、耐アルカリ性、耐酸性)をも兼ね備えた透明導電膜であることが明らかである。
【0063】
(実施例5)
酸化亜鉛粉末(ZnO;和光純薬工業(株)製、特級)および酸化チタン粉末(Ti23;(株)高純度化学研究所製、純度99.99%)を原料粉末とし、これらをZn:Tiの原子数比が96:4となる割合で混合し、原料粉末の混合物を得た。混合操作後、ボールとエタノールを除去して得られた混合粉末を黒鉛からなる金型(ダイス)に入れ、黒鉛からなるパンチにて40MPaの圧力で真空加圧し、1000℃、4時間、加熱処理を行い円盤型の酸化物焼結体(5)を得た。
得られた酸化物焼結体(5)をエネルギー分散型蛍光X線装置((株)島津製作所製「EDX−700L」)にて分析したところ、ZnとTiの原子数比はZn:Ti=96:4(Ti/(Zn+Ti)=0.04)であった。この酸化物焼結体(5)の結晶構造をX線回折装置(理学電機(株)製「RINT2000」)により調べたところ、酸化亜鉛(ZnO)とチタン酸亜鉛(Zn2TiO4)の結晶相の混合物であり、酸化チタンは全く存在していなかった。
【0064】
次に、得られた酸化物焼結体(5)を20mmφの円盤状に加工することにより、タブレットを作製し、これを用いてイオンプレーティング法により透明導電膜を成膜し、透明導電基板を得た。すなわち、イオンプレーティング装置(中外炉工業(株)製「SUPLaDUO」)を用い、下記の条件でイオンプレーティングを行い、透明基材(厚み0.7mmの無アルカリガラス基板)上に、膜厚200nmの透明導電膜を形成した。
成膜前の基板の予備加熱温度:250℃
成膜時の圧力 :0.3Pa
成膜時の雰囲気ガス条件 :アルゴン=160sccm、酸素=2sccm
成膜時の放電電流 :100A
成膜時間 :200秒
【0065】
形成した透明導電膜中の組成(Zn:Ti)について、波長分散型蛍光X線装置((株)島津製作所製「XRF−1700WS」)を用い蛍光X線法により検量線を用いて定量分析を行ったところ、Zn:Ti(原子数比)=96:4であった。また、この透明導電膜について、X線回折装置(理学電機(株)製「RINT2000」)を用い薄膜測定用のアタッチメントを使用したX線回折を行うとともに、エネルギー分散型X線マイクロアナライザー(TEM−EDX)を用いて亜鉛へのチタンのドープ状態を調べ、さらに電界放射型電子顕微鏡(FE−SEM)を用いて結晶構造を調べたところ、C軸配向したウルツ鉱型の単相であり、チタンが亜鉛に置換固溶していることがわかった。
得られた透明導電性基板上の透明導電膜の比抵抗は7.3×10-4Ω・cmであり、表面抵抗は36.5Ω/□であった。なお、透明基板上の比抵抗の分布は面内均一であった。
得られた透明導電性基板の透過率は、可視領域(380nm〜780nm)で平均90%、赤外領域(780nm〜2700nm)で平均65%であった。なお、成膜前のガラス基板の可視領域(380nm〜780nm)における透過率は平均94%であり、赤外領域(780nm〜2700nm)における透過率は平均94%であった。
得られた透明導電性基板の耐湿性を評価したところ、耐湿試験後の表面抵抗は、耐湿試験前の表面抵抗の1.6倍であり、耐湿性に優れることがわかった。また、得られた透明導電性基板の耐熱性を評価したところ、耐熱試験後の表面抵抗は、耐熱試験前の表面抵抗の1.3倍であり、耐熱性に優れることがわかった。
得られた透明導電性基板の耐アルカリ性を評価したところ、浸漬前後で膜質に変化はなく耐アルカリ性に優れていることがわかった。また、得られた透明導電性基板の耐酸性を評価したところ、浸漬後、膜厚が薄くなっており溶解していたが、浸漬前後で膜質に変化はなく耐酸性に優れていることがわかった。
以上のことから、得られた透明導電性基板上の膜は、透明かつ低抵抗であるとともに、化学的耐久性(耐熱性、耐湿性、耐アルカリ性、耐酸性)をも兼ね備えた透明導電膜であることが明らかである。
【0066】
(実施例6)
酸化亜鉛粉末(ZnO;和光純薬工業(株)製、特級)および酸化チタン粉末(TiO;(株)高純度化学研究所製、純度99.99%)を原料粉末とし、これらをZn:Tiの原子数比が97:3となる割合で混合し、原料粉末の混合物を得た。混合操作後、ボールとエタノールを除去して得られた混合粉末を黒鉛からなる金型(ダイス)に入れ、黒鉛からなるパンチにて40MPaの圧力で真空加圧し、1000℃、4時間、加熱処理を行い円盤型の焼結体を得た。さらに該焼結体をアルゴン雰囲気下、800℃で4時間焼結して、酸化物焼結体(6)を得た。
得られた酸化物焼結体(6)をエネルギー分散型蛍光X線装置((株)島津製作所製「EDX−700L」)にて分析したところ、ZnとTiの原子数比はZn:Ti=97:3(Ti/(Zn+Ti)=0.03)であった。この酸化物焼結体(6)の結晶構造をX線回折装置(理学電機(株)製「RINT2000」)により調べたところ、酸化亜鉛(ZnO)とチタン酸亜鉛(Zn2TiO4)の結晶相の混合物であり、酸化チタンは全く存在していなかった。
【0067】
次に、得られた酸化物焼結体(6)を20mmφの円盤状に加工することにより、タブレットを作製し、これを用いてイオンプレーティング法により透明導電膜を成膜し、透明導電基板を得た。
すなわち、イオンプレーティング装置(中外炉工業(株)製「SUPLaDUO」)を用い、下記の条件でイオンプレーティングを行い、透明基材(厚み0.7mmの無アルカリガラス基板)上に、膜厚200nmの透明導電膜を形成した。
成膜前の基板の予備加熱温度:250℃
成膜時の圧力 :0.3Pa
成膜時の雰囲気ガス条件 :アルゴン=160sccm、酸素=2sccm
成膜時の放電電流 :100A
成膜時間 :200秒
【0068】
形成した透明導電膜中の組成(Zn:Ti)について、波長分散型蛍光X線装置((株)島津製作所製「XRF−1700WS」)を用い蛍光X線法により検量線を用いて定量分析を行ったところ、Zn:Ti(原子数比)=97:3であった。また、この透明導電膜について、X線回折装置(理学電機(株)製「RINT2000」)を用い薄膜測定用のアタッチメントを使用したX線回折を行うとともに、エネルギー分散型X線マイクロアナライザー(TEM−EDX)を用いて亜鉛へのチタンのドープ状態を調べ、さらに電界放射型電子顕微鏡(FE−SEM)を用いて結晶構造を調べたところ、C軸配向したウルツ鉱型の単相であり、チタンが亜鉛に置換固溶していることがわかった。
得られた透明導電性基板上の透明導電膜の比抵抗は6.0×10-4Ω・cmであり、表面抵抗は30.0Ω/□であった。なお、透明基板上の比抵抗の分布は面内均一であった。
得られた透明導電性基板の透過率は、可視領域(380nm〜780nm)で平均90%、赤外領域(780nm〜2700nm)で平均65%であった。なお、成膜前のガラス基板の可視領域(380nm〜780nm)における透過率は平均94%であり、赤外領域(780nm〜2700nm)における透過率は平均94%であった。
得られた透明導電性基板の耐湿性を評価したところ、耐湿試験後の表面抵抗は、耐湿試験前の表面抵抗の1.6倍であり、耐湿性に優れることがわかった。また、得られた透明導電性基板の耐熱性を評価したところ、耐熱試験後の表面抵抗は、耐熱試験前の表面抵抗の1.3倍であり、耐熱性に優れることがわかった。
得られた透明導電性基板の耐アルカリ性を評価したところ、浸漬前後で膜質に変化はなく耐アルカリ性に優れていることがわかった。また、得られた透明導電性基板の耐酸性を評価したところ、浸漬後、膜厚が薄くなっており溶解していたが、浸漬前後で膜質に変化はなく耐酸性に優れていることがわかった。
以上のことから、得られた透明導電性基板上の膜は、透明かつ低抵抗であるとともに、化学的耐久性(耐熱性、耐湿性、耐アルカリ性、耐酸性)をも兼ね備えた透明導電膜であることが明らかである。
【0069】
(実施例7)
酸化亜鉛粉末(ZnO;和光純薬工業(株)製、特級)および酸化チタン粉末(TiO;(株)高純度化学研究所製、純度99.99%)を原料粉末とし、これらをZn:Tiの原子数比が97:3となる割合で混合し、原料粉末の混合物を得た。次いで、得られた混合物を金型に入れ、一軸プレスにより成形圧500kg/cm2にて成形し、直径30mm、厚さ5mmの円盤状の成形体を得た。この成形体を常圧(1.01325×102kPa)のアルゴン雰囲気下、1000℃で4時間焼結して、酸化物焼結体(7)を得た。
得られた酸化物焼結体(7)をエネルギー分散型蛍光X線装置((株)島津製作所製「EDX−700L」)にて分析したところ、ZnとTiの原子数比はZn:Ti=97:3(Ti/(Zn+Ti)=0.03)であった。この酸化物焼結体(7)の結晶構造をX線回折装置(理学電機(株)製「RINT2000」)により調べたところ、酸化亜鉛(ZnO)とチタン酸亜鉛(Zn2TiO4)の結晶相の混合物であり、酸化チタンは全く存在していなかった。
【0070】
次に、得られた酸化物焼結体(7)を20mmφの円盤状に加工することにより、タブレットを作製し、これを用いてイオンプレーティング法により透明導電膜を成膜し、透明導電基板を得た。
すなわち、イオンプレーティング装置(中外炉工業(株)製「SUPLaDUO」)を用い、下記の条件でイオンプレーティングを行い、透明基材(厚み0.7mmの無アルカリガラス基板)上に、膜厚200nmの透明導電膜を形成した。
成膜前の基板の予備加熱温度:250℃
成膜時の圧力 :0.3Pa
成膜時の雰囲気ガス条件 :アルゴン=160sccm、酸素=2sccm
成膜時の放電電流 :100A
成膜時間 :200秒
【0071】
形成した透明導電膜中の組成(Zn:Ti)について、波長分散型蛍光X線装置((株)島津製作所製「XRF−1700WS」)を用い蛍光X線法により検量線を用いて定量分析を行ったところ、Zn:Ti(原子数比)=95:5であった。また、この透明導電膜について、X線回折装置(理学電機(株)製「RINT2000」)を用い薄膜測定用のアタッチメントを使用したX線回折を行うとともに、エネルギー分散型X線マイクロアナライザー(TEM−EDX)を用いて亜鉛へのチタンのドープ状態を調べ、さらに電界放射型電子顕微鏡(FE−SEM)を用いて結晶構造を調べたところ、C軸配向したウルツ鉱型の単相であり、チタンが亜鉛に置換固溶していることがわかった。
得られた透明導電性基板上の透明導電膜の比抵抗は6.0×10-4Ω・cmであり、表面抵抗は30.0Ω/□であった。なお、透明基板上の比抵抗の分布は面内均一であった。
得られた透明導電性基板の透過率は、可視領域(380nm〜780nm)で平均90%、赤外領域(780nm〜2700nm)で平均65%であった。なお、成膜前のガラス基板の可視領域(380nm〜780nm)における透過率は平均94%であり、赤外領域(780nm〜2700nm)における透過率は平均94%であった。
得られた透明導電性基板の耐湿性を評価したところ、耐湿試験後の表面抵抗は、耐湿試験前の表面抵抗の1.6倍であり、耐湿性に優れることがわかった。また、得られた透明導電性基板の耐熱性を評価したところ、耐熱試験後の表面抵抗は、耐熱試験前の表面抵抗の1.3倍であり、耐熱性に優れることがわかった。
得られた透明導電性基板の耐アルカリ性を評価したところ、浸漬前後で膜質に変化はなく耐アルカリ性に優れていることがわかった。また、得られた透明導電性基板の耐酸性を評価したところ、浸漬後、膜厚が薄くなっており溶解していたが、浸漬前後で膜質に変化はなく耐酸性に優れていることがわかった。
以上のことから、得られた透明導電性基板上の膜は、透明かつ低抵抗であるとともに、化学的耐久性(耐熱性、耐湿性、耐アルカリ性、耐酸性)をも兼ね備えた透明導電膜であることが明らかである。
【0072】
(比較例3)
酸化亜鉛粉末(ZnO;和光純薬工業(株)製、特級)および酸化チタン粉末(TiO;(株)高純度化学研究所製、純度99.99%)を原料粉末とし、これらをZn:Tiの原子数比が98.5:1.5となる割合で混合し、原料粉末の混合物を得た。次いで、得られた混合物を金型に入れ、一軸プレスにより成形圧500kg/cm2にて成形し、直径30mm、厚さ5mmの円盤状の成形体を得た。この成形体を常圧(1.01325×102kPa)のアルゴン雰囲気下、1000℃で4時間焼結して、酸化物焼結体(C3)を得た。
得られた酸化物焼結体(C3)をエネルギー分散型蛍光X線装置((株)島津製作所製「EDX−700L」)にて分析したところ、ZnとTiの原子数比はZn:Ti=98.5:1.5(Ti/(Zn+Ti)=0.015)であった。この酸化物焼結体(C3)の結晶構造をX線回折装置(理学電機(株)製「RINT2000」)により調べたところ、酸化亜鉛(ZnO)とチタン酸亜鉛(Zn2TiO4)の結晶相の混合物であり、酸化チタンは全く存在していなかった。
【0073】
次に、得られた酸化物焼結体(C3)を20mmφの円盤状に加工することにより、タブレットを作製し、これを用いてイオンプレーティング法により透明導電膜を成膜し、透明導電基板を得た。
すなわち、イオンプレーティング装置(中外炉工業(株)製「SUPLaDUO」)を用い、下記の条件でイオンプレーティングを行い、透明基材(厚み0.7mmの無アルカリガラス基板)上に、膜厚200nmの透明導電膜を形成した。
成膜前の基板の予備加熱温度:250℃
成膜時の圧力 :0.3Pa
成膜時の雰囲気ガス条件 :アルゴン=160sccm、酸素=2sccm
成膜時の放電電流 :100A
成膜時間 :200秒
【0074】
形成した透明導電膜中の組成(Zn:Ti)について、波長分散型蛍光X線装置((株)島津製作所製「XRF−1700WS」)を用い蛍光X線法により検量線を用いて定量分析を行ったところ、Zn:Ti(原子数比)=98.5:1.5であった。また、この透明導電膜について、X線回折装置(理学電機(株)製「RINT2000」)を用い薄膜測定用のアタッチメントを使用したX線回折を行うとともに、エネルギー分散型X線マイクロアナライザー(TEM−EDX)を用いて亜鉛へのチタンのドープ状態を調べ、さらに電界放射型電子顕微鏡(FE−SEM)を用いて結晶構造を調べたところ、C軸配向したウルツ鉱型の単相であり、チタンが亜鉛に置換固溶していることがわかった。
得られた透明導電性基板上の透明導電膜の比抵抗は1.2×10-3Ω・cmであり、表面抵抗は60.0Ω/□であった。なお、透明基板上の比抵抗の分布は面内均一であった。
得られた透明導電性基板の透過率は、可視領域(380nm〜780nm)で平均90%、赤外領域(780nm〜2700nm)で平均70%であった。なお、成膜前のガラス基板の可視領域(380nm〜780nm)における透過率は平均94%であり、赤外領域(780nm〜2700nm)における透過率は平均94%であった。
得られた透明導電性基板の耐湿性を評価したところ、耐湿試験後の表面抵抗は、耐湿試験前の表面抵抗の2.6倍であり、耐湿性に劣ることがわかった。また、得られた透明導電性基板の耐熱性を評価したところ、耐熱試験後の表面抵抗は、耐熱試験前の表面抵抗の2.0倍であり、耐熱性に劣ることがわかった。
得られた透明導電性基板の耐アルカリ性を評価したところ、浸漬後には膜は完全に溶解し、消失していた。また、得られた透明導電性基板の耐酸性を評価したところ、膜は完全に溶解し、消失していた。
以上のことから、得られた透明導電性基板上の膜は、透明かつ低抵抗であるが、化学的耐久性(耐熱性、耐湿性、耐アルカリ性、耐酸性)に劣る透明導電膜であることが明らかである。
【0075】
(比較例4)
酸化亜鉛粉末(ZnO;和光純薬工業(株)製、特級)および酸化チタン粉末(TiO;(株)高純度化学研究所製、純度99.99%)を原料粉末とし、これらをZn:Tiの原子数比が88:12となる割合で混合し、原料粉末の混合物を得た。次いで、得られた混合物を金型に入れ、一軸プレスにより成形圧500kg/cm2にて成形し、直径30mm、厚さ5mmの円盤状の成形体を得た。この成形体を常圧(1.01325×102kPa)のアルゴン雰囲気下、1000℃で4時間焼結して、酸化物焼結体(C4)を得た。
得られた酸化物焼結体(C4)をエネルギー分散型蛍光X線装置((株)島津製作所製「EDX−700L」)にて分析したところ、ZnとTiの原子数比はZn:Ti=88:12(Ti/(Zn+Ti)=0.12)であった。この酸化物焼結体(C4)の結晶構造をX線回折装置(理学電機(株)製「RINT2000」)により調べたところ、酸化亜鉛(ZnO)とチタン酸亜鉛(Zn2TiO4)の結晶相の混合物であり、酸化チタンは全く存在していなかった。
【0076】
次に、得られた酸化物焼結体(C4)を20mmφの円盤状に加工することにより、タブレットを作製し、これを用いてイオンプレーティング法により透明導電膜を成膜し、透明導電基板を得た。
すなわち、イオンプレーティング装置(中外炉工業(株)製「SUPLaDUO」)を用い、下記の条件でイオンプレーティングを行い、透明基材(厚み0.7mmの無アルカリガラス基板)上に、膜厚200nmの透明導電膜を形成した。
成膜前の基板の予備加熱温度:250℃
成膜時の圧力 :0.3Pa
成膜時の雰囲気ガス条件 :アルゴン=160sccm、酸素=2sccm
成膜時の放電電流 :100A
成膜時間 :200秒
【0077】
形成した透明導電膜中の組成(Zn:Ti)について、波長分散型蛍光X線装置((株)島津製作所製「XRF−1700WS」)を用い蛍光X線法により検量線を用いて定量分析を行ったところ、Zn:Ti(原子数比)=88:12であった。また、この透明導電膜について、X線回折装置(理学電機(株)製「RINT2000」)を用い薄膜測定用のアタッチメントを使用したX線回折を行うとともに、エネルギー分散型X線マイクロアナライザー(TEM−EDX)を用いて亜鉛へのチタンのドープ状態を調べ、さらに電界放射型電子顕微鏡(FE−SEM)を用いて結晶構造を調べたところ、C軸配向したウルツ鉱型の単相であり、チタンが亜鉛に置換固溶していることがわかったが、結晶性は低下していた。
得られた透明導電性基板上の透明導電膜の比抵抗は2.4×10-2Ω・cmであり、表面抵抗は1200.0Ω/□であった。なお、透明基板上の比抵抗の分布は面内均一であった。
得られた透明導電性基板の透過率は、可視領域(380nm〜780nm)で平均90%、赤外領域(780nm〜2700nm)で平均73%であった。なお、成膜前のガラス基板の可視領域(380nm〜780nm)における透過率は平均94%であり、赤外領域(780nm〜2700nm)における透過率は平均94%であった。
得られた透明導電性基板の耐湿性を評価したところ、耐湿試験後の表面抵抗は、耐湿試験前の表面抵抗の1.1倍であり、耐湿性に優れることがわかった。また、得られた透明導電性基板の耐熱性を評価したところ、耐熱試験後の表面抵抗は、耐熱試験前の表面抵抗の1.1倍であり、耐熱性に優れることがわかった。
得られた透明導電性基板の耐アルカリ性を評価したところ、浸漬前後で膜質に変化はなく耐アルカリ性に優れていることがわかった。また、得られた透明導電性基板の耐酸性を評価したところ、浸漬後、膜厚が薄くなっており溶解していたが、浸漬前後で膜質に変化はなく耐酸性に優れていることがわかった。
以上のことから、得られた透明導電性基板上の膜は、透明であるとともに、化学的耐久性(耐熱性、耐湿性、耐アルカリ性、耐酸性)をも兼ね備えた透明導電膜であるが高抵抗であることが明らかである。
【0078】
(実施例8)
酸化亜鉛粉末(ZnO;和光純薬工業(株)製、特級)および酸化チタン粉末(Ti23(III);(株)高純度化学研究所製、純度99.99%)を原料粉末とし、これらをZn:Tiの原子数比が93:7となる割合で混合し、原料粉末の混合物を得た。混合操作後、ボールとエタノールを除去して得られた混合粉末を黒鉛からなる金型(ダイス)に入れ、黒鉛からなるパンチにて40MPaの圧力で真空加圧し、1000℃、4時間、加熱処理を行い円盤型の酸化物焼結体(8)を得た。(ホットプレス)
得られた酸化物焼結体(8)をエネルギー分散型蛍光X線装置((株)島津製作所製「EDX−700L」)にて分析したところ、ZnとTiの原子数比はZn:Ti=93:7(Ti/(Zn+Ti)=0.07)であった。この酸化物焼結体(8)の結晶構造をX線回折装置(理学電機(株)製「RINT2000」)により調べたところ、酸化亜鉛(ZnO)とチタン酸亜鉛(Zn2TiO4)の結晶相の混合物であり、酸化チタンは全く存在していなかった。
【0079】
次に、得られた酸化物焼結体(8)を20mmφの円盤状に加工することにより、タブレットを作製し、これを用いてイオンプレーティング法により透明導電膜を成膜し、透明導電基板を得た。すなわち、イオンプレーティング装置(中外炉工業(株)製「SUPLaDUO」)を用い、下記の条件でイオンプレーティングを行い、透明基材(厚み0.7mmの無アルカリガラス基板)上に、膜厚200nmの透明導電膜を形成した。
成膜前の基板の予備加熱温度:250℃
成膜時の圧力:0.3Pa
成膜時の雰囲気ガス条件:アルゴン=160sccm、酸素=2sccm
成膜時の放電電流:100A
成膜時間:200秒
【0080】
形成した透明導電膜中の組成(Zn:Ti)について、波長分散型蛍光X線装置((株)島津製作所製「XRF−1700WS」)を用い蛍光X線法により検量線を用いて定量分析を行ったところ、Zn:Ti(原子数比)=93:7であった。また、この透明導電膜について、X線回折装置(理学電機(株)製「RINT2000」)を用い薄膜測定用のアタッチメントを使用したX線回折を行うとともに、エネルギー分散型X線マイクロアナライザー(TEM−EDX)を用いて亜鉛へのチタンのドープ状態を調べ、さらに電界放射型電子顕微鏡(FE−SEM)を用いて結晶構造を調べたところ、C軸配向したウルツ鉱型の単相であり、チタンが亜鉛に置換固溶していることがわかった。
得られた透明導電性基板上の透明導電膜の比抵抗は1.1×10-3Ω・cmであり、表面抵抗は55.0Ω/□であった。なお、透明基板上の比抵抗の分布は面内均一であった。
得られた透明導電性基板の透過率は、可視領域(380nm〜780nm)で平均90%、赤外領域(780nm〜2700nm)で平均67%であった。なお、成膜前のガラス基板の可視領域(380nm〜780nm)における透過率は平均94%であり、赤外領域(780nm〜2700nm)における透過率は平均94%であった。
得られた透明導電性基板の耐湿性を評価したところ、耐湿試験後の表面抵抗は、耐湿試験前の表面抵抗の1.4倍であり、耐湿性に優れることがわかった。また、得られた透明導電性基板の耐熱性を評価したところ、耐熱試験後の表面抵抗は、耐熱試験前の表面抵抗の1.2倍であり、耐熱性に優れることがわかった。
得られた透明導電性基板の耐アルカリ性を評価したところ、浸漬前後で膜質に変化はなく耐アルカリ性に優れていることがわかった。また、得られた透明導電性基板の耐酸性を評価したところ、浸漬後、膜厚が薄くなっており溶解していたが、浸漬前後で膜質に変化はなく耐酸性に優れていることがわかった。
以上のことから、得られた透明導電性基板上の膜は、透明かつ低抵抗であるとともに、化学的耐久性(耐熱性、耐湿性、耐アルカリ性、耐酸性)をも兼ね備えた透明導電膜であることが明らかである。
【0081】
(実施例9)
酸化亜鉛粉末(ZnO;和光純薬工業(株)製、特級)および酸化チタン粉末(TiO(II);(株)高純度化学研究所製、純度99.99%)を原料粉末とし、これらをZn:Tiの原子数比が93:7となる割合で混合し、原料粉末の混合物を得た。混合操作後、ボールとエタノールを除去して得られた混合粉末を黒鉛からなる金型(ダイス)に入れ、黒鉛からなるパンチにて40MPaの圧力で真空加圧し、1000℃、4時間、加熱処理を行い円盤型の酸化物焼結体(9)を得た。(ホットプレス焼結)
得られた酸化物焼結体(9)をエネルギー分散型蛍光X線装置((株)島津製作所製「EDX−700L」)にて分析したところ、ZnとTiの原子数比はZn:Ti=93:7(Ti/(Zn+Ti)=0.07)であった。この酸化物焼結体(9)の結晶構造をX線回折装置(理学電機(株)製「RINT2000」)により調べたところ、酸化亜鉛(ZnO)とチタン酸亜鉛(Zn2TiO4)の結晶相の混合物であり、酸化チタンは全く存在していなかった。
【0082】
次に、得られた酸化物焼結体(9)を20mmφの円盤状に加工することにより、タブレットを作製し、これを用いてイオンプレーティング法により透明導電膜を成膜し、透明導電基板を得た。すなわち、イオンプレーティング装置(中外炉工業(株)製「SUPLaDUO」)を用い、下記の条件でイオンプレーティングを行い、透明基材(厚み0.7mmの無アルカリガラス基板)上に、膜厚200nmの透明導電膜を形成した。
成膜前の基板の予備加熱温度:250℃
成膜時の圧力:0.3Pa
成膜時の雰囲気ガス条件:アルゴン=160sccm、酸素=2sccm
成膜時の放電電流:100A
成膜時間:200秒
【0083】
形成した透明導電膜中の組成(Zn:Ti)について、波長分散型蛍光X線装置((株)島津製作所製「XRF−1700WS」)を用い蛍光X線法により検量線を用いて定量分析を行ったところ、Zn:Ti(原子数比)=93:7であった。また、この透明導電膜について、X線回折装置(理学電機(株)製「RINT2000」)を用い薄膜測定用のアタッチメントを使用したX線回折を行うとともに、エネルギー分散型X線マイクロアナライザー(TEM−EDX)を用いて亜鉛へのチタンのドープ状態を調べ、さらに電界放射型電子顕微鏡(FE−SEM)を用いて結晶構造を調べたところ、C軸配向したウルツ鉱型の単相であり、チタンが亜鉛に置換固溶していることがわかった。
得られた透明導電性基板上の透明導電膜の比抵抗は9.4×10-4Ω・cmであり、表面抵抗は47.0Ω/□であった。なお、透明基板上の比抵抗の分布は面内均一であった。
得られた透明導電性基板の透過率は、可視領域(380nm〜780nm)で平均90%、赤外領域(780nm〜2700nm)で平均67%であった。なお、成膜前のガラス基板の可視領域(380nm〜780nm)における透過率は平均94%であり、赤外領域(780nm〜2700nm)における透過率は平均94%であった。
得られた透明導電性基板の耐湿性を評価したところ、耐湿試験後の表面抵抗は、耐湿試験前の表面抵抗の1.4倍であり、耐湿性に優れることがわかった。また、得られた透明導電性基板の耐熱性を評価したところ、耐熱試験後の表面抵抗は、耐熱試験前の表面抵抗の1.2倍であり、耐熱性に優れることがわかった。
得られた透明導電性基板の耐アルカリ性を評価したところ、浸漬前後で膜質に変化はなく耐アルカリ性に優れていることがわかった。また、得られた透明導電性基板の耐酸性を評価したところ、浸漬後、膜厚が薄くなっており溶解していたが、浸漬前後で膜質に変化はなく耐酸性に優れていることがわかった。
以上のことから、得られた透明導電性基板上の膜は、透明かつ低抵抗であるとともに、化学的耐久性(耐熱性、耐湿性、耐アルカリ性、耐酸性)をも兼ね備えた透明導電膜であることが明らかである。
【符号の説明】
【0084】
10 イオンプレーティング装置
12 真空容器
PB プラズマビーム
14 プラズマガン(プラズマビーム発生器)
14a プラズマガンの陰極
14b、14c 中間電極
14d 電磁石コイル
14e ステアリングコイル
16 陽極部材
16a 主陽極であるハース
16b 環状の補助陽極
W 基板
WH 基板保持部材
18 搬送機構
18a 搬送路
18b コロ
19 酸素ガス容器
20a Ar等の不活性ガスからなるキャリアガスの導入路
20b 酸素以外の雰囲気ガスを供給するための供給路
20c Ar等の不活性ガスをハースに供給するための供給路
20d 排気系
TH 貫通孔
21 マスフローメータ
22 蒸着材料
24a 永久磁石
24b コイル

【特許請求の範囲】
【請求項1】
イオンプレーティング法により酸化亜鉛系透明導電膜を形成する方法であって、実質的に亜鉛、チタンおよび酸素からなり、亜鉛とチタンとの合計に対するチタンの原子数比Ti/(Zn+Ti)が0.02を超え0.1以下である酸化物焼結体または酸化物混合体を加工して得られるターゲットを用いることを特徴とする方法。
【請求項2】
前記チタンは、式TiO2-X(X=0.1〜1)で表される低原子価酸化チタン由来のチタンである、請求項1に記載の方法。
【請求項3】
請求項1または2に記載の方法により形成されることを特徴とする酸化亜鉛系透明導電膜。
【請求項4】
透明基材上に、請求項3に記載の酸化亜鉛系透明導電膜を備えることを特徴とする透明導電性基板。
【請求項5】
前記透明基材が、ガラス板、樹脂フィルムまたは樹脂シートである、請求項4記載の透明導電性基板。

【図1】
image rotate


【公開番号】特開2012−132090(P2012−132090A)
【公開日】平成24年7月12日(2012.7.12)
【国際特許分類】
【出願番号】特願2011−37581(P2011−37581)
【出願日】平成23年2月23日(2011.2.23)
【出願人】(000002093)住友化学株式会社 (8,981)
【出願人】(591141784)学校法人大阪産業大学 (49)
【Fターム(参考)】