説明

電子放出素子およびこれを用いた画像表示装置の製造方法

【課題】 電子放出効率が高く、信頼性の高い電子放出素子の製造方法を提供する。
【解決手段】 上面及び該上面と接続する側面を備える絶縁層の少なくとも前記側面の上に第1導電性膜を設ける第1工程と、前記上面の上から前記側面の上に渡って、かつ前記第1導電性膜の上に、第2導電性膜を設ける第2工程と、前記第2導電性膜をエッチングする第3工程と、を有する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、電子放出素子の製造方法及びこれを用いた画像表示装置の製造方法に関する。
【背景技術】
【0002】
電界放出型の電子放出素子は、カソードとゲートとの間に電圧を印加することでカソードの表面から電子を電界放出させる素子である。特許文献1には、カソードが基板上に設けられた絶縁層の側面に沿って設けられており、絶縁層の一部に窪んだ部分(以下リセス部と呼ぶ)を備える電子放出素子が開示されている。
【特許文献1】特開2001−167693号公報
【発明の開示】
【発明が解決しようとする課題】
【0003】
特許文献1に記載されたような電子放出素子では、その製造方法によっては、意図しない電流(リーク電流)が流れたりする場合があった。
【0004】
また、電子放出効率に関しても、更なる高効率化が要求されている。ここで、電子放出効率(η)とは、電子放出素子に駆動電圧を印加したときにカソード電極とゲート電極間に流れる電流(If)と、真空中に取り出される電流(Ie)を用いて、効率η=Ie/(If+Ie)で与えられる。
【0005】
本発明は上記の課題を解決するためになされたものであって、その目的とするところは、電子放出効率が高く、信頼性の高い電子放出素子の製造方法を提供することにある。
【課題を解決するための手段】
【0006】
そこで本発明の電子放出素子の製造方法は、上面及び該上面と接続する側面を備える絶縁層の少なくとも前記側面の上に第1導電性膜を設ける第1工程と、前記上面の上から前記側面の上に渡って、かつ前記第1導電性膜の上に、第2導電性膜を設ける第2工程と、前記第2導電性膜をエッチングする第3工程と、を有し、前記第2工程は、前記第2導電性膜の前記上面の上に位置する部分の膜密度が、前記第2導電性膜の前記側面の上に位置する部分の膜密度より高くなるように、前記第2導電性膜を設け、前記第3工程は、前記第2導電性膜の膜密度が低い部分を、前記第2導電性膜の膜密度が高い部分よりも多くエッチングすることを特徴とする。
【発明の効果】
【0007】
本発明によれば、電子放出素子の電子放出効率と信頼性を向上することが可能となる。
【発明を実施するための最良の形態】
【0008】
以下に図面を参照して、本実施の形態を例示的に詳しく説明する。ただし、この実施の形態に記載されている構成部品の寸法、材質、形状、その相対配置などは、特に特定的な記載がない限りは、本発明の範囲をそれらのみに限定する趣旨のものではない。
【0009】
始めに本実施の形態で説明する製造方法によって形成する電子放出素子の構成について図1〜3を用いて述べる。電子放出素子の製造方法は、電子放出素子の構成について説明した後に述べる。
【0010】
図1(a)は電子放出素子の平面的模式図(X−Y平面)であり、図1(b)は図1(a)におけるA−A’線での断面模式図(X−Z平面)である。図1(c)は図1(b)における矢印の方向から電子放出素子を眺めたときの側面模式図(Z−Y平面)である。図2は図1(b)の電子放出部近傍の部分拡大図である。
【0011】
基板1上には、カソード電極2と、第1絶縁層3と第2絶縁層4とが積層されることで構成された絶縁性の段差形成部材34と、が並設されている。そして、図2に詳しく示すように、カソード導電性膜10が、第1絶縁層3のカソード電極2側の側面31上に、該側面31に沿って、配置されている。本発明におけるカソード導電性膜10は、後述する製造方法によって、第1導電性膜6と第2導電性膜7とに区別することができる。
【0012】
ここでは、段差形成部材34を構成する第1絶縁層3の側面31は、傾斜した斜面で構成されている。本発明の製造方法においては、側面31が、基板1の表面に対して90°未満の角度とした斜面(斜面31)であることが好ましい。なお、第2絶縁層4の側面41の基板1との角度は、電子放出の妨げにならない限り、特に限定されるものではない。
【0013】
ゲート電極5は、第1絶縁層3との間に設けられた第2絶縁層4によって、第1絶縁層3から所定距離(第2絶縁層の厚み)だけ離れて上方(+Z方向)に設けられている。ここで示す例では、ゲート電極5の上にはゲート導電性膜12が設けられている。本発明におけるゲート導電性膜12は、後述する製造方法によって、第3導電性膜8と第4導電性膜9とに区別することができる。
【0014】
42は、第1絶縁層3と、第2絶縁層4と、ゲート電極5に囲まれた凹形状のリセス部(凹部)である。詳細には、リセス部42は、図2に示すように、第1絶縁層3の上面32と、第2絶縁層4の側面41と、ゲート電極5の下面53によって囲まれた空間である。
【0015】
カソード導電性膜10は、第1絶縁層3の側面31と、第1絶縁層3の上面32とが接続する角部33を覆っている。さらに、カソード導電性膜10は第1絶縁層3の側面31上だけでなく、第1絶縁層3の上面32上にも配置されている。言い換えれば、カソード導電性膜10の一部は、カソード電極2から、リセス部42の中まで延在している。即ち、カソード導電性膜10は、カソード電極2から第1絶縁層3の上面32まで、側面31を経て、延在している。
【0016】
カソード導電性膜10は、図2で示されるように、リセス部42内に、第1絶縁層3の側面31と上面32とが接続する部分である第1絶縁層3の角部33から距離xだけ、入り込んでいる。尚、距離xは、換言すると、第1絶縁層3の上面32とカソード導電性膜10とが接する長さと言う事ができる。
【0017】
カソード導電性膜10が、距離xをもってリセス部42内に入り込むことで、以下の三つのメリットが生じる。(1)電子放出部となるカソード導電性膜10が第1絶縁層3との接触面積が広く、機械的な密着性(密着強度)があがる。(2)電子放出部となるカソード導電性膜10と第1絶縁層3との接触面積が広がり、電子放出部で発生する熱を効率よく逃がすことが可能となる(熱抵抗の低減)。(3)第1絶縁層3の上面32に対してカソード導電性膜10が傾斜を備えることで、絶縁体―真空−導電体界面で生じる三重点での電界強度を弱め、異常な電界発生による放電現象を防止することが可能となる。
【0018】
カソード導電性膜10の一方の端部は、第1絶縁層3の角部33上に位置する突起部を有している。突起部は、第1絶縁層3の斜面31から、第1絶縁層3の上面32に跨って配置されているとも言うことができる。突起部の先端は、第1絶縁層3の上面32よりも基板1の表面から離れており、且つ、尖っている。つまり、突起部は、第1絶縁層3の上面32より上方(+Z方向)に突出している。従って、突起部は、カソード導電性膜10の、第1絶縁層3の上面32より上方の部分として定義することができる。なお、カソード導電性膜10の他方の端部は、カソード電極2に接続している。
【0019】
ゲート導電性膜12は、ゲート電極5の側面51上と、ゲート電極5の上面52上に設けられている。少なくともゲート電極5を含み、必要に応じてゲート導電性膜12を備えた導電性部材13を纏めてゲートと呼ぶことができる。ゲート13(ゲート電極5(及びゲート導電性膜12))は、カソード導電性膜10の突起部の先端と、間隙11を介して対向している。この間隙11の間隔はdで表される(図1、2)。
【0020】
図3は、電子放出素子の電子放出特性を測定するときの電源及び電位の関係を示す図である。基板1の上方(ゲート電極5よりも離れた位置)には、ゲート電極5よりも高電位に規定されたアノード電極20が配置されている。ここでVfはカソード電極2とゲート電極5との間に印加される電圧、Ifはゲート電極5に流れる素子電流、Vaはカソード電極2とアノード電極20の間に印加される電圧、Ieは電子放出電流である。ここで、電子放出効率(η)は、素子に電圧(Vf)を印加したときに検出される電流(If)と真空中に取り出される電流(Ie)を用いて、効率η=Ie/(If+Ie)で与えられる。図3に示すように、電子放出素子を駆動させるためには、カソード電極2よりもゲート電極5の電位が高くなるように、駆動電圧Vfをカソード電極2とゲート電極5の間に印加する。これによって、カソード導電性膜10の突起部の先端表面には強電界が生じ、電子がカソード導電性膜10の突起部の表面から電界放出される。カソード導電性膜10の突起部の先端表面からゲート13に向かって放出された電子の一部は、ゲート13に衝突する。詳細には、ゲート電極5或いはゲート電極上のゲート導電性膜12の何れかに衝突する。
放出された電子のゲート電極5もしくはゲート導電性膜12への衝突箇所は、多くの場合は、ゲート電極5の側面51上のゲート導電性膜12である。
【0021】
上述のように、ゲート電極5(およびゲート導電性膜12)は、ゲート電極5が、カソード導電性膜10に電界放出可能な電界を印加することができるように、カソード導電性膜10と所定の間隔d(間隙11)を置いて、配置されればよい。また、ゲート電極5によって上記電界を印加できれば、ゲート電極5上のゲート導電性膜12は必須ではない。効率的に電界放出された電子を得るために、ゲート13はカソード導電性膜10より上方(アノード20側)に配置される。ゲート電極5(およびゲート導電性膜12)は、第1絶縁層3の上面32から所定距離(第2絶縁層4の厚み)だけ離れて上方に設けられていればよく、第2絶縁層4はこの距離を規定する部材であるともいえる。
【0022】
次に、カソード導電性膜10の突起部について、その特徴とその望ましい形態を図2を用いて以下に述べる。
【0023】
カソード導電性膜の突起部の先端には曲率半径rで代表される部分(図2の点線で囲まれた円)が存在する。この曲率半径rの値によりカソード導電性膜10の先端の電界強度が異なる。rが小さいほど電気力線の集中が生じるため突起部先端表面に高い電界を形成することが可能となる。
従って突起部分先端の電界を一定とした場合、曲率半径rが相対的に小さければカソード導電性膜10の突起部の先端とゲート13との間隔dが大きく、rが相対的に大きければ間隔dが小さな値となる。間隔dの違いは散乱回数の違いに影響するため、dが大きいほど電子放出効率が高い電子放出素子を得ることが可能となる。一方、dが大きいと、高い駆動電圧が必要になる。このように、電子放出素子の電子放出効率を高くするには、小さいrが得られ、間隔dを高精度に制御できる電子放出素子の製造方法が求められる。
【0024】
以下に、本実施形態に係る電子放出素子の製造方法を、上記した構成の電子放出素子を例に、図4および図5、図6を参照しながら説明する。
【0025】
まず、本実施形態の製造方法における一連の工程を簡単に説明し、その後、各工程について詳述する。
【0026】
(工程1)第1絶縁層3となる絶縁層30を基板1の表面に形成し、続いて、第2絶縁層4となる絶縁層40を絶縁層30の上面に積層する。そして、絶縁層40の上面にゲート電極5となる導電層50を積層する(図4(a))。絶縁層40の材料は、絶縁層30の材料よりも、後述する工程3で行う第2エッチング処理に対してエッチング量が多くなるように、絶縁層30の材料とは異なる材料が選択される。
【0027】
(工程2)次に、導電層50、絶縁層40、絶縁層30に対するエッチング処理(第1エッチング処理)を行う。第1エッチング処理は、ゲート電極5の形成および、第1絶縁層3の側面31を形成することを主な目的とした工程である。
【0028】
第1エッチング処理は、具体的には、フォトリソグラフィー技術等により導電層50上にレジストパターンを形成したのち、導電層50、絶縁層40、絶縁層30をエッチングする処理である。工程2により、基本的には、図1などに示した電子放出素子を構成する第1絶縁層3とゲート電極5が形成される(図4(b))。また、この工程で、第2絶縁層4となる絶縁層40は絶縁層44のような形状になる。
【0029】
なお、図4(b)などに示す様に、この工程で形成される第1絶縁層3の側面31と基板1の表面とが成す角度(θ)が90°よりも小さい角度となり、斜面を形成するようにすることが好ましい。
【0030】
(工程3)続いて、工程2で形成した絶縁層44に対するエッチング処理(第2エッチング処理)を行う。第2エッチング処理は、リセス部42を形成することを主な目的とした工程である。
【0031】
工程3により、基本的には、図1等に示した電子放出素子を構成する第2絶縁層4が形成される。この結果、第1絶縁層3の露出した上面32と第2絶縁層4の側面41と、ゲート電極5の露出した下面53によって構成されるリセス部42が形成される(図4(c))。また、工程3において、絶縁層44の側面がエッチングされるので第1絶縁層3の上面32が露出する結果、第1絶縁層3の上面32と第1絶縁層3の側面31とが接続している部分である角部33が形成される。なお、角部33は、曲率を持たない形態とすることもできるし、曲率を持つ形態とすることもできる。第1絶縁層3の上面32と基板1の表面とが成す角度は、第1絶縁層3の側面31と基板1の表面とが成す角度θより小さい。典型的には、第1絶縁層3の上面32と基板1の表面とはほぼ平行である。
【0032】
続いて、カソード導電性膜10(およびゲート導電性膜12)の形成工程を説明する。なお、以下では、第1絶縁層3の側面は斜面(斜面31)であるとして説明する。
【0033】
(工程4)導電性の材料からなる第1導電性膜6を、少なくとも第1絶縁層3の斜面31上に成膜する(図5(a))。この工程は、後述する工程6における第3エッチング処理を経ても、カソード導電性膜10の斜面31上に位置する部分の導電性が確保されるように行われる。このとき、図5(a)に示すように、第1導電性膜6はリセス部42に入り込んで、第1絶縁層3の上面32上にも成膜してもよい。第1絶縁層3の上面32にも第1導電性膜6を設ける場合には、上面32上で突起部を形成するように成膜することがことが好ましい。
【0034】
なお、簡単のために、以下の説明においては、「第1導電性膜6の、第1絶縁層3の斜面31上に位置する部分」を「斜面31上の第1導電性膜6」と呼ぶことにする。また、「第1導電性膜6の、第1絶縁層3の上面32上に位置する部分」を設ける場合には、これを「上面32上の第1導電性膜6」と呼ぶことにする。
【0035】
また、本工程において必須ではないが、第1導電性膜6を成膜すると同時に、第1導電性膜6と同じ材料からなる第3導電性膜8を、ゲート電極5の上に成膜してもよい。
【0036】
本工程4では、図5(a)に示すように、第1導電性膜6と導電性部材であるゲート13とが接触しないように、第1導電性膜6を成膜することが好ましい。即ち、第1導電性膜6とゲート13とが離間して、間にギャップ(間隙)を形成するように、第1導電性膜6を成膜することが好ましい。なお、本工程4でいうゲート13とは、少なくともゲート電極5を含み、第3導電性膜8を設ける場合には、ゲート電極5および第3導電性膜8とを含む構成のものである。つまり、第1導電性膜6は、ゲート電極5とも、第3導電性膜8とも接触しないように(離間するように)成膜されることが好ましい。
【0037】
このようにして、第1導電性膜6(および第3導電性膜8)を形成する。
【0038】
(工程5)次に、導電性の材料からなる第2導電性膜7を、第1絶縁層3の上面32上から、第1絶縁層3の斜面31上に渡って成膜する(図5(b))。この工程では、第1絶縁層3の上面32(角部33)上に突起部を形成するように行われる。前述のように、第1絶縁層3の上面32と斜面31とは角部33を介して接続しており、基板1の表面に対する角度が異なる。そのため、詳しくは後述するが、上面32上に突起部を形成しようとすると、第2導電性膜7の、第1絶縁層3の上面32上に位置する部分の密度(膜密度)が、第2導電性膜7の、第1絶縁層3の斜面31上に位置する部分の膜密度より相対的に高くなる。言い換えれば、本工程5では、第2導電性膜7は、第1絶縁層3の上面32上に位置する部分の膜密度が、第1絶縁層3の斜面31上に位置する部分の膜密度より高くなる様に成膜される。
【0039】
工程4において、第1導電性膜6は少なくとも斜面31上に設けられているため、少なくとも、第2導電性膜7の斜面31上に位置する部分の下には第1導電性膜6が設けられている。したがって、第2導電性膜7は、第1導電性膜6の上に設けられる。言い換えれば、工程5において設けられる第2導電性膜7と、第1絶縁層3の斜面31との間には、工程4において第1導電性膜6が設けられていることになる。
【0040】
なお、工程4において、第1絶縁層3の上面32上に第1導電性膜6を設けない場合には、第2導電性膜7の第1絶縁層3の上面32の上に位置する部分の下には、第1導電性膜6は設けられていないことになる。
【0041】
図5(b)に示すように、工程4において、第1導電性膜6を上面32上にも設ける場合には、第2導電性膜7を、上面32上の第1導電性膜6の上から、斜面31上の第1導電性膜6の上に渡って成膜することになる。第2導電性膜7の第1絶縁層3の上面32上に位置する部分が、上面32上の第1導電性膜6の上にのみに設けられていて、第2導電性膜7が上面32と接しない形態があってもよい。しかしながら、図5(b)に示すように、第2導電性膜7は、上面32と接する部分を有することが好ましい。つまり、第2導電性膜7は、第1導電性膜6を覆うように設けることが好ましい。
【0042】
なお、説明を簡単にするために、以下の説明においては、「第2導電性膜6の、第1絶縁層3の斜面31上に位置する部分」を「斜面31上の第2導電性膜7」と呼ぶことにする。また、「第2導電性膜6の、第1絶縁層3の上面32上に位置する部分」を「上面32上の第2導電性膜7」と呼ぶことにする。少なくとも、「斜面31上の第2導電性膜7」は、その下に「斜面31上の第1導電性膜6」が設けられている。
【0043】
また、本工程においては、第2導電性膜7を成膜すると同時に、第2導電性膜7と同じ材料からなる第4導電性膜9を、ゲート電極5の上、あるいは第3導電性膜8の上に成膜することが好ましい。
【0044】
本工程5において、第2導電性膜7と導電性部材であるゲート13とが接続しない場合があってもよい。しかしながら本工程5においては、図5(b)に示すように、第2導電性膜7とゲート13とが接触するように、第2導電性膜7を成膜することが好ましい。
【0045】
なお、本工程5でいうゲート13とは、少なくともゲート電極5を含み、第4導電性膜9を設ける場合には、ゲート電極5および第4導電性膜9とを含む構成のものである。工程4において、第3導電性膜8を設けた場合には、ゲート13は更に第3導電性膜8も含む。つまり、第2導電性膜7とゲート電極5とが(電気的に)接続するように、第2導電性膜7を成膜することが好ましい。第2導電性膜7が、ゲート電極5、第3導電性膜8、第4導電性膜9の少なくともいずれかと接触すれば、第2導電性膜7は、ゲート電極5と(電気的に)接続することになる。
【0046】
典型的には、図5(b)に示すように、第2導電性膜7と第4導電性膜9とが接触するように、第2導電性膜7および第4導電性膜9を形成することが好ましい。
【0047】
このようにして、第2導電性膜7(および第4導電性膜9)を形成する。
【0048】
(工程6)続いて、第2導電性膜7に対してエッチング処理(第3エッチング処理)を行う(図5(c))。
【0049】
第2導電性膜7に対してエッチング処理を行うことにより、先の工程5で設けた上面32上の第2導電性膜7の突起部は先鋭化される。従って、この工程により電子放出素子の効率を向上できる。
【0050】
また、工程5において、リセス部42内に入り込んだ、不要な第2導電性膜7の材料が、本工程において除去される。その結果、リセス部42内の導電性材料の残渣でを低減し、電子放出素子の信頼性を向上できる。
【0051】
また、工程5において、第2導電性膜7とゲート13とが接触しないように第2導電性膜7を設けた場合であっても、意図しない部分で第2導電性膜7とゲート13とが接触して、短絡欠陥やリーク電流の原因となる場合がある。そのような部分を、第3エッチング処理によって除去することができる。その結果、電子放出素子の信頼性を向上できる。
【0052】
また、第3エッチング処理によって、第2導電性膜7とゲート13との間には所望の間隔dの間隙11が形成される。即ち、電子を電界放出するための間隙11を形成することができる。間隙11を第3エッチング処理によって形成することで、間隙11の間隔dの制御性を向上することが可能となり電子放出素子の電子放出効率を向上できる。ゲート13は、少なくともゲート電極5を含む部材であるので、第3エッチング処理によって、ゲート電極5と第2導電性膜7との間には所望の間隔の間隙が形成されるとも言える。第3導電性膜8、第4導電性膜9が設けられた場合には、これらと第2導電性膜7との間にも所望の間隔の間隙が形成される。
【0053】
さらに、工程5において、第2導電性膜7とゲート13とが接触するように第2導電性膜7を設けた場合においては、この工程の第3エッチング処理において、第2導電性膜7とゲート13とは離間し、所望の間隔dの間隙11が形成される。第2導電性膜7の成膜のみで間隙11を形成することもできるが、このように、接触したものをエッチングすることによって間隙11を形成すれば、間隙11の間隔dをより高精度に制御することが可能となる。その結果、電子放出素子の効率を向上できる。典型的には、工程5において、第2導電性膜7は第4導電性膜9と接触し、本工程6において、第2導電性膜7は第4導電性膜9と離間して、所望の間隔の間隙を形成する。
【0054】
ところで、工程5で設けた第2導電性膜7は、第1絶縁層3の斜面31上に位置する部分の膜密度の方が、第1絶縁層3の上面32上に位置する部分よりも、低くなる様に成膜されている。
【0055】
第3エッチング処理における、第2導電性膜7の膜密度とエッチングレートは反比例の関係にあり、膜密度が低い部分のエッチングレートは高くなる(多くエッチングされる)。なお、本発明において、エッチングレートとは、単位時間あたりの膜厚の減少量を意味している。すなわち、第3エッチング処理では、第2導電性膜の膜密度が低い部分を、前記第2導電性膜の膜密度が高い部分よりも多くエッチングする。
【0056】
図12(a)にモリブデン膜を成膜したときの、成膜材料の成膜面に対する入射角と、その入射角で成膜した膜を所定のエッチング条件によってエッチング処理したときの、エッチングレートとの関係を示す。なお、図12(a)では、単位時間あたりの膜厚減少量の代わりに、所定時間を1回として、1回あたりの膜厚の減少量を示している。成膜材料の、成膜面に対する入射角が90°に近いほど膜密度は高くなる。一方、エッチング処理で除去される単位時間当たりの原子数はエッチングする材料と、エッチング条件(エッチング方法)で一意に決まる。したがって、膜密度とエッチングレートは反比例する。尚、この関係は、モリブデンに限るものではなく、材料に依存するものではない。
【0057】
従って、第3エッチング処理を行うと、膜密度が低い部分である斜面31上の第2導電性膜7のエッチングレートは、膜密度が高い部分である上面32上の第2導電性膜7のエッチングレートより高くなる。つまり、本工程6によって同時にエッチングされる斜面31上の第2導電性膜7の膜厚の減少量は上面32上の第2導電性膜7の膜厚の減少量よりも大きい。そのため、上述したように、工程5において膜密度が相対的に低くなっている斜面31上の第2導電性膜7の導電性は低下する(抵抗率が上昇する)。
【0058】
しかしながら、本発明では、前述した工程4を行うことで、少なくとも斜面31上の第2導電性膜7の下には、第1導電性膜6(斜面31上の第1導電性膜6)を設けている。これにより、第3エッチング処理を経ても、カソード導電性膜10の、第1絶縁層3の斜面31上に位置する部分の導電性を確保することができる。言い換えれば、第3エッチング処理におけるカソード導電性膜10の導電性の低下が、第1導電性膜6によって抑制される。従って、工程4で設けた斜面31上の第1導電性膜6は、カソード導電性膜10の導電性の低下を抑制する機能を有すると云える。
【0059】
このように、本実施形態によれば、カソード導電性膜10の電子放出効率の向上及び、信頼性の向上を共に実現することができる。
【0060】
本工程6において、第3エッチング処理の処理時間や繰り返し回数を多くすることによって、図6(a)に示すように、突起部をさらに先鋭化することもできる。
【0061】
(工程7)
上記の第3エッチング処理でカソード導電性膜10の先鋭化を実施した後に、カソード導電性膜10上に、カソード導電性膜10の仕事関数より仕事関数が低い材料からなる低仕事関数膜14を成膜することができる(図6(b))。この工程により、電子放出特性の効率を向上することができる。この本工程7は省略することもできる。
【0062】
(工程8)
カソード導電性膜10に電子を供給するためのカソード電極2を形成する(図1)。この工程は、他の工程の前や後に変更することもできる。尚、カソード電極2を用いずに、カソード電極2の機能をカソード導電性膜10が兼ねることもできる。その場合には、本工程8は省略できる。
【0063】
以下、各工程についてより詳細に説明する。
【0064】
(工程1について)
基板1としては、石英ガラス,Na等の不純物含有量を減少させたガラス、青板ガラスなどを用いることができる。基板1に必要な機能としては、機械的強度が高いだけでなく、ドライエッチング、ウェットエッチング、現像液等のアルカリや酸に対して耐性があることが挙げられる。また、画像表示装置に用いる場合は、加熱工程などを経るので、積層する部材と熱膨張率差が小さいものが望ましい。また熱処理を考慮すると、ガラス内部からのアルカリ元素等が電子放出素子に拡散しづらい材料が望ましい。
【0065】
絶縁層30(第1絶縁層3)を構成する材料は、加工性に優れる絶縁性の材料からなり、たとえば窒化シリコン(典型的にはSi)や酸化シリコン(典型的にはSiO)である。絶縁層30は、スパッタ法等の一般的な真空成膜法、CVD法、真空蒸着法で形成することができる。また絶縁層30の厚さは、数nmから数十μmの範囲で設定され、好ましくは数十nmから数百nmの範囲に選択される。
【0066】
絶縁層40(第2絶縁層4)を構成する材料は、加工性に優れる絶縁性の材料からなり、たとえば窒化シリコン(典型的にはSiN4)や酸化シリコン(典型的にはSiO)である。絶縁層40は、スパッタ法等の一般的な真空成膜法、CVD法、真空蒸着法で形成することができる。また絶縁層40の厚さは、絶縁層30よりも薄く、数nmから数百nmの範囲で設定され、好ましくは数nmから数十nmの範囲で選択される。
【0067】
尚、絶縁層30と絶縁層40を基板1上に積層した後に工程3にてリセス部42を形成する必要がある。そのため、上記第2エッチング処理に対して、絶縁層30よりも絶縁層40の方がよりエッチング量が多い関係に設定する。望ましくは絶縁層30と絶縁層40との間のエッチング量の比は、10以上であることが好ましく、50以上であることが更に好ましい。
【0068】
このようなエッチング量の比を得るためには、例えば、絶縁層30を窒化シリコンで形成し、絶縁層40を酸化シリコンで形成すればよい。また、絶縁層30を窒化シリコンで形成し、絶縁層40をリン濃度の高いPSG(リンシリケートガラス)やホウ素濃度の高いBSG(ボロンシリケートガラス)等で形成しても良い。
【0069】
導電層50(ゲート電極5)は導電性を有しており、蒸着法、スパッタ法等の一般的真空成膜技術により形成されるものである。
【0070】
ゲート電極5となる導電層50の材料は、導電性に加えて高い熱伝導率があり、融点が高い材料が望ましい。例えば、Be,Mg,Ti,Zr,Hf,V,Nb,Ta,Mo,W,Al,Cu,Ni,Cr,Au,Pt,Pd等の金属または合金材料が使用できる。また、炭化物や硼化物や窒化物も使用でき、Si,Ge等の半導体も使用できる。
【0071】
また、導電層50(ゲート電極5)の厚さは、数nmから数百nmの範囲で設定され、好ましくは数十nmから数百nmの範囲で選択される。
【0072】
ゲート電極5となる導電層50は、カソード電極2に比べてその膜厚が薄い範囲で設定される場合があるので、カソード電極2の材料よりも低抵抗な材料であることが望ましい。
【0073】
(工程2について)
上記第1エッチング処理では、エッチングガスをプラズマ化して材料に照射することで材料の精密なエッチング加工が可能な、RIE(Reactive Ion Etching)を用いることが好ましい。
【0074】
RIEに用いるガスとしては、加工する対象部材がフッ化物を作る材料である場合には、CFやCHF、SFなどのフッ素系ガスが選ばれる。また加工する対象物がSiやAlのような塩化物を形成する材料である場合には、Cl、BClなどの塩素系ガスが選ばれる。またレジストとの選択比を取るため、またエッチング面の平滑性の確保あるいはエッチングスピードを上げるため、水素、酸素、アルゴンガスの少なくともいずれかをエッチングガスに添加することが好ましい。
工程2により、基本的に、図1などに示した電子放出素子を構成する第1絶縁層3とゲート電極5と同一または略同一の形状が形成される。しかしながら、工程2以降に行われるエッチング処理で、第1絶縁層3とゲート電極5が全くエッチングされないことを意味する訳ではない。
【0075】
また、第1絶縁層3の側面31と基板1の表面とが成す角度(図4(b)にθで表示)は、ガス種、圧力、等の条件を制御することに所望の値に制御可能である。角度θは、90°よりも小さくすることが好ましい。つまり、第1絶縁層3の側面31は斜面であることが好ましい。これは、工程4で第1絶縁層3の側面31に形成される第2導電性膜7の膜質(膜密度)を制御するためである。また、θを90°よりも小さい角度に設定することで、ゲート電極5のカソード電極側の側面51は、第1絶縁層3のカソード電極側の側面31よりも後退する(−X方向に位置する)。なお、第1絶縁層3の側面31は図4(b)に示すように、曲面となっている場合もある。その場合には、側面31の角度θは、側面31の接線と基板1の表面とが成す角のうちの最大の角度をθとすることができる。
【0076】
第1絶縁層3の上面32と基板1の表面とが成す角度は、上述したように、角部33を形成しているために、側面31と基板1の表面とが成す角度θより小さい。第1絶縁層3は基板1の表面に、一般的に用いられる成膜方法によって形成されているので、第1絶縁層3の上面32は基板1の表面と実質的に平行であると言える。即ち、第1絶縁層3の上面32は、基板1の表面と完全に平行である場合と、成膜環境や条件などによって僅かに傾きを有する場合が考えられるが、このような場合も含めて、実質的に平行の範疇である。
【0077】
ゲート電極5の側面51と基板1の表面とが成す角度(図6(b)にφで表示)も、第1エッチング処理の条件によって決定される。角度φは、90°よりも小さくすることが好ましい。さらに、角度φは、角度θよりも小さくすることが好ましい。なお、ゲート電極5の側面51は、曲面となっている場合もある。その場合には、側面31の角度φは、側面31の接線と基板1の表面とが成す角のうちの最大の角度をφとすることができる。
【0078】
(工程3について)
工程3では、エッチング液によって絶縁層44がエッチングされる量に対して、エッチング液によって絶縁層3がエッチングされる量が十分に低くなるようにエッチング液が選択される。つまり、第2エッチング工程はウェットエッチング工程が用いられる。
【0079】
上記第2エッチング処理は、例えば絶縁層44(第2絶縁層4)が酸化シリコンで形成され、絶縁層30(第1絶縁層3)が窒化シリコンで形成されている場合、エッチング液は通称バッファードフッ酸(BHF)を用いればよい。バッファードフッ酸(BHF)はフッ化アンモニウムとフッ酸との混合溶液である。また、絶縁層40(第2絶縁層4)が窒化シリコンで形成され、絶縁層30(第1絶縁層3)が酸化シリコンで形成されている場合は、エッチング液は熱リン酸系のものを使用すればよい。
【0080】
工程3により、図1などに示した電子放出素子を構成する第2絶縁層4と同一または略同一のパターンが形成される。しかしながら、工程3以降に行われるエッチング処理で、第2絶縁層4が全くエッチングされないことを意味する訳ではない。
【0081】
リセス部42の深さ(絶縁層44がエッチングされるX方向の距離)は、電子放出素子のリーク電流に深く関わる。リセス部42を深く形成するほどリーク電流の値が小さくなる。しかし、あまりリセス部42を深くするとゲート電極5が変形する等の課題が発生する。このため、リセス部42の深さは、実用的には30nm以上200nm以下に設定される。尚、リセス部42の深さは、第1絶縁層3の角部33から第2絶縁層4の側面41までの距離と言い換えることもできる。
【0082】
ここまでは、段差形成部材34を、第1絶縁層3と第2絶縁層4とを積層することで構成する例を示した。しかしながら、段差形成部材34は、3つ以上の複数の層で構成することもできる。具体的には、リセス部42を形成する第2絶縁層4の上に、さらに絶縁層を備えていても良い。例えば、第2絶縁層4の上に設けられる絶縁層が、第1絶縁層3と同じ材料であってもよい。この場合には、工程3によって得られる構成は、ゲート電極5の下面53は露出しないことになる。いずれにしても、ゲート電極5は、第1絶縁層3の上面32より上方に配置される。
【0083】
(工程4について)
工程4において、第1導電性膜6(および第3導電性膜8)の材料は、導電性を有していれば特に限定されない。例えば、Be,Mg,Ti,Zr,Hf,V,Nb,Ta,Mo,W,Al,Cu,Ni,Cr,Au,Pt,Pd等の金属または合金材料が使用可能である。また、炭化物、硼化物、窒化物も使用可能である。
【0084】
しかしながら、第1導電性膜6の斜面31上に位置する部分は、工程6における第3エッチング処理に対して耐性(エッチング耐性)が高いことが好ましい。詳細には、第3エッチング処理で用いるエッチング方法に対して、第2導電性膜7の斜面31上に位置する部分よりも、第1導電性膜7の斜面31上に位置する部分の方がエッチングレートが低いことが好ましい。
【0085】
以下に、この理由を説明する。
【0086】
工程5において、角部33(上面32)上に突起部を形成するように第2導電性膜7を形成すると、斜面31上の第2導電性膜7の膜密度は上記したように低くなる。一方、上面32上の第2導電性膜7の膜密度は相対的に高くなる。
【0087】
(工程6)で説明したように、膜密度とエッチングレートは反比例の関係にある。そのため、工程6において、第3エッチング処理によって、第2導電性膜7の斜面31上の部分は、膜密度が低いので、優先的にエッチングされ、膜厚の減少量が大きい。本発明では、第2導電性膜7の斜面31上に位置する部分の下に第1導電性膜6を設ける。このようにすることで、第2導電性膜7の斜面31上に位置する部分を第3エッチング処理でエッチングしても、電子放出部に相当する、第2導電性膜7の突起部と、斜面31に位置するカソード電極2とを安定に接続できる。
【0088】
そして、第3エッチング処理によって、第2導電性膜7の斜面31上の部分の全部あるいは一部が、無くなってしまう(膜厚がゼロになる)場合には、第1導電性膜6は露出して、第3エッチング処理に直接曝されることになる。
【0089】
また、工程6において、第2導電性膜7を第3エッチング処理する際に、第2導電性膜7が第1導電性膜6を完全に覆っていない部分、例えばピンホールやクラックがある場合がある。その場合、第1導電性膜6は第3エッチング処理の影響を受ける可能性がある。そのような場合にも第1導電性膜6は露出することになり、第3エッチング処理に直接曝されることになる。
【0090】
第1導電性膜6がエッチング耐性が低いと、このように第1導電性膜6が第3エッチング処理の影響を受ける場合、あるいは第3エッチング処理に直接曝される場合に、第1導電性膜6はエッチングされてしまう可能性がある。第1導電性膜6が容易にエッチングされると、カソード導電性膜10の導電性は低下し、電子放出素子の信頼性が低下する。
【0091】
そのため、上記したように、第1導電性膜6の斜面31上に位置する部分のエッチング耐性を高くすることによって、斜面31上のカソード導電性膜10の導電性を、より安定に確保することができる。
【0092】
また、第1導電性膜6と第2導電性膜7の膜厚とエッチングレートは、上面32上の第2導電性膜7が膜厚方向に完全にエッチングされると仮定した場合に、斜面31上にカソード導電性膜10が残る関係であることが好ましい。
【0093】
つまり、第3エッチング処理において、第1導電性膜6と第2導電性膜7の膜厚とエッチングレートとの関係は、以下の条件式を満たすことが好ましい。
【0094】
1s/E1s+T2s/E2s≧T2t/E2t・・・条件式
ここで、T1sは斜面31上の第1導電性膜6の膜厚、E1sは斜面31上の第1導電性膜6のエッチングレート、T2sは斜面31上の第2導電性膜7の膜厚、E2sは斜面31上の第2導電性膜7のエッチングレートである。T2tは上面32上の第2導電性膜7の膜厚、E2tは上面32上の第2導電性膜7のエッチングレートである。詳しくは(工程6について)で説明するが、図7に、工程6における第1導電性膜6及び第2導電性膜7の膜厚と膜厚変化量の関係を示す。エッチングレートは、膜厚変化量をエッチング処理時間で割ったものである。この条件式を満足すれば、工程6において斜面31上の第1導電性膜6が露出しても、斜面31上のカソード導電性膜10の導電性は確保される。なお、この条件式を満たす場合にも、斜面31上の第1導電性膜6のエッチング耐性が高いことが好ましい。つまり、E1s<E2sを満たすことが好ましい。
【0095】
本発明では第1導電性膜はTaN、Taが良好な材料として挙げられる。また、第2導電性膜7と同じ材料を用いる場合には、斜面31上の第2導電性膜7よりも膜密度が高い膜も好ましく用いることができる。
【0096】
第1導電性膜6のエッチング耐性を高くする方法を説明する。
【0097】
第1導電性膜6の材料として、第3エッチング処理に対して、第2導電性膜7よりエッチング耐性が高い(エッチングレートが低い)、第2導電性膜7とは異なる材料を用いることが好ましい。言い換えれば、上記した条件を満たすように、工程4〜6において、第1導電性膜6の材料と、第2導電性膜7の材料と、第3エッチング処理と、の組合せが決定される。
【0098】
別の例として、斜面31上の第2導電性膜7よりも、斜面31上の第1導電性膜6の膜密度を高くすることが好ましい方法として挙げられる。この方法は、第1導電性膜6と第2導電性膜7の材料が、同じ材料である場合に特に好ましく用いることができる。詳しくは、(工程5について)で、述べるが、斜面31上に高密度な膜を形成するには、斜面31に対してより垂直に近い方向から、第1導電性膜の原料が付着するように、指向性を有する成膜法を採用することができる。
【0099】
なお、工程4において、上面32上にも第1導電性膜6を設ける場合には、斜面31上の第1導電性膜6の膜密度が、上面32上の第1導電性膜6の膜密度より高くなるように、第1導電性膜6を成膜することが好ましい。これにも、斜面31に対してより垂直に近い方向から、第1導電性膜の原料が付着するように、指向性を有する成膜法を採用することができる。膜密度と抵抗率、及び膜密度とエッチングレートとは反比例の関係にあるため、このよう成膜することにより、斜面31上の第1導電性膜6の導電性及びエッチング耐性をより高くすることができる。
【0100】
(工程5について)
工程5において、第2導電性膜7の材料は、導電性があり、電界放出する材料であればよく、好ましくは、2000℃以上の高融点の材料から選択される。また、第2導電性膜7の材料は、仕事関数が5eV以下であり、その酸化物が簡易にエッチング可能な材料で形成されることが好ましい。このような材料として例えば、Hf,V,Nb,Ta,Mo,W,Au,Pt,Pd等の金属または合金材料、或いは炭化物、硼化物、窒化物も使用可能である。特に、MoまたはWを用いることが好ましい。
【0101】
第2導電性膜7は、スパッタ法、蒸着法等の真空成膜技術により形成される。前述したように、工程5においては、上面32上の第2導電性膜7の膜密度が、斜面31上の第2導電性膜7の膜密度よりも、高くなる様に成膜することが好ましい。
【0102】
上記の様な成膜を行う為には、第2導電性膜7の成膜を、指向性を有する成膜法によって行う。例えば、いわゆる指向性スパッタ法や蒸着法を用いることができる。指向性を有する成膜法を用いることで、第2導電性膜7の原料が、第1絶縁層3の上面32および斜面31(並びにゲート電極5の上面52および側面51)に向かって入射する角度を制御できる。
【0103】
指向性スパッタ法として、例えば、基板1とターゲットとの角度を設定した上で、基板1とターゲットの間に遮蔽板を設ける、基板1とターゲット間の距離をスパッタ粒子の平均自由行程近傍にする、等を行う。また、スパッタ粒子に指向性を与えるコリメータを用いる、いわゆるコリメーションスパッタ法も指向性スパッタ法として用いることができる。このようにして、成膜材料であるスパッタ粒子が基板1上(典型的には第1絶縁層4の上面32及び斜面31)にそれぞれ限られた角度で入射される様にする。なお、スパッタ粒子とは、ターゲットからスパッタされた原子、またはスパッタされた粒子を指す。
【0104】
即ち、成膜材料であるスパッタ粒子の第1絶縁層3の斜面31に対する入射角度が、成膜材料であるスパッタ粒子の第1絶縁層3の上面32(角部33)に対する入射角度よりも低い角度になる様にする。但し、スパッタ粒子の第1絶縁層3の上面32(角部33)に対する入射角度は、スパッタ粒子の第1絶縁層3の斜面31に対する入射角度よりも、より90°に近く設定する。このようにすることで、スパッタ粒子は、第1絶縁層3の斜面31に対してよりも第1絶縁層3の上面32(角部33)に対して、より垂直に近い状態で入射させることができる。これによって、第1導電性膜6は、上面32上に位置する部分の膜密度が、斜面31上に位置する部分の膜密度が高くなる。そして、このように成膜を行うことで、前述したように、第1導電性膜6の、第1絶縁層3の上面32(角部33)上に位置する部分が、突起形状(突起部)を有する形態とすることができる。
【0105】
蒸着法では、真空度が10−2〜10−4Pa程度の高真空下で成膜を行うと、蒸発源から気化した成膜材料である蒸発物質は、衝突する可能性が低い。更に、蒸発物質の平均自由行程は概ね数百mm〜数m程度である為、蒸発源から気化した時の方向性が維持されて基板に届くことになる。このように、蒸着法も指向性を有する成膜法である。蒸発源を蒸発させる手法は、抵抗加熱、高周波誘導加熱、電子ビーム加熱などが有るが、対応可能な物質の種類及び加熱面積の関係から電子ビームを利用する方法が好適である。
【0106】
第2導電性膜7の材料がモリブデンの場合は、上面32上の第2導電性膜7は、その密度(膜密度)が9.5g/cm以上10.2g/cm以下であることが好ましい。斜面31上の第2導電性膜7は、その密度(膜密度)が7.5g/cm以上8.0g/cm以下であることが好ましい。
【0107】
上記値は、膜の抵抗率と膜厚(低密度膜は斜面に形成されるので、低密度膜部分は斜面に対する膜厚も薄くなる関係がある)及びエッチングレート差を考慮した実用的な範囲である。図12(b)にはモリブデン膜の膜密度と抵抗率の関係を示した。図からも判る様に、一般的に金属の膜密度と抵抗率は反比例の関係にある。そのため、工程4によって、第1導電性膜6は、上面32上(角部33)に突起部が形成されるだけでなく、突起部の導電性が高いというメリットもある。
【0108】
膜密度の測定は、一般にはXRR(X線反射率法)が用いられるが、実際の電子放出素子では測定が困難な場合がある。そのような場合には、膜密度の測定手法として、例えば、以下の方法を採用することができる。即ち、TEM(透過電子顕微鏡)とEELS(電子エネルギー損失分光)を組み合わせた高分解能電子エネルギー損失分光電子顕微鏡で、元素の定量分析を行い、膜密度が既知の膜と比較することで、検量線を作成して、密度を算出することができる。
【0109】
尚、工程2においてθを90°よりも小さい角度に設定することで、ゲート電極5のカソード電極2側の側面51は、第1絶縁層3のカソード電極2側の側面よりも後退することは前述した通りである。その結果、本工程で上記したような指向性を有する成膜を行うことで、上面32(角部33)の上には、斜面31の上よりも、高密度な膜で構成された突起部が形成される。
【0110】
従って、工程2における第1エッチング処理によって形成される角度θを、より小さい角度にすれば、第1絶縁層3の上面32により多くの第2導電性膜7を形成できる。即ち、第1絶縁層3のカソード電極2側の側面31に対する、ゲート電極5のカソード電極2側の側面51の後退量を多くすれば、第1絶縁層3の上面32により多くの高密度な部分を有する第2導電性膜7を形成できる。また、カソード導電性膜10の入り込み量xもより大きくすることができる。
【0111】
第4導電性膜9は、好ましくは、第2導電性膜7と同一材料からなり、工程5において、同時に成膜されることが好ましい。
【0112】
前述したように、工程5では、上面32上の第2導電性膜7の膜密度が、斜面31上の第2導電性膜7よりも大きくなる様に成膜を行っている。この成膜法によればゲート電極5上の第4導電性膜9についても、同様のことが起こる。
【0113】
つまり、工程2で、ゲート電極5を、ゲート電極5の側面51と基板1とが成す角φが、θよりも小さくなる様な形状とすることで、ゲート電極5の側面51の角度φは、第1絶縁層3の上面32の角度に近づく。ゲート電極5の側面51上の第4導電性膜9は、カソード導電性膜10から放出された電子が最初に衝突し得る部分である。ゲート電極5の側面51上の第4導電性膜9の膜質は、上面32上の第2導電性膜7の膜質に近く、膜密度が高い。
【0114】
前述したように、金属では一般的に、膜密度と抵抗率は反比例の関係にある。そのため、φをθよりも小さくすることにより、カソード導電性膜10から放出された電子が最初に衝突し得る部分であるゲート電極5の側面51上のゲート導電性膜12の導電性を高くすることができる。
したがって、ゲート電極5の側面51と基板1とが成す角φが、θよりも小さくなる様な形状とすることで、電子放出素子の信頼性が向上する。
【0115】
工程5では、第2導電性膜7とゲート13(少なくともゲート電極5を含み、場合によっては第3導電性膜8と第4導電性膜9の少なくとも一方を含む部材)が接触しなくてもよい。即ち、ギャップ(間隙)を形成するように、第2導電性膜7と第4導電性膜9を成膜することもできる。
【0116】
しかし、電子放出素子では、図2で示した様に、カソード導電性膜10とゲート13との間に距離dの間隙11を高精度に形成する必要がある。特に、複数の電子放出素子を均一性高く形成する場合には、各電子放出素子の間隙11の大きさのバラツキを少なくすることが重要である。間隙11の大きさ(距離d)をより高精度に制御するために、工程5において、第2導電性膜7とゲート13とが接触するように成膜することが望ましい。そして、その後に、下記工程6における第3エッチング処理を行って第2導電性膜7とゲート13との間に間隙11を形成する。より好ましくは、第2導電性膜7と第4導電性膜9とが接触するように成膜する。
【0117】
尚、間隙の形成を、上記工程4の成膜時間や成膜条件の制御等で行う場合も、第2導電性膜7とゲート13とが実質的に接触した箇所(短絡欠陥)が形成される可能性もある。そのため、工程5の後に、工程6における第3エッチング処理を行う必要がある。
【0118】
(工程6について)
第3エッチング処理としてはドライエッチング、ウェットエッチングの何れでも構わないが、他材料とのエッチング選択比の容易さを考慮して、エッチング液を用いたウェットエッチングを行うことが好ましい。
【0119】
所望の間隙11の間隔dが数nm程度と微細である為、エッチング量の制御性を考慮するとエッチングレートは1分間に1nm以下であることが望ましい。
【0120】
図7を用いて、第3エッチング処理による、間隙の形成と第2導電性膜7の突起部の先鋭化について説明する。
【0121】
図7の点線Cは、工程4で第1導電性膜6(および第3導電性膜8)が成膜された状態の第1導電性膜6の表面を示している。また、図7の点線Cは工程5で第2導電性膜7(および第4導電性膜9)が成膜された状態の第2導電性膜7(および第4導電性膜9)の表面を表している。工程4において、少なくとも、斜面31上には、膜厚T1sの第1導電性膜6が形成される。工程5において、指向性を有する成膜法により、第1絶縁層3の角部33及び第1絶縁層3の上面32上、ゲート電極5の上面52上では、スパッタ粒子の飛翔方向が、これらの面に対して90°に近い角度で入射する。その為、上面32上には、膜厚T2tの高密度な第2導電性膜7が形成される。一方、第1絶縁層3の斜面31上及びゲート電極5の側面51上には、スパッタ粒子が面に対して浅い角度で入射する為、これらの面上には膜厚T2sの低密度な第2導電性膜7が形成される。
【0122】
図7の破線Dは、工程6の第3エッチング処理を行った状態の第2導電性膜7(および第4導電性膜9)の表面を表している。図中、ΔT2t1は上面32上の第2導電性膜7の膜密度が高い部分における、第3エッチング処理による膜厚の減少量を示している。また、ΔT2s1は斜面31上の第2導電性膜7の膜密度が低い部分における、第3エッチング処理による膜厚の減少量を示している。前述した様に膜密度とエッチングレートは反比例する。そのため、上記第3エッチング処理では、第2導電性膜7の上面32上に位置する部分に比較して、第2導電性膜7の斜面31上に位置する部分の方が高エッチングレートになる。つまり、本実施形態では第3エッチング処理において、第2導電性膜の膜厚の減少量には、ΔT2t1<ΔT2s1の関係が成り立つ。図7に示すように、工程5で第2導電性膜7とゲート13(第4導電性膜9)とが接触している場合には、第3エッチング処理において、離間する。
【0123】
第3エッチング処理による膜厚の減少量はエッチング時間あるいはエッチング回数で調整が可能である。エッチング時間を増やすあるいは、エッチング回数を増やすことによって、図6に示すように、突起部をより先鋭化することができる。これを、便宜的に「先鋭化処理」と呼ぶことにする。ただし、先鋭化は第3エッチング処理を行うことによって達成されるのであって、エッチング回数を増やすこと、あるいはエッチング時間を長くすることのみが先鋭化を意味するわけではない。先鋭化処理としては、特に、第3エッチング処理の回数を増やすこと(第3エッチング処理を繰り返すこと)が、高精度に間隙の間隔を制御する上で好ましい。
【0124】
上記のように、第3エッチング処理によって上面32上及び斜面31上の第2導電性膜7の膜厚がΔT2t1、ΔT2s1だけ減少するのに続いて、さらに先鋭化処理を行った場合の例を説明する。
【0125】
図7の実線Eは、上述した点線の状態からさら第3エッチング処理(先鋭化処理)を行った時の状態を示す。図中、ΔT2t2は上面32上の第2導電性膜7の膜密度が高い部分における、先鋭化処理による膜厚の減少量を示しており、ΔT1s2は斜面31上の第1導電性膜6の、先鋭化処理による膜厚の減少量を示している。図7の状態では、斜面31上の第1導電性膜6は露出している。つまり、先鋭化処理によって斜面31上の第2導電性膜7の膜厚は、T2s−ΔT2t1だけ減少したことになる。
【0126】
一方、上面32上の第2導電性膜7の膜厚の減少量は、ΔT2t2である。すでに述べたように、第2導電性膜7の上面32上に位置する部分に比較して、第2導電性膜7の斜面31上に位置する部分の方が高エッチングレートになる。したがって、ΔT2t2<T2s−ΔT2t1の関係が成り立つ。そのため、先端部は先鋭化されることになる。
【0127】
第1導電性膜6は、第3エッチング処理に対して耐性が高いと、先鋭化処理で、仮に斜面31上の第1導電性膜6が露出したとしても、斜面31上の第1導電性膜6の膜厚減少量ΔT1s2は小さい。従って、斜面31上のカソード導電性膜10の導電性が確保される。
【0128】
図6では、斜面31上の第2導電性膜7が部分的になくなってしまっているが、斜面31上の第2導電性膜は部分的に残っていても、あるは斜面31を覆うように残っていてもよい。いずれにしても、工程4において、斜面31上に第1導電性膜6を設けたため、斜面31上のカソード導電性膜10の導電性は確保されている。
【0129】
従って、斜面31上のカソード導電性膜10の導電性は高く、かつ、突起部が先鋭化された、信頼性および効率の高い電子放出素子を得ることができる。
【0130】
本発明における第2導電性膜7(及び第4導電性膜9)の材料と第3エッチング処理に用いるエッチング液の組合せは、特に限定されるものではない。例えば、第2導電性膜7(及び第4導電性膜9)の材料がモリブデンであれば、エッチング液はTMAH(水酸化テトラメチルアンモニウム)やアンモニア水などのアルカリ溶液を用いることができる。或は、エッチング液として、2−(2−n−ブトキシエトキシ)エタノールとアルカノールアミンの混合物やDMSO(ジメチルスルホキシド)等も用いることができる。
また、第2導電性膜7の材料がタングステンの場合は、硝酸やフッ酸や水酸化ナトリウム溶液等をエッチング液として用いることができる。
【0131】
前述したように、第1導電性膜8(及び第3導電性膜8)は、これらのエッチング液に対してエッチング耐性が高いことが好ましい。
【0132】
第3エッチング処理は、上記のように通常のウェットエッチングで行うことが好ましい。しかしながら、第3エッチング処理を、第2導電性膜7の表面を酸化する酸化工程と、酸化された部分の一部または全部を除去する除去工程によって行うことが好ましい。
【0133】
これは、酸化工程で第2導電性膜7の表面に所望量の酸化膜を形成した後、該酸化膜をエッチング除去することにより、エッチング量の均一性(再現性)を高める効果が期待できる。
【0134】
そして、酸化量(酸化膜厚)は膜密度に反比例する。そのため、第2導電性膜7を酸化処理した場合、膜密度の小さい部分の表面層が優先的に(選択的に)酸化されることになる。つまり、酸化処理とエッチング処理とを行うことによって、第2導電性膜7の端部(突起部)の先鋭化の制御精度を高めることが可能になる。また、工程5で第2導電性膜7とゲート13が接触する場合には、より高い精度で間隙11を形成することができる。
【0135】
酸化方法は、第2導電性膜7の表面を数〜数十nm酸化させることが可能な方法ならば特に制限されるものではない。具体的にはオゾン酸化(エキシマUV露光、低圧水銀露光、コロナ放電処理、等)や熱酸化等が挙げられるが、好ましくは、酸化の定量性が優れているエキシマUV露光を用いる。また、第2導電性膜7の材料がモリブデンの場合にエキシマUV露光は、酸化膜が容易に除去できるMoO3を主として生成することができる利点もある。
【0136】
酸化膜の除去工程は、ドライ、ウェットの何れでも構わないが、好ましくはウェットエッチング処理を用いる。酸化膜の除去工程(エッチング工程)は、表面層である酸化膜のみを除去(エッチング)することが目的となる。そのため、用いるエッチング液しては、酸化膜のみを除去して、下層である金属層(酸化していない層)には実質的な影響のないものが望まれる。或いは、酸化膜のエッチングレートが金属層(酸化していない層)に比較して十分に大きい(桁で異なる)ものが望まれる。具体的には、第2導電性膜7の材料がモリブデンであれば、エッチング液は、希釈TMAH(濃度が0.238%以下が望ましい)、温水(40℃以上が望ましい)等が挙げられる。第2導電性膜7の材料がタングステンの場合は、バッファードフッ酸、希塩酸、温水等が挙げられる。
【0137】
(工程7について)
低仕事関数膜14としては、カソード導電性膜10よりも仕事関数が低く、高融点な材料を用いることが好ましい。低仕事関数膜14は、仕事関数が4.0eV以下であることが好ましく、3.0eV以下であることがより好ましい。低仕事関数膜14は、少なくとも、カソード導電性膜10の先端部である突起部の表面を覆っていれば良い。また、低仕事関数膜14は、ゲート13(第4導電性膜9)の上にも設けても良い。
【0138】
低仕事関数材料としては、例えば、n型ダイヤモンド、窒素ドープしたテトラヘドラルアモルファスカーボン(TA−C)、酸化イットリウム(Y)等を用いることができる。
【0139】
(工程8について)
工程8は、工程6、7の後に行われることが必須ではなく、その前に行われても良い。
【0140】
カソード電極2は、導電性を有しており、蒸着法、スパッタ法等の一般的真空成膜技術、フォトリソグラフィー技術により形成することができる。カソード電極2の材料は、ゲート電極5と同じ材料であってもよく、異なる材料であってもよい。また、カソード導電性膜10がその機能を兼ねていても良い。
【0141】
カソード電極2の厚さとしては、数十nmから数μmの範囲で設定され、好ましくは数十nmから数百nmの範囲で選択される。
【0142】
以下、上記電子放出素子を複数配して得られる電子源を備えた画像表示装置について、図9〜図11を用いて説明する。
【0143】
図9において、101は基板、102はX方向配線、103はY方向配線であり、また、104は上記した電子放出素子、105は結線である。尚、X方向配線102は、上述のカソード電極2を共通に接続する配線であり、Y方向配線103は上述のゲート電極5を共通に接続する配線である。
【0144】
m本のX方向配線102は、DX1,DX2,…DXmからなり、真空蒸着法,印刷法,スパッタ法等を用いて形成された金属等の導電性材料で構成することができる。配線の材料、膜厚、巾は、適宜設計される。
【0145】
Y方向配線103は、DY1,DY2,…DYnのn本の配線よりなり、X方向配線102と同様に形成される。これらm本のX方向配線102とn本のY方向配線103との間には、不図示の層間絶縁層が設けられており、両者を電気的に分離している(m,nは、共に正の整数)。
【0146】
不図示の層間絶縁層は、真空蒸着法,印刷法,スパッタ法等を用いて形成される。例えば、X方向配線102を形成した基板101の全面或は一部に所望の形状で形成され、特に、X方向配線102とY方向配線103の交差部の電位差に耐え得るように、膜厚、材料、製法が、適宜設定される。X方向配線102とY方向配線103は、それぞれ外部端子として引き出されている。
【0147】
配線102と配線103を構成する材料、結線105を構成する材料及びカソード、ゲートを構成する材料は、その構成元素の一部あるいは全部が同一であっても、またそれぞれ異なってもよい。
【0148】
X方向配線102には、X方向に配列した電子放出素子104の行を選択するための走査信号を印加するための不図示の走査信号印加手段が接続される。一方、Y方向配線103には、Y方向に配列した電子放出素子104の各列を入力信号に応じて変調するための不図示の変調信号発生手段が接続される。
【0149】
各電子放出素子に印加される駆動電圧は、当該素子に印加される走査信号と変調信号の差電圧として供給される。
【0150】
上記構成においては、単純なマトリクス配線を用いて、個別の素子を選択して、独立に駆動可能とすることができる。
【0151】
このような単純マトリクス配置の電子源を用いて構成した画像表示装置について、図10を用いて説明する。図10は画像表示装置の画像表示パネル117の一例を示す模式図である。
【0152】
図10において、101は電子放出素子を複数配した基板、111は基板101を固定したリアプレートである。また、116は、ガラス基板113の内面に、アノードであるメタルバック115と、発光体の膜114としての蛍光体膜等が形成されたフェースプレートである。
【0153】
また、112は支持枠であり、この支持枠112には、リアプレート111、フェースプレート116がフリットガラス等の接合材を用いて封着(接合)されている。117は外囲器であり、例えば大気中あるいは、窒素中で、400〜500度の温度範囲で10分以上焼成することで、封着して構成される。
【0154】
また、104は、図1における電子放出素子に相当するものであり、102,103は、電子放出素子のカソード電極2、ゲート電極5とそれぞれ接続されたX方向配線及びY方向配線である。図10では電子放出素子104と配線102、103との位置関係は模式的に示されている。実際には、配線102と配線103との交差部の脇の基板上に電子放出素子104が配置されている。
【0155】
画像表示パネル117は、上述の如く、フェースプレート116、支持枠112、リアプレート111で構成される。ここで、リアプレート111は主に基板101の強度を補強する目的で設けられるため、基板101自体で十分な強度を持つ場合には、別体のリアプレート111は不要とすることができる。
【0156】
即ち、基板101に直接支持枠112を封着するとともに、支持枠とフェースプレート116とを封着して外囲器117を構成しても良い。一方、フェースプレート116とリアプレート111との間に、スペーサーとよばれる不図示の支持体を設置することにより、大気圧に対して十分な強度をもつ画像表示パネル117を構成することもできる。
【0157】
次に、上記画像表示パネル117に、テレビ信号に基づいたテレビジョン表示を行うための駆動回路の構成例について、図11を用いて説明する。
【0158】
図11において、117は画像表示パネル、122は走査回路、123は制御回路、124はシフトレジスタである。125はラインメモリ、126は同期信号分離回路、127は変調信号発生器、VxおよびVaは直流電圧源である。
【0159】
表示パネル117は、端子Dox1乃至Doxm、端子Doy1乃至Doyn、及び高圧端子Hvを介して外部の電気回路と接続している。
【0160】
端子Dox1乃至Doxmには、表示パネル117内に設けられている電子源、即ち、M行N列の行列状にマトリクス配線された電子放出素子群を一行(N素子)ずつ順次駆動する為の走査信号が印加される。
【0161】
一方、端子Doy1乃至Doynには、走査信号により選択された一行の電子放出素子の各素子の出力電子ビームを制御する為の変調信号が印加される。
【0162】
高圧端子Hvには、直流電圧源Vaより、例えば10[kV]の直流電圧が供給される。
【0163】
上述のように走査信号、変調信号、及びアノードへの高電圧印加により、放出された電子を加速して蛍光体へと照射することによって、画像表示を実現することができる。
【実施例】
【0164】
以下、上記実施の形態に基づいた、より具体的な実施例について説明する。
【0165】
(実施例1)
本実施例では、第1導電性膜6として窒化タンタル(TaN)を、第2導電性膜7としてモリブデン(Mo)を用いて、本発明の製造方法により電子放出素子を作製した。
【0166】
図4、5を参照して、本実施例に係る電子放出素子の製造方法の一例を説明する。
【0167】
まず、図4(a)に示すように基板1上に絶縁層30、40と、導電層50を積層する。基板1は高歪点低ナトリウムガラス(旭硝子(株)製PD200)を用いている。
【0168】
絶縁層30は、加工性に優れる材料からなる絶縁性の膜であるSi膜をスパッタ法にて形成し、その厚さとしては、500nmとした。絶縁層40は、加工性に優れる材料からなる絶縁性の膜であるSiOであり、スパッタ法にて形成し、その厚さとしては、30nmとした。導電層50はTaN膜で構成し、スパッタ法にて形成し、その厚さとしては、30nmとした。
【0169】
次に、図4(b)に示すように、フォトリソグラフィー技術により導電層50上にレジストパターンを形成したのち、ドライエッチング手法を用いて導電層50、絶縁層40、絶縁層30を順に加工する。この第1エッチング処理により、導電層50はパターニングされてゲート電極5となり、絶縁層30はパターニングされて第1絶縁層3となる。
【0170】
この時の加工ガスとしては、絶縁層30、40及び導電層50にはCF系のガスを用いた。このガスを用いてRIEを行った結果、絶縁層3,絶縁層44,及びゲート電極5のエッチング後の側面31の角度は基板1の表面(水平面)に対しておよそ80°の角度で形成され、斜面となっていた。
【0171】
レジストを剥離した後、図4(c)に示すようにBHF(ステラケミファ(株)製 高純度バッファードフッ酸LAL100)を用いて、リセス部42の深さが約100nmになるように、絶縁層40をエッチングした。この第2エッチング処理により、リセス部42を形成した。
【0172】
次に、図5(a)に示すようにTaN膜を第1導電性膜6として第1絶縁層3の斜面31上及び第1絶縁層3の上面32上に形成した。同時に、ゲート電極5上にもTaN膜が形成され、第3導電性膜7を形成した。本実施例では成膜方法としてスパッタ法を用い、基板の角度をスパッタタ−ゲットに対して水平になるようにセットした。第1絶縁層3の斜面31上のTaNの厚さが20nmになるように10nm/minの成膜速度で形成した。このとき、第1導電性膜6は、ゲート電極5とも第3導電性膜7とも接触しないように形成した。

図5(b)に示すようにモリブデン(Mo)膜を第2導電性膜7として、第1絶縁層3の上面32上の第1導電性膜6の上から、角部33を経て斜面31上の第1導電性膜6の上に至るように形成した。同時に、ゲート電極5上の第3導電性膜8の上にもに付着し、第4導電性膜9を形成した。本実施例では成膜方法としてスパッタ法を用い、基板の角度をモリブデンタ−ゲットに対して水平になるようにセットした。本実施例のスパッタ成膜ではスパッタ粒子が限られた角度(具体的には基板1に対して90±10°)で基板1に向かうよう、基板とMoターゲットの間に遮蔽板を設けた。更にアルゴンプラズマをパワー3kW、真空度0.1Paで生成し、基板とMoターゲットの間の距離を60mm以下(0.1Paでの平均自由行程)になるように基板を設置した。そして、第1絶縁層3の斜面31上のMoの厚さが40nmになるように10nm/minの成膜速度で形成した。このとき、リセス部42内への第2導電性膜7の入り込み量xが35nmとなるように形成した。このとき、第1導電性膜7は、第4導電性膜9と接触した。
【0173】
TEM(透過電子顕微鏡)観察とEELS(電子エネルギー損失分光)分析を行った。その結果をもとに、第2導電性膜7(および第4導電性膜9)のMoの膜密度を算出した。その結果、第2導電性膜7の、第1絶縁層3の上面32上(およびゲート電極5の上面52上)の部分の膜密度は10.0g/cmであった。第1絶縁層3の斜面31上(およびゲート電極5の側面51上)の部分の膜密度は7.8g/cmであった。
【0174】
次に、図8(a)、図8(b)に示す様に、カソード導電性膜10(第1導電性膜6及び第2導電性膜7)とゲート導電性膜12(第3導電性膜8及び第4導電性膜9)を、Y方向に複数に分割するパターニング処理を行った。このような形態とすることで、例えば1つのカソード導電性膜10とゲート13とが放電などによって短絡して破壊されても、他の導電性膜からの電子放出は維持することができる。
【0175】
ここでは、カソード導電性膜10及びゲート導電性膜12の幅Wが3μmのラインアンドスペースになるようにフォトリソグラフィー技術によりレジストパターンを形成した。その後、ドライエッチング手法を用いてカソード導電性膜10及びゲート導電性膜12をパターニングし、短冊化された複数のカソード導電性膜10及びゲート導電性膜12を形成した。この時の加工ガスとしては、モリブデンはフッ化物を作る材料であるので、CF系のガスを用いた。レジストを除去した後の段階では、第2導電性膜7と第4導電性膜9は接触したままだった。
次に、電子放出部となる間隙を形成する為に、図5(c)に示す様に、短冊化したカソード導電性膜10の第2導電性膜7とゲート導電性膜の第4導電性膜9に対してエッチング処理(第3エッチング処理)を行った。
【0176】
第3エッチング処理は、Moからなる第2導電性膜7と第4導電性膜9の表面を酸化する工程と、酸化した表面を除去する工程が含まれている。
【0177】
具体的には、Moを酸化する方法としてはエキシマUV(波長:172nm、照度:18mW/cm)露光装置を使用して、大気下で350mJ/cm照射した。この条件で、膜密度の低い部分では3nm程度、膜密度の高い部分では1〜2nm程度の膜厚で第2導電性膜7と第4導電性膜9の表面に酸化層が形成された。続いて温水(45℃)に5分間浸漬させて酸化モリブデン層を除去した。この工程で、第2導電性膜7と第4導電性膜9との間に間隙を形成した。
【0178】
続いて、図6(a)に示した様に、カソード導電性膜10の突起部の先端を先鋭化した。先鋭化の手法は第3エッチング処理と同様で、エキシマUV(350mJ/cm照射)による酸化工程でモリブデン酸化膜を形成し、温水(45℃、5分間浸漬)による除去工程で酸化膜除去を行うことによって、第2導電性膜7をエッチングする方法である。これを3回繰り返した。
【0179】
このように、本実施例では、第3エッチング処理として、酸化工程と除去工程を1サイクルとして、これを計4サイクル行った。
【0180】
断面TEMによる解析の結果、第2導電性膜7とゲート13との間の距離dが平均的に15nmとなっていた。
【0181】
次に図8に示すように、カソード電極2を形成した。カソード電極2には銅(Cu)を用いた。カソード電極2はスパッタ法にて形成し、その厚さは、500nmであった。
【0182】
以上の方法で電子放出素子を形成した後、図3に示した構成で電子放出素子の電子放出特性を評価した。
【0183】
ここで、電子放出特性の評価では、ゲート電極5の電位を+34Vとし、カソード電極2を0Vに規定した。これによって、ゲート電極5とカソード電極2との間に34Vの駆動電圧Vfを印加した。その結果、平均の電子放出電流Ieは20μAであり、平均15%の電子放出効率が得られる電子放出素子が得られた。また、カソード導電性膜10とゲート13との接触に起因するリーク電流も観測されなかった。
【0184】
この電子放出素子を多数用いた画像表示装置では、電子ビームの成形性に優れ、放電が生じても画素欠陥が生じずに良好な画像を長期に渡って維持することができる。また、効率向上に伴う、低消費電力な画像表示装置が提供できる。
【0185】
(実施例2)
本実施例では、第1導電性膜6としてタンタル(Ta)を、第2導電性膜7としてタングステン(W)を用いて、本発明の製造方法により電子放出素子を作製した。
【0186】
第1絶縁層3、第2絶縁層4、ゲート電極5を形成するまでの工程は実施例1と同様であるので、ここでは実施例1との違いのみを述べる。
【0187】
図5(a)に示すようにTaを第1絶縁層3の斜面31上及び第1絶縁層3の上面上に付着させ、第1導電性膜6を形成した。同時に、ゲート電極5上にもTaが付着し、第3導電性膜7を形成した。本実施例では成膜方法としてスパッタ法を用い、基板の角度をスパッタタ−ゲットに対して水平になるようにセットした。第1絶縁層3の斜面31上のTaの厚さが20nmになるように10nm/minの成膜速度で形成した。このとき、第1導電性膜6は、ゲート電極5とも第3導電性膜7とも接触しないように形成した。
【0188】
次に図5(a)に示すように第2導電性膜7としてWを、第1絶縁層3の上面32上から第1絶縁層3の側面31上の第1導電性膜6上に成膜した。
【0189】
図5(2)に示すようにWを、第1絶縁層3の上面32上の第1導電性膜6から、角部33を経て斜面31上の第1導電性膜6上に至るように付着させ、第2導電性膜を形成した。同時に、ゲート電極5上の第3導電性膜8上にも付着し、第4導電性膜9を形成した。本実施例では成膜方法としてスパッタ法を用いた。スパッタ法では基板1の角度をタ−ゲットに対して水平になるようにセットした。本実施例のスパッタ成膜ではスパッタ粒子が限られた角度(具体的には基板1に対して90±10°)で基板1に向かうよう、基板とスパッタンターゲットの間に遮蔽板を設けた。更にアルゴンプラズマをパワー500W、真空度0.1Paで生成し、基板とターゲットの間の距離を60mm以下(0.1Paでの平均自由行程)になるように基板を設置した。そして、第1絶縁層3の斜面31上のWの厚さが40nmになるように10nm/minの成膜速度で形成した。このとき、リセス部42内への第2導電性膜6の入り込み量xが35nm、また、第1絶縁層3の上面32と第2導電性膜7とが接する角度が110°となるように形成した。このとき、第1導電性膜7は、第4導電性膜9と接触した。
【0190】
その後、実施例1と同様に、カソード導電性膜10及びゲート導電性膜12とをドライエッチングにより短冊化した。なお、この時の加工ガスとしては、S6系のガスを用いた。 この段階では、第2導電性膜7と第4導電性膜9は接触したままだった。
【0191】
間隙を形成する為に、図5(c)に示す様に、短冊化したカソード導電性膜10及びゲート導電性膜12の第3エッチング処理を行った。エッチング処理はタングステン表面を酸化する工程と酸化した表面を除去する工程が含まれている。Wを酸化する工程として、エキシマUV(波長:172nm、照度:18mw/cm)露光装置を使用して、大気下で150mJ/cm照射した。続いて温水(70℃)に5分間浸漬させて酸化タングステン層を除去した。この工程で、カソード導電性膜10とゲート13との間に間隙が形成さたれた。
【0192】
続いて、図6(a)に示した様に、カソード導電性膜10の突起部の先端を先鋭化した。先鋭化の手法は第3エッチング処理と同様で、酸化工程でタングステン酸化膜を形成し、除去工程で酸化膜除去を行うことによって、第2導電性膜7をエッチングする方法である。
【0193】
今回は、エキシマUVによる酸化(150mJ/cm照射)と温水(70℃、5分間浸漬)による酸化膜除去の工程を1サイクルとして、これを2サイクル行った。
【0194】
断面TEMによる解析の結果、カソード導電性膜10とゲート13との間の距離dが平均的に13nmとなっていた。
【0195】
また、第1絶縁層3の斜面31上には第1導電性膜6として設けたTa膜が露出しており、その厚さは20nmと殆どエッチングされていなかった。
【0196】
次に図8に示すように、カソード電極2を形成した。カソード電極2には銅(Cu)を用いた。カソード電極2はスパッタ法にて形成し、その厚さは、500nmであった。
【0197】
以上の方法で電子放出素子を形成した後、図3に示した構成で電子放出素子の電子放出特性を評価した。
【0198】
ここで、電子放出特性の評価では、ゲート電極5の電位を+30Vとし、カソード電極2を0Vに規定した。これによって、ゲート電極5とカソード電極2との間に30Vの駆動電圧Vfを印加した。その結果、平均の電子放出電流Ieは12μAであり、平均11%の電子放出効率が得られる電子放出素子が得られた。また、カソード導電性膜10とゲート13(導電性膜60B1〜60B4)との接触に起因するリーク電流も観測されなかった。
【0199】
この電子放出素子を用いた画像表示装置では、電子ビームの成形性に優れた表示装置を提供できる。また、表示画像の良好な表示装置を実現できるとともに、効率向上に伴う、低消費電力な画像表示装置が提供できる。
【0200】
(実施例3)
本実施例では、第1導電性膜6として高膜質モリブデン(Mo)を、第2導電性膜7として低膜質モリブデン(Mo)を用いて、本発明の製造方法により電子放出素子を作製した。
【0201】
第1絶縁層3、第2絶縁層4、ゲート電極5を形成するまでの工程は実施例1と同様であるので、ここでは実施例1との違いのみを述べる。
【0202】
本実施例では、図5(a)に示すようにMoを第1絶縁層3の斜面31上及び第1絶縁層3の上面32上に付着させ、第1導電性膜6を形成した。同時に、ゲート電極5上にもMoが付着し、第3導電性膜7を形成した。本実施例では成膜方法としてスパッタ法を用いた。スパッタ法は、スパッタ粒子が限られた角度(具体的には第1絶縁層3の斜面31に対して90±10°)で入射されるよう、基板1とスパッタターゲットの間に遮蔽板を設け成膜し、Moの厚さが20nmになるように10nm/minの蒸着速度で形成した。これにより斜面31上では高膜密度のMo膜が得られた。
【0203】
このとき、第1導電性膜6は、ゲート電極5とも第3導電性膜7とも接触しないように形成した。
【0204】
次に図5(b)で示すようにMoを、第1絶縁層3の上面32上及び、斜面31上の高密度Moの上にスパッタ法を用いて付着させ、第2導電性膜7を形成した。同時に、ゲート電極5上のMo上にも付着した。本実施例のスパッタ法ではスパッタ粒子が限られた角度(具体的には基板1の表面に対して90±10°)で入射されるよう、基板1とターゲットの間に遮蔽板を設けた。そして、第1絶縁層3の上面32上のMoの厚さが40nmになるように10nm/minの蒸着速度で形成した。これにより第1絶縁層3の斜面31上には高膜密度のMo膜が得られた。
【0205】
TEM(透過電子顕微鏡)観察とEELS(電子エネルギー損失分光)分析を行い、Moの膜密度を算出すると斜面31上のMo膜の膜密度は10.0g/cm、上面32上のMo膜の膜密度は7.8g/cmであった。
【0206】
その後、実施例1と同様に、カソード導電性膜10及びゲート導電性膜12とをドライエッチングにより短冊化した。なお、この時の加工ガスとしては、S6系のガスを用いた。
【0207】
この段階では、第2導電性膜7と第4導電性膜9は接触したままだった。
【0208】
間隙を形成する為に、図5(c)に示す様に、短冊化したカソード導電性膜10及びゲート導電性膜12の第3エッチング処理を行った。第3エッチング処理は40℃に加熱した0.238%TMAH中で30分間浸漬揺動した。
【0209】
断面TEMによる解析の結果、カソード導電性膜10の突起部とゲート13間の間隔dが平均的に12nmとなっていた。
【0210】
また、第1絶縁層3の斜面31上には第1導電性膜6として設けた高膜密度Mo膜が露出しており、その厚さは20nmと殆どエッチングされていなかった。
【0211】
次に図8に示すように、カソード電極2を形成した。カソード電極2には銅(Cu)を用いた。カソード電極2はスパッタ法にて形成し、その厚さは、500nmであった。
【0212】
以上の方法で電子放出素子を形成した後、図3に示した構成で電子放出素子の電子放出特性を評価した。
【0213】
ここで、電子放出特性の評価では、ゲート電極5の電位を+30Vとし、カソード電極2を0Vに規定した。これによって、ゲート電極5とカソード電極2との間に30Vの駆動電圧Vfを印加した。その結果、平均の電子放出電流Ieは12μAであり、平均11%の電子放出効率が得られる電子放出素子が得られた。また、カソード導電性膜10とゲート13(導電性膜60B1〜60B4)との接触に起因するリーク電流も観測されなかった。
【0214】
この電子放出素子を用いた画像表示装置では、電子ビームの成形性に優れた表示装置を提供できる。また、表示画像の良好な表示装置を実現できるとともに、効率向上に伴う、低消費電力な画像表示装置が提供できる。
【0215】
(実施例4)
本発明による作製方法で電子放出部となるカソード導電性膜10の先鋭化による効率向上が達成された電子放出素子を形成し、電子源の特性を評価した。
【0216】
基本的な作製方法は実施例1と同様であるので、ここでは実施例1との違いだけ述べる。
【0217】
実施例1と同様の製造方法で第3エッチング処理までを実施した。但し、本実施例では酸化工程、除去工程の繰り返しを4サイクルから7サイクルに変更した。この結果、カソード導電性膜10の先鋭化は更に進んだ一方で、ゲート13とカソード導電性膜10との間隙は23nmまで拡がった。また、第1絶縁層3の斜面31上にはTaN膜が露出していたがは殆どエッチングされていなかった。
【0218】
次いで、図6(b)に図示した様に、上面32上の第2導電性膜7上にメタルマスクを介して、低仕事関数材料を付着させて低仕事関数膜14を形成した。低仕事関数膜14は、ゲート導電性膜12上及び斜面31上の第2導電性膜7上にも付着した。
【0219】
本実施例では仕事関数材料として、酸化イットリウム(Y)を用いた。Yは、イオンプレーティング法によりアモルファス状のY膜を厚さ10nmに成膜し、21%の酸素を含むアルゴン雰囲気中において400℃で、基板1を加熱することで形成した。
【0220】
断面TEMによる解析の結果、図6(b)における電子放出部となるカソードの突起部とゲート電極の突出部との間の間隔dが平均的に5nmとなっていた。
【0221】
次いで、実施例1と同様に電極2としてCuを形成した後、図3に示した構成で電子源の特性を評価した。
【0222】
ここで、電子放出特性の評価では、ゲート電極5の電位を+26Vとし、カソード電極2を0Vに規定した。これによって、ゲート電極5とカソード電極2との間に26Vの駆動電圧Vfを印加した。その結果、平均の電子放出電流Ieは25μAであり、平均17%の電子放出効率が得られる電子放出素子が得られた。また、カソード導電性膜10とゲート13との接触に起因するリーク電流も観測されなかった。
【0223】
この電子放出素子を用いた画像表示装置では、電子ビームの成形性に優れた表示装置を提供できる。また、表示画像の良好な表示装置を実現できるとともに、効率向上に伴う、低消費電力な画像表示装置が提供できる。
【図面の簡単な説明】
【0224】
【図1】本発明の電子放出素子の構成を表す模式図
【図2】本発明の電子放出素子の詳細を表す断面拡大模式図
【図3】本発明の電子放出素子の特性を測定する構成を表す模式図
【図4】本発明の電子放出素子の製造方法(工程1〜3)の一例を表す模式図
【図5】本発明の電子放出素子の製造方法(工程4〜6)の一例を表す模式図
【図6】本発明の電子放出素子の製造方法(工程6)の別の例、及び(工程7)を表す模式図
【図7】本発明の工程6に関する説明図
【図8】実施例1の形態の説明図
【図9】電子放出素子を配列した電子源に関する説明図
【図10】電子放出素子を用いた画像表示装置の説明図
【図11】画像表示装置を駆動する駆動回路の一例を表す回路図
【図12】成膜角度とエッチングレート、および、膜密度と抵抗率の関係を表す図
【符号の説明】
【0225】
1 基板
2 カソード電極
3 第1絶縁層
5 ゲート電極
6 第1導電性膜
7 第2導電性膜

【特許請求の範囲】
【請求項1】
電子放出素子の製造方法であって、
上面及び該上面と接続する側面を備える絶縁層の少なくとも前記側面の上に第1導電性膜を設ける第1工程と、
前記上面の上から前記側面の上に渡って、かつ前記第1導電性膜の上に、第2導電性膜を設ける第2工程と、
前記第2導電性膜をエッチングする第3工程と、を有し、
前記第2工程は、前記第2導電性膜の前記上面の上に位置する部分の膜密度が、前記第2導電性膜の前記側面の上に位置する部分の膜密度より高くなるように、前記第2導電性膜を設ける工程であり、
前記第3工程は、前記第2導電性膜の膜密度が低い部分を、前記第2導電性膜の膜密度が高い部分よりも多くエッチングする工程であることを特徴とする電子放出素子の製造方法。
【請求項2】
前記第3工程は、前記第2導電性膜をエッチング液を用いてエッチングする工程であることを特徴とする請求項1に記載の電子放出素子の製造方法。
【請求項3】
前記第1導電性膜の前記側面の上に位置する部分は、前記エッチング液に対して、前記第2導電性膜の前記側面の上に位置する部分よりエッチングレートが低いことを特徴とする請求項2に記載の電子放出素子の製造方法。
【請求項4】
前記第1導電性膜の前記側面の上に位置する部分の膜密度が、前記第2導電性膜の前記側面の上に位置する部分の膜密度より高いことを特徴とする請求項1乃至3のいずれか1項に記載の電子放出素子の製造方法。
【請求項5】
前記第1導電性膜と前記第2導電性膜とが異なる材料であることを特徴とする請求項1乃至4のいずれか1項に記載の電子放出素子の製造方法。
【請求項6】
下記の条件式を満たすことを特徴とする請求項1乃至5のいずれか1項に記載の電子放出素子の製造方法。
1s/E1s+T2s/E2s≧T2t/E2t・・・条件式
ここで、T1sは前記第1導電性膜の前記側面の上に位置する部分の膜厚、E1sは前記第1導電性膜の前記側面の上に位置する部分の前記第3工程におけるエッチングレート、T2sは前記第2導電性膜の前記側面の上に位置する部分の膜厚、E2sは前記第2導電性膜の前記側面の上に位置する部分の前記第3工程におけるエッチングレート、T2tは前記第2導電性膜の前記上面の上に位置する部分の膜厚、E2tは前記第2導電性膜の前記上面の上に位置する部分の前記第3工程におけるエッチングレートである。
【請求項7】
前記第1工程において、前記第1導電性膜は、前記上面の上にも設けられ、前記第1導電性膜の前記斜面の上に位置する部分の膜密度が、前記第1導電性膜の前記上面の上に位置する部分の膜密度より高くなるように設けられることを特徴とする請求項1乃至6のいずれか1項に記載の電子放出素子の製造方法。
【請求項8】
前記第3工程は、前記第2導電性膜の表面を酸化する酸化工程と、該酸化工程で酸化された部分の少なくとも一部を除去する除去工程とを含む工程であることを特徴とする請求項1乃至7のいずれか1項に記載の電子放出素子の製造方法。
【請求項9】
前記第3工程は、前記酸化工程と前記除去工程とを繰り返す工程であることを特徴とする請求項8に記載の電子放出素子の製造方法
【請求項10】
前記上面の上方に電極を設ける工程をさらに有し、
前記第2工程において、前記電極と前記第2導電性膜とが接続し、
前記第3工程において、前記電極と前記第2導電性膜との間に間隙を形成することを特徴とする請求項1乃至9のいずれか1項に記載の電子放出素子の製造方法。
【請求項11】
前記第2工程において、前記2導電性膜を設けると同時に、前記電極の上に導電性膜を形成し、該導電性膜と前記第2導電性膜とが接触し、
前記第3工程において、前記導電性膜と前記第2導電性膜とが離間することを特徴とする請求項10に記載の電子放出素子の製造方法。
【請求項12】
複数の電子放出素子と、該複数の電子放出素子から放出された電子が照射される発光体と、を備える画像表示装置の製造方法であって、前記複数の電子放出素子の各々が、請求項1乃至11のいずれか1項に記載の製造方法で製造されることを特徴とする画像表示装置の製造方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate


【公開番号】特開2010−146916(P2010−146916A)
【公開日】平成22年7月1日(2010.7.1)
【国際特許分類】
【出願番号】特願2008−324466(P2008−324466)
【出願日】平成20年12月19日(2008.12.19)
【出願人】(000001007)キヤノン株式会社 (59,756)
【Fターム(参考)】