説明

電気絶縁構造体を電解処理するための装置および方法

電気絶縁箔材料上で互いに電気絶縁された小さな導電性構造体の連続的な電解処理を可能にするために、互いに電気絶縁された、ワークピース(1)の表面上の導電性構造体を電解処理するための装置が設けられ、前記装置には、a)ワークピース(1)と接触するための少なくとも1つの電極(6)、ならびに少なくとも1つの電解領域であって、そのそれぞれ1つにおいて、少なくとも1つの対向電極(4)およびワークピース(1)が処理液に接触する電解領域、を含む少なくとも1つの配列と、b)少なくとも1つの電解領域の外に配置され、かつ処理液と接触していない少なくとも1の接触電極(4)と、が含まれ、そしてc)少なくとも1の接触電極(6)および少なくとも1つの電解領域が共に非常に接近して離間配置されているので、小さな導電性の構造体を電解処理することができる。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、コンベア化されためっきラインにおいて、ストリップ形状ワークピースの表面における互いに電気絶縁された導電性構造体を電解処理するための装置および方法に関する。
【背景技術】
【0002】
チップカード(スマートカード)、正札または品物の識別タグを製造するために、箔状のプラスチックが利用され、その上に、所望の電気的機能に必要な導電性構造体が作製される。
【0003】
従来の方式は、たとえば銅被覆材を利用し、そこから、エッチングプロセスを用いて所望の金属パターンを作製する。この方法のコストを低下させ、かつエッチングプロセスで達成し得るものよりも微細な構造体の製造を可能にするために、電解析出を用いて金属構造体を作製しようとする意図がある。アンテナコイルを製造するためのこのような周知の方法が、(特許文献1)に記載されている。これによれば、金属構造体は、次の方法ステップを伴う方法シーケンスを用いて、ポリオレフィンフィルムに作製される。すなわち、それらのステップは、膨潤、エッチング、触媒活性金属を後で吸着するための、プラスチック材料のコンディショニング、触媒活性金属の堆積、ネガ像形態のマスクの印刷、触媒活性化合物の促進、ならびに無電解および電解金属めっきである。
【0004】
ストリップを金属めっきするプロセスには、とりわけ電気めっき法が含まれる。この目的のために、長年、いわゆるリールツーリール処理設備が、コンベア化されためっきラインとして用いられており、材料は、このラインを通して搬送され、移送中に処理液と接触する。テープは、電解金属析出のために電気接触される。接触電極が、この目的に役立つ。電解処理のためには、2つの電極すなわち接触電極および対向電極か、または処理ラインにおいて処理液内に対向電極のみを配置することが可能である。
【0005】
(特許文献2)には、導電性のストリップ形状ワークピースを電気めっきまたは電解エッチングするための装置が記載されているが、この場合に、電気接触を確立する役割を果たす接触ローラ、および対向電極は、両方とも浴内に配置されている。このような構成の問題は、接触ローラもまた浴内で金属めっきされ、接触ローラ上に析出した金属が、敏感な箔を損傷する危険があるということである。
【0006】
電解浴内における陰極への金属析出を回避または低減する目的で、(特許文献3)は、構造体、すなわち陽極および回転接触ローラが電解浴に位置している、ストリップ用のリールツーリール設備において、すでに、基板上で導電性であるように構成された構造体の電気めっきを強化するための電気めっき設備について記載している。接触ローラは、基板の方に回転された側で、直流源の陰極に接続され、基板から離れるように回転された側で、電流源の陽極に接続される。これは、直流モータのコレクタの方法と類似の方法において、接触ローラをセグメント化することによって可能になる。その結果、通常動作中、ローラの1回転の間に接触ローラ上に析出した金属は、陽極への電位を変更することによって取り除くことができる。この方法の主な欠点は、金属めっきおよび脱めっきの永続的な交互動作の結果として、接触ローラが、激しい磨耗に曝されるということである。この理由で、非常に複雑で高価なコーティングが用いられることになる。
【0007】
しかしながら、根本的な欠点は、全面積にわたって導電性の表面だけが電解処理可能であり、一方で互いに絶縁され、かつたとえばアンテナコイルの作製が望ましい構造体が、電解処理されないということである。
【0008】
したがって、(特許文献4)は、電気絶縁された箔材料の表面で互いに電気絶縁された導電性構造体の非接触電解処理のための方法および装置を開示しているが、この場合に、材料は、処理液と接触している間に、処理設備を通って搬送経路を搬送される。移送中に、材料は、少なくとも1つの電極配列を通り過ぎて案内されるが、各電極配列は、陰極の極性を与えられた電極および陽極の極性を与えられた電極からなり、陰極の極性を与えられた電極および陽極の極性を与えられた電極は、交互に処理液と接触する。電流源によって、電流が、電極および導電性構造体を通して流される。それによって、電極は、実質的には電流が2つの反対の極性を与えられた電極間を直接流れることができないような方法で、互いにシールドされる。記載した方法の欠点は、析出金属層が、厚さの薄いコーティングにしかなれないということである。なぜなら、電極配列の結果として、金属は、一方では析出されるが、他方ではまた、ワークピースが陰極の極性を与えられた電極を通り過ぎて案内されるときに、少なくとも部分的に再び溶解されるからである。
【0009】
前述の電極配列とは異なり、(特許文献5)は、プリント回路基板など平面ワークピースの全表面をめっきするためのめっき装置を記載しているが、この場合に、陰極は、電解液の外で接触され、材料が陰極および電解液と接触している限り、金属の析出が可能になる。電解槽の外で電気接触を確立するために、接触ローラ、ブラシまたはグライドが用いられる。ローラは、シールローラによって電解槽に対してシールされる。しかしながら、この装置は、ストリップ形状ワークピースおよび絶縁構造体の処理には適していない。
【0010】
(特許文献6)は、1つの導電面を有する可撓性ストリップの電気化学的なリールツーリール処理のための、陰極接触ローラを電解液の外に位置させた装置を提案している。ストリップが回りに巻かれた特別な陽極ローラが、電解液内に回転自在に配置されている。そのために、陽極ローラには、イオン透過性の電気絶縁層が設けられるが、この層は、陽極からはできる限り小さな画定された距離で、ストリップを離間配置しておく。だが、互いに電気絶縁された構造体を有する表面を処理することはできない。
【0011】
その結果、周知の方法によっては、互いに電気絶縁された小さな構造体であって、ストリップ処理ラインまたはコンベア化されたラインにおいて、箔ストリップ形状の電気絶縁ワークピースに堆積された小さな構造体、を備えた表面を電解処理することが不可能である。
【0012】
【特許文献1】米国特許第4,560,445号明細書
【特許文献2】独国特許発明第100 65 643 C2号明細書
【特許文献3】国際公開第03/038158 A号パンフレット
【特許文献4】独国特許発明第199 51 325 C2号明細書
【特許文献5】米国特許第6,309,517号明細書
【特許文献6】独国特許出願公開第100 65 649 A1号明細書
【発明の開示】
【発明が解決しようとする課題】
【0013】
したがって、本発明の根底をなす問題は、周知の電解処理装置および方法の欠点を回避することである。特に、本発明の目的は、電気絶縁箔材料の表面で互いに電気絶縁された小さな導電性構造体の連続的な電解処理を可能にする装置および方法を見い出すことである。本発明のさらなる目的は、方法および装置、すなわち、このようなタイプの導電性構造体を備えた箔材料であって、物流センタにおいて、品物をたとえばマークし、自動的に識別し、配送する役割を果たすチップカードの部品として、またはたとえばアクセス制御のために電子身分証明書として用いられる箔材料の製造のために利用できる方法および装置、を見出すことである。このようなタイプの電子部品は、非常に低いコストで超大規模に製造するためのものである。本発明のさらに別の目的は、プリント回路技術におけるプリント回路箔と、玩具用、自動車工学または通信機器におけるなど、簡単な電気回路を有するプリント回路箔と、を製造するために利用可能な方法および装置を見出すことである。
【課題を解決するための手段】
【0014】
本発明は、請求項1による装置および請求項24による方法を提供する。本発明の好ましい実施形態は、従属項に列挙される。
【0015】
本明細書および添付の特許請求の範囲において用いられているように、単数形式「a」、「an」および「the」には、内容が別の状況を明白に指示しない限り、複数の指示対象が含まれ、逆の場合も同様であることに留意されたい。したがって、たとえば、複数のワークピースへの言及には、単一のワークピースが含まれ、「接触電極」への言及には、2つ以上のこのような接触電極への言及が含まれ、また「電解領域」への言及には、2つ以上の電解領域への言及が含まれる。さらに、ワークピースへの言及には、箔ストリップ、箔セグメント、またはパネル等が含まれる。
【0016】
本発明の方法および装置は、具体的には、電気絶縁ストリップ形状ワークピースの表面上で互いに電気絶縁された小さな導電性構造体(特に、このような導電性構造体を設けられたプラスチックストリップ(プラスチック箔)の)を電解処理する役割を果たす。このようなタイプの構造体の寸法は、数センチメートル、たとえば2〜5cmである。
【0017】
ワークピースは、両側(表面)または一側のみを処理することができる。最初前者の場合には、電解処理を実行するための適切な準備を両側でしなければならず、後者の場合には一側のみでなされる。
【0018】
本発明の方法および装置はまた、スルーめっきまたは金属めっき、たとえばワークピースのホールのために用いてもよい。ワークピースの一側における絶縁構造体は、他側に設けられた絶縁構造体、たとえば、コンデンサまたはチップなどの半導体部品と接触してもよい。
【0019】
本発明の装置には、ワークピース用の少なくとも1つの接触電極および少なくとも1つの電解領域を含む少なくとも1つの配列が含まれる。電解領域において、少なくとも1つの対向電極およびワークピースが、処理液と接触する。接触電極は、処理液との接触を防止される。接触電極および電解領域は、小さく隔たった距離、すなわち、互いに電気絶縁され、かつ電気絶縁箔ストリップ形状ワークピースの表面上で処理されることになる導電性構造体が、電解処理され得るような小さく隔たった距離で離間配置されている。処理ライン内に、いくつかのこのような電極配列を、前後になるように連続して配置してもよい。いくつかのこのようなタイプ処理ラインを連続して接続してもよい。
【0020】
接触電極と電解領域との間の間隔(距離)は、絶縁構造体のサイズを考えて、できる限り小さくすべきである。電解領域と接触電極との間の間隔を決定する際に、電解領域の始めと、ワークピースと十分な接触を確立する接触電極上の箇所との間の間隔が極めて重要である。この間隔を最小限にすべきである。それは、たとえば5cmの導電性構造体であっても、やはり良好な結果で電解処理可能なように選択すべきである。
【0021】
接触電極と電解領域とのこの配列によって、互いに電気絶縁された小さな構造体であっても確実に電気めっきすることが可能になる。接触電極と電解領域との間の間隔が小さければ小さいほど、構造体の端部エリア(移送方向に見て)と中央エリアとの間のコーティング厚さの差が小さくなるが、これは、構造体が、接触電極と接する一方で、同時に、本発明の装置を通した搬送経路の所定の距離だけ電解領域に存在するという事実のためであろう。端部エリアと中央エリアとで同じ厚さを有する層が実現可能なのは、装置における接触電極間の間隔が非常に小さいので、ワークピースがラインを通って案内されるときに、構造体が少なくとも1つの接触電極によって常に電気接触され得る場合である。これが可能なのは、構造体が比較的大きい場合かまたは接触電極間の間隔が小さい場合だけである。本発明の目的が、実行可能な限り均一に、寸法がほんの数センチメートルの構造体を金属めっきすることに存するので、接触電極間の間隔もまた、数センチメートルを超えるべきではない。
【0022】
特に有利な実施形態は、少なくとも2つの接触電極を設けることに存し、それらのうちの1つは、電解領域を通っている移送セクションの一側に配置され、もう一方は、前記移送セクションの他側に配置されている。言及したように、非常に均一な電解処理の利点を達成するために、電解領域を通っている移送セクションは、この場合には、とても短くして導電性構造体が接触電極の1つと永続的に電気接触しているように選択するのが好ましい。
【0023】
原則として、上記で言及した原理を実現するための複数の実施形態が考えられる。特に好ましい第1の実施形態は、処理液および少なくとも1つの対向電極を含む少なくとも1つの処理モジュールを提供することに存し、ワークピースは、方向変化なしに、移送方向にモジュールを通って案内される。この場合に、ワークピースを、水平かまたは垂直の向きで案内してもよく、傾斜した向きもまた可能である。ワークピースが処理モジュールに入り、前記モジュールから出るために、処理モジュールにはそれぞれ、入口側の少なくとも1つの通路および出口側の1つの通路が含まれる。本実施形態において、接触電極は、通路に配置されている。電解領域は、処理モジュールに位置している。本実施形態によって、非常に小さな構造体であってもその処理を可能にする電極および電解領域の非常にコンパクトな配列を達成することが可能になる。いくつかのこのようなタイプの処理モジュールを連続して配置してもよい。
【0024】
別の第2の実施形態では、処理液および少なくとも1つの対向電極を含む少なくとも1つのタンクが設けられている。ワークピースが案内される搬送経路は、液体表面を通過してタンクの中へ入り、液体内を対向電極へ進み、そこから液体表面を通過してタンクから出る。この場合に、接触電極は、処理液と接触せずに、処理液表面の(すぐ隣)に配置されている。この場合に、接触電極および対向電極が液体表面により接近して配置されて(接触電極は液体の外に、対向電極は液体内に)いればいるほど、非常に小さな構造体を電解処理する可能性もまたよりよい。この配列のおかげで、接触電極は、特に、搬送経路が液体表面を横断する箇所で液体表面のすぐ近くに配置可能である。ゆえに、上記でなされた考察が適用される。水平への方向変化から遠くない、液体表面レベルの上のほぼ上向きの搬送経路に絞りローラまたはエアナイフを配置することによって、一緒に運ばれた処理液をローラまたはエアナイフで除去し、タンクに戻してもよい。
【0025】
しかしながら、接触電極は、前記電極が液体と接触するのを防ぐために、液体表面から最低限の距離を離して、離間配置しなければならない。
【0026】
できる限り集中的な電解処理を達成するために、本実施形態における搬送経路は、偏向ローラまたはシリンダなどの偏向手段を数回通り過ぎる間に、液体表面を通過してタンクに入り、液体を横断し、表面を通過してタンクから出てもよい。
【0027】
処理される絶縁構造体の最小サイズは、接触電極と対向電極との間で達成可能な最小間隔によって特に決定される。最小間隔は、電解領域から接触電極を分離する距離と同様に、接触電極の空間的寸法にとりわけ依存する。したがって、接近した離間関係で軸に配列されたローラまたは複数のリールとして接触電極を構成し、ローラまたはリールが非常に小さな直径を有し、その結果、ローラまたはリール電極の長手方向軸と電解領域との間の間隔を非常に小さく選択可能なのは有利である。このように達成可能なコンパクトな配列のおかげで、寸法が2cmのオーダまたはそれ未満でさえある構造体の電解処理が達成可能になる。
【0028】
たとえば、できる限り小さな円形接触電極を用いることによって電極間の最小間隔を縮小する試みは、特に弾性接触材料が用いられている場合には、結果としてもたらされる接触電極の機械的不安定性によって台無しにされることが多い。いずれにせよ、この問題が回避可能なのは、接触電極に合わさるように配置され、かくしてそれらを安定させ、必要なときにはそれらを共にわずかに押圧しさえする機械的に安定したピンチローラまたはリールを用いることによってである。
【0029】
ローラおよびリールの代わりに、ブラシか、またはワークピースの表面をぬぐう導電性のスポンジ状装置を、接触電極として用いることができる。
【0030】
接触電極は、重力によってかつ/またはおよび/またはおよび/またはバネ力の印加によってワークピースの表面に押圧される。
【0031】
第2の実施形態において、接触電極と液体表面との間の間隔を調節する場合、接触電極は、処理溶液と接触することが許されない。接触電極が、電解金属析出プロセスにおいて、たとえば陰極として用いられる場合、接触電極は、望ましくない金属化に対して保護されなければならない。しかしながら、接触電極と処理液表面との間の間隔を、実際には一定に保てないことが分かった。その結果、この間隔を調節するときに、困難が発生し得る。間隔におけるこれらの変動は、処理タンクにおける処理液表面レベルの変化のためであり、前記変化は、たとえば、前記タンクに空気が吹き付けられることによって引き起こされる。さらに、液体表面レベルは、蒸発によってか、または処理液が処理液を通って搬送されるワークピースによってタンクから引き出されることによって、減少する可能性がある。他方では、引き出されたかまたは補給された処理液がタンク戻された場合に、液体表面レベルはまた増加できる。
【0032】
この問題を回避するために、ワークピースは通過させるがしかし接触電極が処理液でぬらされるのを保護する隔壁部材を、接触電極と処理液との間にで液体の表面の近くに挿入することが有利だと分かった。ワークピースが処理液の中へ、かつそこから外へ案内され得るように、この隔壁部材には、ワークピースを案内可能なスロットなどの通路開口部が含まれなければならない。このような隔壁部材は、たとえば、このようなスロットが形成された適切な形状の液体カバープレートであってもよい。代替として、2つのカバープレートを設け、スロットを形成するように前記2つのカバープレートを共に接近させて離間配置してもよい。
【0033】
本発明の電極配列には、液体を処理タンクに保持するために、シールリップおよび/またはおよび/またはスクレーパを備えたシール壁などのシール部材がさらに含まれる。さらに絞りローラが存在してもよく、前記ローラは、たとえば箔が液体から取り出されるときに液体をとどめておく一方で、ワークピースを確実に案内する。このようなタイプシール部材は、本発明の第1の実施形態における処理モジュールに設けられた通路と、第2の実施形態の隔壁部材との両方に設けてもよい。前記シール手段は、残留している液体が、実現可能な限り接触電極と接触しないように、液体を電解領域内にできる限り完全に保持する役割を果たす。また、いくつかのこのような絞りローラ(シールローラ)を互いの上に積み重ねて、回転中にそれらが相互にシールするようにしてもよい。
【0034】
処理液が接触電極と接触するのを確実に防ぐことが不可能な場合には、電解領域から出て接触電極に達した処理液は、連続的または断続的な洗浄または吹き付けを行なうことによって、除去してもよい。処理液を接触電極から効率的にリンスするために、たとえば、少なくとも5°、多くて約70°、好ましくは約15°の角度で水平に傾いた平面で、ワークピースを移送してもよい。接触電極に送出されたリンス液は処理液の効率的な除去が可能になるように、迅速に排出される。代替として、電解領域から出た処理液はまた、たとえばエアナイフを用い、エアジェットによって除去できる。
【0035】
接触電極がローラとして構成されている場合、ワークピースは、一側のみが処理されるときには、接触するローラおよび対向する無電流ローラ(支持ローラ)によって電気接触することができる。導体パターンが両側に生成されることになる場合には、接触ローラは、ワークピースの両側に設けられることになる。
【0036】
接触電極および対向電極を細長く構成し、かつそれらを、ワークピースの全有効幅にわたって延伸するような方法で配列することが有利である。この目的のために、それらを、特に、搬送経路とほぼ平行に配置可能である。
【0037】
第2の実施形態の場合には、電気接触を確立するために、偏向ローラもまた用いてもよい。
【0038】
ローラ形の接触電極は、弾性導電性材料から製造可能なのが好ましい。それによって、一方では、ワークピースの表面に非常に高い電流を伝送することが、他方では、接触電極と電解領域との間の間隔を縮小することが可能になる。なぜなら、これらの間隔を決める、電極とワークピース表面との間の接触面が、硬質ローラの場合にそうであるように狭く細長いエリアではなく、むしろ幅広いエリアだからである。可能な弾性接触材料は、金属/プラスチック複合材料であり、特に、大量の導電性フィラーを有する弾性プラスチック材料から形成された複合材料である。それらは、天然ゴム、シリコンまたは電気化学的に安定している他の弾性プラスチックなど、バインダとしてのエラストマ、および導電性フィラーからなる。バインダにはまた、それらが電子機器製造分野で用いられるときには、完全には硬化しない導電性接着剤が含まれる。導電性フィラーは、製造中にこのようなタイプの材料に混合される。金属プラスチック複合材料はこのようにして得られる。
【0039】
包含要素(inclusion componentinclusion component)とも呼ばれるフィラーは、粉末、ファイバ、ニードル、シリンダ、球、薄片、フェルトまたは他の形状の金属からなるのが好ましい。接触材料全体に対するフィラーの量は、90重量%まで達する。フィラーの量が増加するにつれて、金属プラスチック複合材料の弾性が減少し、導電性が増加する。これら2つの値は、関連する適用ケースに応じて調節される。導電性でもある電気化学的に安定した材料は全て、フィラーとしての使用に適している。現在用いられているフィラーは、たとえばチタン、ニオブ、プラチナ、金、銀、特殊鋼およびエレクトロコール(electrocoalelectrocoal)である。たとえば、チタン、銅、アルミニウムまたはガラスから作製された球体などの、プラチナめっき、銀めっきまたは金めっきされた粒子を用いてもよい。
【0040】
均一な電解処理、たとえば、高い陰極電流密度であっても均一厚さの金属層を達成するために、対向電極とワークピースの搬送経路との間の距離はできる限り小さく調節されるので、ワークピースおよび対向電極が望ましくない接触に至ると、それらの間に電気短絡が生じる危険がある。この危険を確実に回避するために、対向電極には、好ましくは柔らかくて液体を透過させる、イオン透過性の非導電性コーティング(絶縁層)を設けてもよい。かくして、絶縁コーティングを備えた対向電極がワークピースの表面近くに引き寄せられ、コーティングがワークピースの表面と接触するという点において、対向電極とワークピースとの間の間隔を最小限することが可能である。
【0041】
対向電極と搬送経路との間の間隔が非常に小さくなるように調節されるので、対向電極のコーティングが、ワークピースが案内されて電極を通り過ぎるときにワークピースをぬぐう場合には、コーティングを、ワークピースの表面と対向電極それぞれの表面との間で好ましく固定することができる。この目的のために、コーティングは、特に、対向電極とワークピース表面とによって形成されるギャップを越えて突出し、電解領域から離れる向きの槽壁側部でより厚く、かくして、ギャップ幅を越えて突出して、槽壁の外側部でぴったりした状態であってもよい。
【0042】
後の実施形態において、処理液が電解領域から出るのを防ぐために、処理モジュール内にロックチャンバをさらに設けてもよく、前記チャンバは、移送方向に見て、電解領域の直前または直後に配置される。その結果、処理モジュール内にはさらなる隔壁が設けられて、前記壁は、電解領域をロックチャンバから分離する。したがって、ロックチャンバは、隔壁および槽壁によって画定される。本実施形態において、ロックチャンバは、上記に記載したシールリップを有するシール壁によって、外部に対してシールしてもよい。
【0043】
特に薄いワークピースが曲がるのを防ぐために、対向電極をたとえば回転自在に担持し、その表面を接触ローラと同じ速度で回転させてもよい。対向電極および接触電極をたとえば電動として、ワークピースを陽極に接して回転させてもよく、その結果、対向電極および接触電極はまた、搬送部材としての役割を果たす。対向電極は、異なる方法で形成してもよい。それらは、プレートまたはエキスパンドメタルとして形成してもよい。様々なタイプの対向電極を組み合わせてもよい。ワークピース表面において活性化学物質の消耗を防ぐために、対向電極の内部から新しい電解液を連続的に供給してもよい。したがって、エキスパンドメタルで作製された対向電極が好ましい。これによって、電解析出中に焼けの発生なしに、高い陰極電流密度での動作が可能になる。
【0044】
電解金属析出の場合には、接触電極は陰極の極性を与えられ、対向電極は陽極の極性を与えられる。可溶性および不溶性陽極の両方とも、対向電極として用いることが可能である。不溶性金属で作製された円形フラッド陽極(round flood anodes)または陽極ローラをたとえば用いてもよいが、本発明の第2の実施形態において、それらの回りにはワークピースが、巻かれ、それによって回転される。フラッド陽極には中空の空間が含まれ、そこに処理液を注入してもよく、次に、液体をそこから外に、陽極シェルの開口部を通して圧力下で押し出してもよい。かくして、ワークピースの処理すべき表面に、新しい処理液を効率的に連続して供給することが可能になる。陽極の寸法は、ワークピースのそれと同じであるのが好ましい。
【0045】
本発明による装置を、第1の実施形態における電解金属析出に利用する場合には、処理液中の陽極、たとえばフラッド陽極は、細長くしてワークピースとほぼ直角の向きに構成してもよい。特定の有利な実施形態において、ワークピースは、電気短絡を生じることなく、陽極に設けられた、非導電性で好ましくは柔らかな液体およびイオン透過性コーティングを案内されて通り過ぎることが可能である。この配列は、陽極に加えて電解液供給および吐き出しラインを装備可能な、上記で言及した処理モジュールで提供される。液漏れに対してモジュールをシールするために、モジュールには、全ての側部に壁が設けられ、前記壁には、たとえば、ワークピースのための通路開口部、好ましくはスロットが設けられる。スロットを設けられたこれらの壁は、モジュールの入口側および出口側に配置され、前述のシール部材を追加的に含む。シール部材によって、大量の電解液が槽から漏れるのが防止され、したがって、金属が陰極接触要素に析出するのが防止される。シール部材は、たとえば、ワークピースを破壊せずに、それらをぬぐうシールリップを備えたシール壁であってもよい。したがって、液体は、モジュールから出るのを防止される。特に敏感な箔を処理することになる場合には、弾性シールリップをシールローラと組み合わせてもよい。長さが30〜45mmおよびそれ未満の範囲の小さな導電性の絶縁構造体の処理を可能にするために、全てのローラの直径は、できる限り小さく維持しなければならない。直径の下限は、ワークピースに押圧されるローラに必要な機械的安定性によって決定される。
【0046】
対向電極と接触電極との間の最小の間隔を備えた特にコンパクトな構成を確実に提供するために、接触電極および対向電極を、共通のキャリアフレーム上のコンパクトなユニットとして収容することができる。
【0047】
本発明による装置は、ワークピースの格納のためにそれぞれ少なくとも1つの第1の格納設備および少なくとも1つの第2の格納設備、たとえば格納ドラムを含むストリップ処理ラインの構成部分であるのが好ましい。このようなタイプの処理ラインには、少なくとも1つの第1の格納設備から少なくとも1つの第2の格納設備に、処理ラインを通ってワークピースを搬送するための搬送部材がさらに含まれる場合が多い。追加として、敏感なワークピースが正確な直線コースを維持するように、それらを案内するための手段、たとえば横案内ローラ、および搬送リールの位置を修正するための手段を設けてもよい。この目的のために、搬送経路に沿ってセンサを設けてもよく、前記センサは、ワークピースの外側エッジの位置を連続的に登録し、許容できないずれを検出すると、箔を搬送かつ/またはおよび/またはおよび/または案内するための手段を修正する。
【0048】
本装置は、箔などのストリップ形状の薄いワークピースに金属を析出させることに特に適している。このようなタイプの箔は、たとえば、ポリエステルまたはポリオレフィンおよびそれらの誘導体、特に、ポリエチレンおよびポリ塩化ビニル(PVC)からなる。箔は、たとえば15〜200μmの範囲の異なる厚さを有してもよい。PVC箔は、たとえば、適用ケースに依存して、200μmまでの厚さを有してもよい。
【0049】
特許請求される装置は、プラスチック箔材料上のコイル形構造体を製造するために、特に利用してもよい。このようなタイプのコイル形構造体は、データキャリア(スマートカード)における非接触型データ伝送のために利用されるアンテナとして用いられる。このようなタイプのアンテナを含むキャリアは、たとえば、アンテナに電気配線された集積回路を担持して、アンテナで発生された電気パルスが集積回路に送信され、そこで電気パルスがたとえば格納されるか、またはアンテナによって受信されたデータが、電気信号として処理されるようにしてもよい。
【0050】
信号処理は、たとえば既に格納された他のデータを考慮しながら、供給されたデータを変換することを可能にし、このように取得されたデータが、今度は格納され、かつ/またはおよび/またはおよび/またはアンテナに送出される。次にアンテナによって送信されるこれらのデータを受信アンテナで受信することができ、その結果、たとえば、放射されたデータを、データキャリアのアンテナによって受信されたデータと比較可能である。このようなタイプのデータキャリアは、たとえば非接触型可読正札または品物の識別タグとして商品物流管理および小売業において、さらに、スキーパスおよびアクセス制御用の身分証明書などの人が関連したデータキャリアとして、または自動車用の識別手段として、たとえば利用可能である。
【0051】
電気絶縁された金属構造体を設けられた箔のさらなる適用分野は、たとえば、玩具もしくは腕時計用、自動車工学または通信電子機器におけるなどの、単純な電気回路の製造である。これらの材料は、装置の能動的および受動的な電磁遮蔽のために、または衣類用織物と同様に建物の遮蔽格子材料としてさらに利用可能である。
【0052】
データキャリアは、ポリエステル箔、ポリオレフィン箔またはポリ塩化ビニル箔などの箔から作製することができ、これらの上に、電気絶縁構造体が、本発明の装置を用いて、電解によって作製されている。この目的のために、金属化構造体を設けられ、かつ本装置を用いて製造された箔が、多面取りプリントパネルにおいて箔上に生成された構造パターンに従って、それぞれのデータキャリアのサイズに対応する別個の箔セグメントに分割される。次に、集積回路を箔セグメント上に堆積し、堆積された集積回路に金属構造体を電気接続してもよい。この目的のために、特に、ボンディングプロセスを利用してもよい。集積回路は、キャリアをまだ提供されていないチップ形状で堆積できるだけでなく、TABキャリアなどのキャリア上および箔上に堆積してもよい。ひとたび集積回路が電気接触されると、箔セグメントを、完成データキャリアへと加工することができ、前記セグメントは別の箔にさらに張り合わされて、アンテナが内部に溶接されたカードを形成する。
【0053】
特に、データキャリア上の電気絶縁構造体は、次の方法で製造することができる。
【0054】
好ましくはストリップ形状であり、たとえば、厚さが20〜50μmの範囲で、幅が20cm、40cmまたは60cmである箔材料が、格納ドラムに巻きつけられて提供される。
【0055】
最初に、たとえば、活性ワニスまたは活性ペーストが箔の表面上に印刷されるという点で、ストリップは作り出されるべき構造体を提供される。この目的のために、前記ワニスまたはペーストは、たとえば貴金属化合物、特にパラジウム化合物、好ましくは有機パラジウム錯体を含んでもよい。さらに、ワニスまたはペーストには、結合剤と同様に、溶剤、染料およびチキソトロピー剤などのさらなる現成分が含まれる。ワニスまたはペーストは、特にオフセット印刷、グラビア印刷またはリソグラフ印刷プロセスで、好ましくはローラによって、案内されて前記ローラを通過する箔上に印刷される。この目的のために、ワニスまたはペーストは、貯蔵器から分配ローラに、分配ローラから印刷ローラに、そしてそこから箔に転写される。過剰ワニスまたは過剰ペーストは、適切なスクレーパを用いて、分配ローラおよび印刷のローラから除去される。印刷のローラは、たとえば硬質クロムで被覆してもよい。箔は、効率的なインキングのために、柔らかな対向ローラ(「軟質ローラ」)によって、印刷のローラに押圧される。活性印刷ステーションに続くステーションにおいて、箔上に印刷されたインクは乾燥される。この目的のために、ストリップ形状の箔材料は、たとえばIRラジエータもしくは熱風ダクタから形成された搬送乾燥経路か、または活性ワニスもしくは活性ペーストにおける結合剤がUV放射線の作用下で反応的に乾燥する場合(好ましくは溶剤なしに)には、UVラジエータもまた含むことが可能な乾燥経路を通して搬送される。これらの乾燥装置は、ストリップ形状材料が搬送されて通過する乾燥トンネルに配置するのが好ましい。乾燥ステーションを通過した後に、ストリップ形状材料は、特にドラムから形成可能な別のストリップ格納設備に達する。材料が解かれる第1の格納ドラムから、材料が再び集められる第2のドラムへの途中で、前記材料は案内されてリール上に引っ張られる(リールツーリールプロセス)。
【0056】
活性ワニスまたは活性ペーストで印刷されたストリップ形状の箔は、金属構造体を形成するために、最初は無電解で、次に電解によって金属めっきされる。
【0057】
この目的のために、活性ワニスまたはペーストで印刷された箔は、格納ドラムから解かれて、処理ラインの様々な連続的処理ステーションを案内されて通り、またストリップ形状材料は、(偏向)リール上を案内されて引っ張られる(リールツーリール法)。原則として、ストリップ形状材料を、印刷プロセスから湿式化学処理まで、材料のさらなる中間格納を全くなしに、直接搬送することもまた可能である。
【0058】
第1の処理ステップにおいて、印刷された材料は、通常、水素化ホウ素ナトリウム、ジメチルアミノボランなどのアミノボラン、または次亜リン酸塩などの水溶液における強い還元剤であるリダクタ(reductorreductor)へ移送される。リダクタにおいて、ワニスまたはペーストに含まれる酸化貴金属は、メタリックな貴金属、たとえば金属パラジウムに還元される。還元の後に、ストリップは、リンスステーションに送られ、そこで過剰なリダクタは水でリンスされる。この目的のためには、スプレーシンクを利用するのが好ましい。次に、銅の非常に薄い層(0.2〜0.5μm厚)が、活性構造体上に無電解析出される。構造体上への銅の析出は、リダクタに形成された貴金属核によって開始され、銅は、非印刷エリア上には析出しない。酒石酸塩、エチレンジアミンテトラアセテートまたはテトラキス−(プロパン−2−オル−イル)−エチレンジアミン(tetrakis-(propane-2-ol-yl)-ethylene diamine)と同様に、ホルムアルデヒドを含む現在用いられている浴を、銅浴として利用してもよい。銅めっきの後、ストリップ形状材料は、リンスステーションに搬送され、そこで、過剰な銅浴が、水を用いたスプレーリンスによって除去される。
【0059】
次に、ストリップ形状材料は、本発明の装置に送られ、そこで、今では導電性の構造体が、さらに銅で選択的に被覆される。周知の電解銅めっき浴の全て、たとえばピロリン酸塩、硫酸、メタンスルホン酸、アミド硫酸またはテトラフルオロホウ酸を含む浴を電解銅析出用に使用できる。特に適切な浴は、硫酸銅、硫酸および小量の塩化物と同様に、有機硫黄化合物、ポリグリコールエーテル化合物およびポリビニルアルコールなどの添加剤を含み得る硫酸浴である。硫酸浴は、できる限り高い陰極電流密度で、室温近くの温度で操作されるのが好ましい。箔ストリップが本発明の装置を通って搬送される速度が1m/minである場合には、たとえば10A/dm(活性構造体表面)の陰極電流密度を調節して、銅が、約2μm/minの割合で析出されるようにすることが可能である。長さが約2.5〜7.5mのラインを用いれば、このような方法で、5〜15μm厚の銅層を析出させることができる。
【0060】
電流は、直流電流またはパルス電流の形態で、箔ストリップおよび本発明による装置の陽極に供給できる。パルス電流は、できる限り高い電流密度を生成するためには有利である。なぜなら、良好な特性(光沢、粗さが無いこと、均一なコーティング厚さ、良好な延性、導電性などの高い表面品質)を示す銅層が、これらの条件下でやはり析出できるからである。この目的のために、いわゆる逆パルス電流、すなわち陰極および陽極電流パルスの両方を含むパルス電流を利用するのが好ましい。原則として、単極性パルス電流もまた、もちろん当然ながら有利である。逆パルス電流を用いる場合、陰極および陽極電流パルスのパルス高さ、それぞれのパルス幅、および必要なときにはパルス間の休止も同様に、析出条件を最適化するために、最適化される。
【0061】
電気銅めっきが本発明の装置において不溶性陽極を用いて実行されるので、電解によって銅陽極を溶解することによって、銅イオンを連続的に溶解させることはできない。析出溶液における銅イオン濃度を維持するために、レドックス系の化合物、特に、FeSOおよびFe(SOなどのFe2+およびFe2+化合物を、浴に加えるのが好ましい。浴に含まれるFe2+イオンは、不溶性陽極で酸化してFe3+イオンを形成する。Fe3+イオンは、金属銅片を含む別のタンク(再生塔)に移送される。再生塔において、銅片は、Fe3+イオンの作用下で酸化して、Cu2+およびFe2+イオンを形成する。2つの反応(Fe3+イオンを形成するためのFe2+イオンの陽極酸化およびCu2+を形成するための銅片の酸化)が進む一方で、同時に、析出溶液における銅イオンの濃度は、おおむね一定に保つことができる。
【0062】
箔ストリップが本発明の金属めっき装置を通って送られた後に、材料は、再びスプレーシンクに案内されて、そこで過剰な析出溶液がリンスされる。次に、ストリップ材料は、銅が変色するのを防ぐように意図されたパッシベーション手段とストリップ材料が接触する装置に、移送される。ストリップ形状の箔材料を別の格納ドラムに巻きつける前に、材料は乾燥ステーションで乾燥される。この目的のために、利用される装置は、活性ワニスまたは活性ペーストを乾燥するために用いられるものと似ていてもよい。
【0063】
言及した方法ステップを実行するために利用される作業ステーションには、適切な案内および移送リールまたはローラと同様に、フィルタポンプなどの処理液を処理するための装置、化学薬品用の投入ステーションならびに加熱および冷却システムが備えられている。
【0064】
本発明を図に関連して説明する。
【発明を実施するための最良の形態】
【0065】
図のより詳細な説明のために、金属が、本発明による装置において、ストリップ形状の箔に析出されること、ならびに、この目的のために、陰極の極性を与えられた接触手段および対向電極として用いられる陽極が設けられていることが仮定されている。代替として代替として、装置は、もちろん、当然ながら、他の陰極処理プロセスを実行するためにも同様に利用できる。さらに、本発明による装置は、もちろん当然ながらまた、陽極プロセス、たとえば陽極エッチング、クロメート処理または陽極処理(たとえば陽極電解酸化)をを実行するために利用してもよい。この場合には、ストリップ形状の箔は、陽極の極性を与えられる。陰極は対向電極として利用される。
【0066】
以下に説明する図において、同じ数字は、同じ意味を有する。
【0067】
図1は、本発明による装置の第1の実施形態を示す。特に、図に示す装置のサイズは、装置の実際の寸法とほぼ一致しているであろう。これが意味するのは、寸法がそれぞれ数センチメートルのオーダの電気絶縁構造体が処理されることになる場合には、装置の別個のモジュールMの長さは、移送方向に見て、数センチメートルである、ということである。移送の方向に見ると、単一モジュールMの長さは、たとえば4.5cmであってもよい。様々なモジュール長さ(この文脈では、読者は図2のサイズLを参照されたい)は、箔ストリップ1上の構造体のサイズに依存する。別個のモジュールMの幅は、処理される箔1の幅に依存する。たとえば、幅が60cmの箔ストリップ1が装置で処理される場合には、別個のモジュールMの幅もまた、このオーダでなければならない。結果として、モジュールMは、箔1の全幅にわたって移送方向(図1では矢印によって示される移送方向)にほぼ直角に延伸する細長い処理装置であるのが好ましい。
【0068】
箔1は、ストリップ形状で供給するのが好ましいが、このストリップは、リール(ここには図示せず)から解かれ、本発明の装置を通って搬送された後、別のリール(これもまた図示せず)に巻かれる(リールツーリール)。
【0069】
処理モジュールMは、次々にモジュールMを通って箔1を搬送可能なように、装置を通過する箔1の搬送経路に沿って配置される。モジュールMの数は、別個のモジュールMで必要な処理時間に依存する。箔ストリップ1が、本発明による装置を通して高速で、たとえば2m/minの速度で搬送されるように意図され、非常に厚い銅層、たとえば5μm厚の層が析出されることになる場合で、銅が10A/dmの陰極電流密度で析出される場合(2μmCu/min)には、4.5cmの有効長さを有する約110のモジュールMを、互いの背後に配置する必要がある。モジュールMの用語「有効長さ」は、モジュールM内の領域であって、そこを通って搬送される箔1に金属が析出する領域の長さとして解釈すべきである。
【0070】
図1に示す本発明による装置は、3つの処理モジュールMが配置されている収集タンク12からなる。収集タンク12は、タンク底部と、箔ストリップ1が搬送されている搬送経路と平行に延伸する2つの垂直側壁からなり、前記壁は、図面平面の正面および背後に、かつ移送方向と平行にそれぞれ延伸している。壁はまた2つの垂直な端側部に設けられているが、前記壁は、箔ストリップ1が収集タンク12を出入りできるように、水平にスロットを付けられている。これは、図1において、収集タンク12のそれぞれ左側部および右側部に示されている。
【0071】
箔ストリップ1は、収集タンク12の左側壁の入口壁に設けられた水平スロットを通って収集タンク12に入り、水平の向きで水平方向に収集タンク12を通って搬送される。箔ストリップ1を、水平にわずかに傾くように移送方向に直角に案内して、液体が、移送方向と平行な向きにあるストリップ1の横側部の縁を越えて、箔ストリップ1の表面から流れるのを支援するようにすることができる。箔は、移送方向に互いの背後に配置された3つの処理モジュールMを通って搬送される。箔ストリップ1は、最後のモジュールMを通って搬送された後に、出口壁に設けられた水平の出口スロットを通って収集タンク12から出る。
【0072】
箔ストリップ1は、移送手段によって収集タンク内を進められ、またそれによって案内される。移送手段は、たとえば接触ローラ6およびシールローラ7であってもよいが、これらのローラが電動である場合には、両方とも以下でより詳細に説明する。これらのローラに加えて、他の移送手段(ここには図示せず)を設けてもよく、たとえば、移送方向とほぼ直角に搬送経路にわたって延伸する電動軸に固定された移送ホイール、または同じ方法で配置された移送ローラなどがある。軸上の移送ホイールは、箔ストリップ1の全幅にわたって割り当てる割り当てられるか、またはたとえば、箔ストリップ1の縁領域にのみ配置してもよい。移送方向と正確に平行になるようにストリップ1を案内するために、搬送経路からまたは移送方向に直角な好ましい軸方向から移送手段をわずかに外して、ストリップ1の水平案内を直線に保証するようにしてもまたよい。ストリップの正確な位置を連続的に検出するセンサ(図示せず)によって、箔を同じ搬送経路に永続的に維持するために、移送および/またはおよび/または案内ローラの向きを修正することが可能になる。
【0073】
処理モジュールMから流れる処理液は、収集タンク12の下部にたまるためることが可能である。収集タンク12の液位は、参照数字15で表示されている。
【0074】
装置における別個のモジュールMは、同一にかまたは異なって構成することができる。この場合には、それらは同一の構成である。
【0075】
各処理モジュールMには、箔ストリップ1の移送平面の上下にそれぞれ配置された上部および下部が含まれる。モジュールMの壁は、10で示されている。これらの2つの部分が、処理液で満たされる上部電解槽2および下部電解槽3を形成する。2つの部分は、ほぼ同じ原理に従って作られている。両方の部分には、移送平面の方に向けられ、かつそれらのどちらか一側で移送平面と平行に配置された陽極4が含まれる。モジュールMにおいて、陽極4は、適切なホルダ5によってモジュールハウジングに固定されている。移送平面から見て近い側に位置する、陽極4の面には、イオン透過性コーティング(絶縁部)13が、箔ストリップ1と陽極4との間の接触を防ぐために設けられている。コーティング13がないと、接触は容易に起こり得る。なぜなら、陽極4と箔ストリップ1との間の間隔は、非常に小さく選択するのが好ましいからである。この小さな間隔によって、導電性構造体上の異なる箇所の不均一な電解処理をおおむね防ぐことが可能になり、比較的高い電流密度を調節することができる。
【0076】
モジュールM内には、電解液供給ライン11を介してモジュールMの2つの部分の内部容積部に供給される処理液がある。その結果、モジュールMに位置するストリップ1、および陽極4は処理液と接触するので、陽極4と、互いに電気絶縁された、ストリップ1上の構造体との間で電流が流れることが可能になる。
【0077】
互いに電気絶縁された構造体と電気接触するために、箔ストリップ1は、電解槽2、3の外で本発明に従って電気接触される。陽極4がおおむね均質な電界を提供するストリップ1上の領域(電解領域)に非常に近いストリップ1に電気接触することによって、互いに電気絶縁された箔1上の構造体は、言及した領域内にそれらがまだまたは既にある間に、接触手段と電気接触することができる。これによって、連続的な電解処理が可能になる。
【0078】
図1に示す場合には、接触ローラ6が左モジュールMの下流および上流に、かつ接触ブラシ14が右モジュールMの下流および上流に設けられ、これらの接触ローラおよびブラシは、接触手段として用いられ、移送方向とに対してほぼ直角に向けられ、搬送経路の全幅にわたっている。
【0079】
接触ローラ6は、特に金属ローラ、たとえば、外側の接触面が特殊鋼もしくは銅で作製されたローラまたは導電性の弾性表面を有するローラとすることができる。後者の場合には、ローラ6の表面には、たとえば、金属粒子の挿入によって導電性にされた弾性プラスチックコーティングを施してもよい。
【0080】
接触ブラシ14は、たとえば、ブラシベースに固定された銅または黒鉛から作製されたファイバとすることができる。ファイバは、さらに、ファイバシャフトで電気絶縁してもよい。
【0081】
電流が、接触ローラ6または接触ブラシ7から、互いに電気絶縁された構造体および処理液を介して、陽極4に流れることができるようにするために、電流源(ここには図示せず)が利用され、その極が、接触ローラ6もしくは接触ブラシ14、または陽極4に接続されている。
【0082】
図1に示す場合において、ストリップ1は、電気接触ローラ6または接触ブラシ14によって電気接触され、前記ローラ6およびブラシ14は、処理液と接触しない。この目的のために、接触ローラ6および接触ブラシ14は、処理液を含むモジュールMの領域の外に位置している。
【0083】
シールローラ7がさらに設けられているが、前記シールローラは、処理液が、モジュールMの内部容積部を出て、接触ローラ6または接触ブラシ14に達するのをおおむね防ぐ。なぜなら、接触ローラ6または接触ブラシ14が処理液と接触すると、その上に金属が析出する可能性があるからである。これは望ましくない。シールローラ7は、弾性であるのが好ましく、箔ストリップ1の表面に押圧される。その結果、それらは、ストリップ1の表面としっかり合わさる。接触ローラ6および接触ブラシ14のように、シールローラ7は、移送方向に対して直角に配置され、箔ストリップ1の搬送経路の全幅にわたって割り当てられる。
【0084】
さらに、弾性シール壁9が、出てくる液体に対してモジュールハウジングをシールするために設けられている。この目的のために、シール壁9は、モジュールハウジングの端壁10に固定され、好ましくはシールローラ7を接線方向に押圧して、液密シールを提供する。シールローラ7が、モジュールM内でシール壁9の下流に配置されている場合には、シール壁9は、機械的摩擦および電解槽内における液体の静圧のために、シールローラ7の回転によってシールローラ7の方へ引きつけられ、それによって、液体のない空間への処理液の漏出に対し、モジュールMの効率的なシールを提供する。それに反して、シールローラ7およびシール壁9が上流に配置されている場合には、シール壁9は、シールローラ7の回転によってシールローラ7から連続的に持ち上げられ、液漏れに対して十分なシールを提供できないであろう。したがって、補助のシールローラ8が、モジュールMの入口領域に追加的に設けられているが、前記補助ローラは、好ましくはシールローラ7のように弾性表面を有するように構成され、シールローラ7に接して回転する。この場合には、シール壁9は、補助シールローラ8にぴったり合わさり、液漏れに対して効率的にモジュールMをシールする。
【0085】
移送方向と平行に延伸するモジュールMの側部には、シールリップ(ここには図示せず)が、漏れている処理液の漏洩に対してシールするために設けられている。しかしながら、この領域には導電性構造体のための接触手段がないので、効率的なシールが絶対に必要というわけでない。
【0086】
モジュールMの上部は、装置に箔を導入するために、着脱自在に構成することができる。モジュールの下部に取り付けられた対応する保持要素(図示せず)によって、通常動作の間に上部モジュール部を安定的に保持すること、およびたとえば容易に取り外し可能な蝶ナットを用いてしっかりと固定することが可能になる。
【0087】
図2は、表面から流れた処理液で浴表面レベル15まで満たされた収集タンク12におけるモジュールMの断面を示す。箔ストリップ1は、収集タンク12の1つの端壁における水平スロットを通って収集タンク12に入り、最初に、その材料の両側を介して接触ブラシ14と電気接触する。電流は、ブラシ14を介してストリップ1上の導電性構造体に供給される。ブラシ14は、ストリップ1上の全ての構造体に電流を供給できるように、ストリップ1のほぼ全幅にわたって延伸している。全ての構造体は、それらが案内されてブラシ14を通り過ぎるときに、ブラシファイバによって接触されることが重要である。構造体は、移送方向に延伸しているので、電解槽2、3における陽極4の電界内に同時に位置している間に、ブラシ14と電気接触することができる。
【0088】
ストリップ1の両側に配置されたシールローラ7が、ブラシ14に非常に接近しかつその下流に、設けられている。補助シールローラ8が、追加的にシールローラ7に接して回転し、シール壁9が接線方向のシールを提供する。弾性シール壁9は、モジュールMの槽壁10に固定されている。処理液は、電解液供給ライン11ならびにポンプおよびパイプライン(図示せず)を介して、収集タンクからモジュールMの内部容積部に供給される。過剰な処理液は、槽壁10に設けられた電解液吐き出しライン17を介して収集タンクに戻される。
【0089】
案内されてシール部を過ぎた後、箔ストリップ1は、モジュールMの内部容積部を入り、そこで、移送平面の上下に配置された陽極4の電界に曝される。陽極4は、エキスパンドメタル、たとえばプラチナめっきされたチタンで作製される。イオン透過性コーティング13は、移送平面と陽極4との間に位置しているが、前記コーティングは、陽極4が導電性構造体と接触して電気的短絡が生じるのを防ぐ。
【0090】
箔ストリップ1は、モジュールMを通過した後、液体がモジュールMから出るのを防ぐ別の一対のシールローラ7を案内されて通過する。シールローラ7と接線方向にぴったりと合わさり、かつ槽端壁10に固定されたシール壁9は、液漏れに対して内部容積部を追加的にシールする。ストリップは、ひとたびシールローラ7を通過すると、さらなる接触ローラ6と接触する。その結果として、互いに電気絶縁され、かつモジュールMを通って搬送されるときにもはや接触ブラシ14からは接触され得ない構造体が、再び電気接触される。
【0091】
図3は、図1の「A」で示した図の半部の断面図である。ゆえに、読者は、図1の説明で言及され、対応する参照数字で表示された要素を参照されたい。
【0092】
ここで水平移送平面を案内される箔ストリップ1の両側には、同じく水平に向けられて陽極保持装置5に取り付けられた陽極4だけでなく、陽極4に直接合わさるイオン透過性絶縁部13が、断面図では槽壁10で表示されているモジュールMに示されている。陽極4および箔ストリップ1は、電解槽2、3を画定する。
【0093】
さらに、水平に取り付けられたシールローラ7は正面図で見てもよくに見られ、槽壁10の1つにおける軸受16に取り付けられている。シールローラ7のそれぞれの輪郭はシール壁9によって隠されているので、点線で示す。シール壁9は、移送平面の方へ延伸し、シールローラ7に接線方向に合わさる。シール壁9は、槽端壁10に固定されて、液密シールを提供する。
【0094】
処理液は、収集タンクから、電解液供給ライン11ならびにポンプおよびパイプライン(図示せず)を介して、モジュールMの内部容積部に供給され、電解液吐き出しライン17を介して流れ出ることが可能である。流れ出た液体は、収集タンク12のサンプにたまる(浴表面レベル15によって示されている)。
【0095】
図4は、収集タンク12におけるモジュールMの別の好ましい実施形態を示す。この図は、図2に示す図に対応する。
【0096】
図2に示すモジュールMと対照してみると、イオン透過性コーティング13は、通過している箔ストリップ1と直接接触している。コーティング13は、接触電極14に対して、処理モジュールMの内部容積部をシールする機能を同時に果たす。処理液がコーティング13を通って接触電極14に直接達するのを防ぐために、モジュールMの内部容積部は、追加的な内部隔壁24と境界を接している。液密となるように、コーティング13は、入口および出口側で、これらの内部隔壁24に固定されている。コーティング13は、搬送経路に並んで延伸する槽壁10に追加的に固定してもよい。ワークピース1はモジュールMの内部容積部の最も外側の領域までは延伸しないので、この追加的な固定は絶対的に必要なわけではない。
【0097】
電解液供給ライン11を介して、処理液は、エキスパンドメタルから形成された陽極14に送出され、それを横切ってからコーティング13に供給される。コーティング13はスポンジ状または液体吸収材料から形成されるので、飽和し、陽極4とストリップ材料1との間で電解接触を確立することができる。過剰な処理液は、移送方向を横切る方向に流れて収集タンク12に戻ることができる。
【0098】
毛細管力および絞りのおかげで、液体は、内部隔壁24の入口および出口領域において絶縁材料13内にほぼ保持されるので、液体が処理モジュールMから出る危険は低減される。処理モジュールMから出ることが可能な液体の残量は、入口および出口側におけるモジュールの隔壁24およびおよび槽壁10によって形成された容積部を介して、電解液吐き出しライン17を通り、収集タンク12のサンプへと下に吐き出される。その結果、接触要素14を液体からおおむね免れたおおむね液体の無い状態に保つために、シールリップ23で十分である。出口側(下流)において、2つのシールリップ23を処理モジュールMの壁10に設けることができるが、前記シールリップは、処理液がモジュールMから出るのを防ぐために、内側および外側の壁表面10に両方とも固定される。なぜなら、ストリップ1の前方への移動のために、入口領域におけるよりも出口側で、処理液は、モジュールMから出るのがより容易だからである。その結果、接触ブラシ14(または代替として接触ローラ6)と電解槽2、3との間に設けられる間隔は非常に小さい。コーティング13がワークピース1と接触することに起因する摩擦が箔ストリップ1を引き伸ばすのを防ぐために、移送ローラ25を、各モジュールMの前後に設けることができる。特に下部モジュール槽3において圧力を調整するために、吐き出しライン17のパイプラインに制御弁を取り付けることができるが、前記制御弁は、前記槽2、3に設けられたセンサを通して、槽2、3内で圧力を一定に調節する。
【0099】
絶縁層13が箔ストリップ1を連続的にぬぐい、ワークピース1上の拡散層をかき乱すので、この実現実施変形例によって、特に高い電流密度を調節することが可能になる。
【0100】
図5は、本発明による、第2の実施形態の水平処理ラインを通した断面側面図である。処理ラインには、構成が同一である3つの処理モジュールが配置された収集タンク12が含まれる。処理モジュールMは、装置を通した、通した、箔ストリップ1の搬送経路に並んで配置されるので、箔ストリップ1を、次々にモジュールMを通して搬送することが可能である。別個の処理モジュールMは、接触ローラ6、イオン透過性絶縁部13を含む陽極4、陽極ホルダ5および処理液(電解液)から実質的になる。処理液は、浴表面レベル15が接触ローラ6のちょうど下になる程度まで、収集タンク12を満たす。
【0101】
ローラ6は次のような方法で配列される。すなわち、接触ローラのように、移送を支援するために電動にすることが可能な偏向ローラ18において、ほぼ水平に供給された箔ストリップ1が、第1のモジュールMに搬送され、接触ローラ6間を垂直に移動して処理液の中に送られるような方法である。箔ストリップ1の2つの側面は、2つの接触ローラ6によって電気接触される。陽極4は不溶性金属で作製されたフラッド陽極として構成され、その内部容積部から、析出プロセスのために新しい電解液が連続的に供給される。フラッド陽極は箔ストリップ1を絶縁層13を越えて搬送するが、この絶縁層13において、箔ストリップ1は金属めっきされ、その後、浴表面レベル15の上に位置する他の接触リール6で新たに接触されている間に電解液から引き出される。箔ストリップ1は、他の偏向リール18によって向きを変えられた後、第2のモジュールMを通って搬送され、第3の偏向リール18によって新たに向きを変えられた後、第3のモジュールMを案内されて通過する。第3のモジュールMを案内されて通過した後、箔は、第4の偏向リール18によって再び向きを変えられた後、最後に処理ラインから外に水平に導かれる。
【0102】
図6は、図5による水平処理ラインの2つのモジュールMにおける断面の詳細な分解を示すが、各モジュールMの1半部だけが示されている。
【0103】
この場合に、装置は、追加の構成部品、すなわち、スロットおよびシールリップ23(図7に示す)を備えた隔壁部材21およびピンチローラ22を特徴とする。これらの構成部品は、接触ローラ6を処理液から保護する役割を果たす。ピンチローラ22は、特に細く構成されている接触ローラ6の機械的安定性を増加させる役割を果たす。接触ローラ6と直接合わさるピンチローラ22は、ローラ6が弾性である場合には、それらを共に押圧することができるので、接触ローラ6の直径が非常に小さい場合であっても、電流の十分な伝送を確実にする。今度はこれによって、陽極4と接触ローラ6との間の間隔をさらに縮小することが可能になる。
【0104】
特別な実施形態において、ピンチローラ22はまた、対向電極の機能を実行することができる。この目的のために、ローラは、たとえば、ローラ形陽極4の導電性陽極表面に狭いストリップ形状で堆積された螺旋コーティング(図示せず)を有する。螺旋ヘリックス間の空間は、露出したままである。バネのように堆積されたコーティングは、接触ローラ6に接して回転し、それらをワークピース1に押圧する。螺旋形状ゆえに、陽極として働くピンチローラ22における、非イオン透過性またはイオン透過性の程度が小さなコーティングの遮蔽効果は、ワークピース1の他の箇所にその影響を永続的に及ぼし、それらが不均一に被覆されるのを防ぐ。同じ効果は、あるモジュールから次のモジュールへとオフセットされるように陽極に取り付けられたリング形の絶縁部を用いて達成することができる。
【0105】
処理液がはねることによって接触ローラ6が金属めっきされるのを防ぐために、液体表面は、通路開口部としての役割を果たすスロットを含む隔壁部材21によって完全に覆われる。
【0106】
電解処理中に、箔ストリップ1は、第1のモジュールMにおける絶縁部(ここには図示せず)を含む概略的に表示された陽極4を通って送られ、陽極4は、接触ローラ6にほとんど接触している。箔ストリップ1は、陽極4の内部容積部から隔壁部材21におけるスロットを通って接触ローラ6に直接供給され、図5におけるように陽極4の外では処理液と接触しない。その結果、一緒に運ばれる処理液の量は最小限にされる。次に、箔ストリップ1は、偏差偏向ローラ18で向きを変えられ、第2のモジュールMに搬送される。それによって、箔ストリップ1は、接触ローラ6で再び電気接触され、さらなる金属化のために、隔壁部材21におけるスロットを通って陽極4に導入される。
【0107】
図7は、図6の水平処理ラインのモジュールMのための詳細な分解の概略的な細部を示す。
【0108】
箔ストリップ1は、陽極4にごく接近して離間配置された接触ローラ6の間、および隔壁部材21のスロットに配置されたシールリップ23の間を送られる。隔壁部材21が処理液から接触ローラ6を効率的に保護できることが見て取れる。それによって、シールリップ23は、たとえば変化する浴表面レベルの結果としての望ましくない液漏れを防ぐ。
【0109】
図8は、本発明による水平処理ラインの第2の実施形態における別の変形例の側面断面図を示す。処理ラインは、様々な陽極および陰極配列をそれぞれ特徴とする3つの異なるモジュールM1、M2およびM3を有する収集タンク12からなる。
【0110】
処理モジュールは、装置を通って進む箔ストリップ1の搬送経路に並んで配置され、その結果として、箔ストリップ1は、モジュールM1から始まって、別個のモジュールを連続的に通って進むことができる。偏向リール18は、モジュールの前およびモジュール間に配置されている。
【0111】
箔ストリップ1は、偏向リール18によってモジュールM1に導入される。モジュールM1は、イオン透過性絶縁部13を有する回動陽極ローラ4から実質的にはなり、この陽極4は、処理液に部分的に浸漬されている。液体表面レベルは、15で示されている。陽極ローラ4と箔ストリップ1との間のコーティング13は、絶縁部の役割を果たし、それによって、ローラ4の内部容積部からもたらされる処理液を供給されるすることができる。モジュールM1には、接触ローラ6が処理液でぬらされるのを防ぐカバーキャップ20がさらに含まれる。このカバーキャップ20に配置されているのは、箔ストリップ1の移送方向に見て陽極4の上流に、陽極4に対して電気絶縁された単一の第一接触ローラ6、また前記陽極4の下流に、前記陽極4に対して電気絶縁された第二接触ローラ6である。箔ストリップ1が一側のみ金属めっきされることになる場合には、前記モジュールM1を用いるのが好ましい。陽極ホルダ5および接触ローラ6は、よりコンパクトな構成のためには1つのユニットに組み合わされる。
【0112】
金属めっきが完了した後、箔ストリップ1は、モジュールM1から外へ、また偏向リール18を介して第2のモジュールM2へ搬送される。モジュールM2には、イオン透過性絶縁部13を有する回動陽極ローラ4と、液体表面レベル15から突き出てかつ箔ストリップ1の向きと一致する、イオン透過性絶縁部13をさらに有する湾曲陽極4’とからなる陽極配列が含まれる。陽極配列の上流および下流には、陽極4に対して電気絶縁されるように、カバーキャップ20に配置された2つの同一の接触配列が位置している。これらの配列は、接触ローラ6と、接触ローラ6の向かい側に位置している接触ブラシ14とからなる。
【0113】
箔ストリップ1は、モジュールM2でその両側をめっきされた後、偏向リール18を介して第3のモジュールM3に搬送される。モジュールM3は、モジュールM2とほぼ同様である。接触ブラシ14の代わりに接触ローラ6が用いられるが、前記接触ローラは、陽極4’’と同じ支持アームに取り付けられ、陽極4’’に対して電気絶縁されている。湾曲陽極4’’の形は、回転自在な陽極4の形に明らかに従っている。接触ブラシの使用が除外されることになる場合には、このモジュールM3は好ましい実施形態を構成する。なぜなら、陽極4’’とワークピース1との間の接触部が、陽極4’におけるよりも均一でより長く、かくして、より均一なコーティングに帰着するからである。第3のモジュールM3における処理が完了すると、箔ストリップ1は、偏向ローラ18を介して処理ラインから外に搬送される。
【0114】
図9は、図8の水平処理ラインの変形例の側面断面図を示す。
【0115】
同一のモジュールM4およびM5は、図9に示すモジュールM3にほぼ類似し、下側の湾曲陽極4’’はなしで済まされている。これらのモジュールは、箔ストリップ1が両側を被覆されることになる場合での使用に適している。モジュールM4およびM5において、接触ローラ6は、電気絶縁されるように陽極ホルダ5に取り付けられている。
【0116】
記載した様々な実施形態はまた、本明細書において上記で記載したのとは異なる方法で、組み合わせることができる。図7に示すシールリップ23を備えたシール部材は、たとえば、図8および図9に示す変形例においてまた用いてもよい。
【0117】
本明細書に記載した例および実施形態があくまでも例証のみを目的としたものであること、ならびにそれらに鑑みて、様々な修正および変更と同様に本出願に記載した特徴の組み合わせが、当業者に示唆されると共に、記載した本発明の開示および添付の特許請求の範囲内に含まれることを理解されたい。本明細書に引用した全ての出版物、特許および特許出願は、参照によって本明細書に組み込まれている。
【図面の簡単な説明】
【0118】
【図1】本発明による、2つの変形例の第1の実施形態の水平処理ラインの側面断面図ある。
【図2】第1の実施形態における水平処理ラインの単一処理モジュールの側面断面図である。
【図3】移送方向に見た、図1による水平処理ラインの単一処理モジュールの半部の断面である。
【図4】本発明による、第1の実施形態の別の変形例における水平処理ラインの単一モジュールの側面断面図である。
【図5】本発明による、第2の実施形態の水平処理ラインの側面断面図である。
【図6】図5による水平処理ラインを通した、詳細な分解の断面である。
【図7】図6の水平処理ラインの詳細である。
【図8】本発明による、第2の実施形態の別の変形例における水平処理ラインの側面断面図である。
【図9】図8の水平処理ラインの修正実現例実施例の側面断面図である。
【符号の説明】
【0119】
1 ワークピース(箔ストリップ)
2 電解槽上部
3 電解槽下部
4 対向電極、陽極
5 対向電極ホルダ、陽極ホルダ
6 接触電極、接触ローラ
7 シールローラ
8 補助シールローラ
9 シール壁
10 モジュール壁、槽壁
11 電解液供給ライン
12 収集タンク
13 イオン透過性絶縁部
14 接触ブラシ
15 浴表面レベル
16 シールローラ軸受
17 電解液吐き出しライン
18 偏向ローラ
19 上部陽極ホルダ用の軸受表面
20 カバーキャップ
21 隔壁部材
22 ピンチローラ
23 シールリップ
24 内部隔壁
25 駆動ローラ
M、M1〜M5 処理モジュール
M1 処理モジュール
M2 処理モジュール
M3 処理モジュール
M4 処理モジュール
M5 処理モジュール

【特許請求の範囲】
【請求項1】
ワークピース(1)の表面上の互いに電気絶縁された導電性構造体を、前記ワークピース(1)を搬送経路においてかつそれにより前記構造体が電解処理される移送方向に連続的に搬送することを含む方法を用いることによって、電解処理するための装置であって、前記装置が、
a)前記ワークピース(1)と接触するための少なくとも1つの電極(6、14)と、少なくとも1つの電解領域であって、そのそれぞれ1つにおいて、少なくとも1つの対向電極(4)および前記ワークピース(1)が処理液に接触する電解領域と、を含む少なくとも1つの配列を含み含み、
b)前記少なくとも1つの接触電極(6、14)が、前記少なくとも1つの電解領域の外に配置され、前記処理液と接触しないことと、
c)前記少なくとも1つの接触電極(6、14)および前記少なくとも1つの電解領域が、共に非常に接近して離間配置されているので、小さな導電性構造体を電解処理することができることと、
を特徴とする装置。
【請求項2】
5cmの導電性構造体を電解処理できることを特徴とする、請求項1に記載の装置。
【請求項3】
少なくとも2つの接触電極(6、14)が設けられ、それらのうちの少なくとも1つが、前記電解領域の一側に配置され、前記少なくとも他の1つが、前記電解領域の他側に配置されることを特徴とする、請求項1および2のいずれか一項に記載の装置。
【請求項4】
前記電解領域が非常に短いので、前記導電性構造体が、前記接触電極(6、14)のうちの1つと絶えず電気接触することを特徴とする、請求項3に記載の装置。
【請求項5】
請求項1〜4のいずれか一項に記載の装置であって、前記装置が、前記処理液および前記少なくとも1つの対向電極(4)を含む少なくとも1つの処理モジュール(M、M1、M2、M3、M4、M5、M6)をさらに含み、それを通って、前記ワークピース(1)が水平移送方向に搬送され、前記少なくとも1つの処理モジュール(M、M1、M2、M3、M4、M5、M6)が、その入口および出口側にそれぞれ、前記ワークピース(1)が出入りするための少なくとも1つの通路を含み、前記モジュールおよび前記少なくとも1つの接触電極(6、14)が、前記通路に沿って配置されていることを特徴とする装置。
【請求項6】
請求項1〜4のいずれか一項に記載の装置であって、前記装置が、前記処理液および前記少なくとも1の対向電極(4)を含む少なくとも1つのタンク(12)をさらに含むことと、前記搬送経路が、前記処理液の表面を介して前記タンク(12)に入って、前記処理液内に配置された前記少なくとも1つの対向電極(4)に至り、そこから再び前記処理液の表面を介して前記タンク(12)から出て、前記少なくとも1つの接触電極(6、14)が、前記処理液の表面に沿って配置されていることと、を特徴とする装置。
【請求項7】
前記搬送経路が、前記処理液の表面を介して、前記タンク(12)の中に繰り返し入り、前記液体を通り、再び表面を介して前記タンク(12)から出て、その結果、偏向手段(18)によって向きを変えられることを特徴とする、請求項6に記載の装置。
【請求項8】
請求項1〜7のいずれか一項に記載の装置であって、前記装置が、前記ワークピース(1)の通過のための通路およびシール部材(7、23)を含む隔壁部材(21)を含み、前記隔壁部材(21)が、前記少なくとも1つの接触電極(6、14)と前記処理液との間に配置され、前記シール部材(7、23)が、処理液が前記少なくとも1つの接触電極(6、14)と接触するのを防ぐことができるような方法で、配置されていることを特徴とする装置。
【請求項9】
前記シール部材が、絞りローラ(7)、シールリップ(23)およびスクレーパを含む群から選択されることを特徴とする、請求項8に記載の装置。
【請求項10】
前記少なくとも1つの接触電極(6、14)が前記隔壁(24)に固定されていることを特徴とする、請求項8および9のいずれか一項に記載の装置。
【請求項11】
前記少なくとも1つの接触電極(6、14)が、ローラおよびブラシ(14)を含む群から選択されることを特徴とする、請求項1〜10のいずれか一項に記載の装置。
【請求項12】
前記ローラ(6)が非常に小さな直径を有し、かつ前記ローラ(6)の長手方向軸と前記少なくとも1つの電解領域との間の間隔が非常に小さいので、2cmの導電性構造体を電解処理できることを特徴とする、請求項11に記載の装置。
【請求項13】
前記少なくとも1つの対向電極(4)と前記ワークピース(1)との間に、非導電性のイオン透過性コーティング(13)が配置されていることを特徴とする、請求項1〜12のいずれか一項に記載の装置。
【請求項14】
前記コーティング(13)が、前記搬送経路に非常に接近して配置されているので、前記ワークピース(1)が、前記少なくとも1つの対向電極(4)を通って案内されるときに前記コーティング(13)に接触し、かくして前記コーティング(13)がシールとして働くことを特徴とする、請求項13に記載の装置。
【請求項15】
前記搬送経路が水平に傾いていることを特徴とする、請求項1〜14のいずれか一項に記載の装置。
【請求項16】
前記少なくとも1つの接触電極(6、14)を連続的または断続的にリンスすることができるリンス設備が設けられていることを特徴とする、請求項15に記載の装置。
【請求項17】
前記少なくとも1つの対向電極(4)および前記少なくとも1つの接触電極(6、14)が、細長く、前記搬送経路とほぼ平行かつ前記移送方向に直角に向けられていることを特徴とする、請求項1〜16のいずれか一項に記載の装置。
【請求項18】
前記少なくとも1つの接触電極(6、14)が陰極の極性を与えられていることを特徴とする、請求項1〜17のいずれか一項に記載の装置。
【請求項19】
前記少なくとも1つの対向電極(4)が不溶性陽極であることを特徴とする、請求項18に記載の装置。
【請求項20】
前記陽極(4)がフラッド陽極であることを特徴とする、請求項19に記載の装置。
【請求項21】
前記少なくとも1つの接触電極(6、14)および前記少なくとも1つの対向電極(4)が、共通のキャリアフレーム(5)に配置されていることを特徴とする、請求項1〜20のいずれか一項に記載の装置。
【請求項22】
前記ワークピース(1)を格納するために、少なくとも1つの第1の格納設備および少なくとも1つの第2の格納設備をそれぞれさらに含むことを特徴とする、請求項1〜21のいずれか一項に記載の装置。
【請求項23】
請求項22に記載の装置であって、前記装置を通って、前記少なくとも1つの第1の格納設備から前記少なくとも1つの第2の格納設備に、前記ワークピース(1)を搬送するための搬送部材(18、25)をさらに含むことを特徴とする装置。
【請求項24】
ワークピース(1)の表面上の互いに電気絶縁された導電性構造体を電解処理するための方法であって、前記方法が、
a)搬送経路においてかつ少なくとも1つの電解領域を通る移送方向に、前記ワークピース(1)を連続的に搬送し、前記領域が、少なくとも1つの対向電極(4)および処理液を含むことと、
b)前記ワークピース(1)を、前記少なくとも1つの電解領域の外の少なくとも1つの接触電極(6、14)と接触させることと、
を含み含み、
c)前記少なくとも1つの接触電極(6、14)が、前記処理液との接触を防止されることと、
d)前記少なくとも1つの接触電極(6、14)と前記少なくとも1つの電解領域との間の間隔が、小さな導電性構造体を電解処理できるほどに小さくなるように調節されることと、
を特徴とする方法。
【請求項25】
5cmの導電性構造体を電解処理できることを特徴とする、請求項24に記載の方法。
【請求項26】
前記ワークピース(1)が、最初に接触電極(6、14)と接触し、次に電解領域を通過し、その次に接触電極(6、14)と再び接触することを特徴とする、請求項24および25のいずれか一項に記載の方法。
【請求項27】
前記電解領域が非常に短く選択されるので、前記導電性構造体が、前記電解領域を通過するときに、前記接触電極(6、14)のうちの1つと絶えず電気接触することを特徴とする、請求項26に記載の方法。
【請求項28】
前記ワークピース(1)が、前記処理モジュール(M、M1、M2、M3、M4、M5、M6)のそれぞれ1つに含まれる少なくとも1つの電解領域を通って水平移送方向に案内され、前記ワークピース(1)が、モジュール(M、M1、M2、M3、M4、M5、M6)に、その入口側に位置する少なくとも1つの通路を通って案内され、その出口側に位置する少なくとも1つの通路を通って前記モジュール(M、M1、M2、M3、M4、M5、M6)から外に案内され、前記ワークピース(1)が、前記モジュール(M、M1、M2、M3、M4、M5、M6)に入る前および/またはおよび/または前記モジュール(M、M1、M2、M3、M4、M5、M6)から出た後に、少なくとも1つの接触電極(6、14)によって電気接触されることを特徴とする、請求項24〜27のいずれか一項に記載の方法。
【請求項29】
前記ワークピース(1)が、タンク(12)に含まれる前記処理液の表面を介して、前記タンク(12)内に、および前記処理液に配置された前記少なくとも1つの対向電極(4)に案内され、そこから、前記処理液の表面を介して、前記タンク(12)から外に案内されることと、前記ワークピース(1)が、前記液体に導入される前および/またはおよび/または前記液体がから出た後に、少なくとも1つの接触電極(6、14)によって電気接触されることと、を特徴とする、請求項24〜27のいずれか一項に記載の方法。
【請求項30】
前記ワークピース(1)が、前記処理液の表面を介して前記タンク(12)の中に繰り返し案内され、前記液体を通り再び前記表面を介して前記タンク(12)から出て、それにより偏向手段(18)によって向きを変えられることを特徴とする、請求項29に記載の方法。
【請求項31】
非導電性のイオン透過性コーティング(13)が、前記少なくとも1つの対向電極(4)と前記ワークピース(1)との間に取り付けられていることを特徴とする、請求項24〜30のいずれか一項に記載の方法。
【請求項32】
前記ワークピース(1)が、前記非導電性のイオン透過性コーティング(13)に沿って非常に接近して案内されるので、前記コーティングが前記ワークピース(1)に接触することを特徴とする、請求項31に記載の方法。
【請求項33】
前記搬送経路が水平にに傾いていることと、前記少なくとも1つの接触電極(6、14)が、連続的にまたは断続的にリンスされることと、を特徴とする、請求項24〜32のいずれか一項に記載の方法。
【請求項34】
金属が前記ワークピース(1)上に析出されることを特徴とする、請求項24〜33のいずれか一項に記載の方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate


【公表番号】特表2007−505213(P2007−505213A)
【公表日】平成19年3月8日(2007.3.8)
【国際特許分類】
【出願番号】特願2006−525683(P2006−525683)
【出願日】平成16年8月19日(2004.8.19)
【国際出願番号】PCT/EP2004/009436
【国際公開番号】WO2005/026415
【国際公開日】平成17年3月24日(2005.3.24)
【出願人】(597075328)アトーテヒ ドイッチュラント ゲゼルシャフト ミット ベシュレンクテル ハフツング (33)
【Fターム(参考)】