説明

電磁波偏波面回転装置

【課題】容易に製造可能であり、偏波面の回転量が制御できる偏波面回転装置を提供する。
【解決手段】酸化シリコンや窒化シリコンなどからなる下部クラッド層101の上に、例えばシリコンからなる半導体層102を備える。半導体層102は、所定の方向に延在するリッジ構造のコア121を備え、また、コア121の両脇にp型スラブ部122及びn型スラブ部123を備えている。また、コア121を中心とした導波路の導波方向の一部において、コア121の両脇のp型スラブ部122及びn型スラブ部123に、p型領域104及びn型領域105を備えている。加えて、コア121よりなる導波路の導波方向に磁場を与える電磁石131及び電磁石131を制御する磁場制御部132を備える。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、導波する電磁波の偏波面を回転する電磁波偏波面回転装置に関する。
【背景技術】
【0002】
近年、光回路を始めとする非常に波長の短い電磁波の信号処理には、誘電体導波路型平面電磁波回路が用いられている。この中で、平面電磁波回路化された偏波面回転装置は、アイソレーターや偏波ダイバーシチ装置を構成するために重要なものとなっている。平面電磁波回路に偏波面回転装置を構築するために、例えば、図5に示すように、導波路の断面構造を、導波方向の左右に非対称にする技術(非特許文献1,Fig.1.参照)が提案されている。また、図6に示すように、磁性体のファラデー効果を用いる技術(非特許文献2,FIG.2.参照)も、提案されている。
【0003】
【非特許文献1】N.Somasiri et al., "Fabrication Tolerance Study of a Compact Passive Polarization Rotator", Journal of Lightwave Technology, Vol.20, No.4, pp.751-757, 2002.
【非特許文献2】R.Wolfe, et al., "Broadband magneto-optic waveguide isolator", Appl. Phys. Lett. Vol.57, No.10, pp.960-962, 1990.
【非特許文献3】RO.デンディ著、「プラズマダイナミクス」、p54,pp.147-148, 講談社、1996年
【非特許文献4】Yurii A. Vlasov, et al.,"Losses in single-mode silicon-on-insulator strip waveguides and bends", Optics Express, Vol.12, No.8, pp.1622-1631,2004.
【発明の開示】
【発明が解決しようとする課題】
【0004】
しかしながら、まず、非特許文献1の技術には、導波路の断面形状を導波方向の左右に非対称な形状に形成しにくいという問題がある。一般的な平面電磁波回路の作製プロセスでは、厚さが一様な薄膜を2次元的にエッチングして導波路の形状を形成している。このため、非特許文献1の技術の技術においては、薄膜の厚さ方向に沿って導波路の形状を変化させるように形成するため、非対称な形状を精度よく形成することが容易ではない。また、非対称な形状が精度よく形成できたとしても、引用文献1の技術では、偏波面の回転量は固定であり、偏波面の回転を任意に調整することができない。
【0005】
また、引用文献2の技術では、材料に特殊な磁性体を用いるため、既存の平面電磁波回路の一部に選択的に上記磁性体の膜を形成することになり、この場合においても、製造工程が非常に複雑になり、形成しにくいという問題がある。特に、光回路の場合には、構造体の寸法がμm単位と非常に小さいため、上述したような複合材料系の加工は、非常に困難である。また、磁性体の磁化の状態は固定となるため、偏波の回転量も固定となり、任意に制御することができない。更には、引用例2の技術では、周囲の平面電磁波回路と低損失で接続可能とするために、特殊な設計も必要となる。
【0006】
以上に説明したように、従来の技術では、偏波面回転装置を容易に製造することが困難であり、また、偏波面の回転量が制御できないという問題があった。
本発明は、以上のような問題点を解消するためになされたものであり、容易に製造可能であり、偏波面の回転量が制御できる偏波面回転装置を提供することを目的とする。
【課題を解決するための手段】
【0007】
本発明に係る電磁波偏波面回転装置は、下部クラッド層と、この下部クラッド層の上に形成された半導体よりなるコアと、このコアの上に形成された上部クラッド層と、コアよりなる導波路のキャリア注入領域に対してキャリアを注入するキャリア注入手段と、キャリア注入領域に対して導波方向に磁場を与える磁場供給手段とを備えるようにしたものである。キャリア注入手段によりキャリア注入領域に注入された自由キャリアは、磁場供給手段により与えられた磁場により導波方向に磁化し、自由空間中における磁化されたプラズマとして解釈可能であり、この磁化プラズマの磁化軸に沿って伝搬する電磁波は、ファラデー効果を受ける。
【0008】
上記電磁波偏波面回転装置において、キャリア注入領域において下部クラッド層と上部クラッド層との間でコアを挾むようにコアに接して配置され、コアより薄く形成された半導体よりなるn型スラブ部及びp型スラブ部と、n型スラブ部に設けられたn型領域及びp型スラブ部に設けられたp型領域と、n型領域及びp型領域に各々接続して設けられた電極とを少なくとも備え、上部クラッド層は、コアを覆うように形成され、n型領域,p型領域,及び電極によりキャリア注入手段が構成されているようにすればよい。
【0009】
また、上記電磁波偏波面回転装置において、下部クラッド層と上部クラッド層とに挾まれた配置された半導体層と、この半導体層に形成された2次元フォトニック結晶からなるフォトニック結晶領域と、このフォトニック結晶領域の中に形成された線状欠陥領域と、キャリア注入領域においてフォトニック結晶領域を挾むように半導体層に形成されたn型領域及びp型領域と、n型領域及びp型領域に各々接続して設けられた電極とを備え、線状欠陥領域よりコアが形成され、n型領域,p型領域,及び電極によりキャリア注入手段が構成されているようにしてもよい。
【0010】
また、上記電磁波偏波面回転装置において、第1導電型(n型もしくはp型)の半導体よりなる基板の上に形成された第1導電型の半導体よりなるストライプ形状の下部クラッド層と、この下部クラッド層の上に形成された半導体よりなるストライプ形状のコアと、このコアの上に形成された第2導電型(p型もしくはn型)の半導体よりなる上部クラッド層と、基板の上に形成された第1電極と、上部クラッド層の上に形成された第2電極とを備え、下部クラッド層,上部クラッド層、第1電極,及び第2電極によりキャリア注入手段が構成されているようにしてもよい。
【0011】
また、上記電磁波偏波面回転装置において、磁場供給手段は、電磁石から構成され、この電磁石より発生する磁場の強度を制御する磁場制御手段を備えるようにすればよい。なお、電磁波偏波面回転装置において、半導体は、シリコン系半導体,ゲルマニウム系半導体,GaAs系半導体,InP系半導体,セレン化亜鉛系半導体,及びテルル化亜鉛系半導体の少なくとも1つから構成され、下部クラッド層及び上部クラッド層は、酸化シリコン,酸窒化シリコン,GaAs系半導体,InP系半導体,酸化アルミニウム,及び酸化マグネシウムの少なくとも1つから構成されていればよい。また、導波路は、波長1.3〜1.65μmの電磁波が導波される場合、コアの断面寸法は、0.2μm以上とされていればよい。
【発明の効果】
【0012】
以上説明したように、本発明によれば、コアよりなる導波路のキャリア注入領域に対してキャリアを注入するキャリア注入手段と、キャリア注入領域に対して導波方向に磁場を与える磁場供給手段とを備えるようにしたので、容易に製造可能であり、偏波面の回転量が制御できる偏波面回転装置が提供できるという優れた効果が得られる。
【発明を実施するための最良の形態】
【0013】
以下、本発明の実施の形態について図を参照して説明する。図1は、本発明の実施の形態における電磁波偏波面回転装置の構成例を示す断面図(a),平面図(b),(c)である。図1に示す電磁波偏波面回転装置は、まず、酸化シリコンや窒化シリコンなどからなる下部クラッド層101の上に、例えばシリコンからなる半導体層102を備える。半導体層102は、断面視矩形で所定の方向に延在する構造体(直方体)からなるリッジ構造のコア121を備え、また、コア121の両脇にp型スラブ部122及びn型スラブ部123を備えている。コア121の部分は、例えば、幅0.5μm程度に形成され、また、下部クラッド層101からの高さが0.2μm程度に形成されている。また、p型スラブ部122及びn型スラブ部123は、膜厚0.1μm程度に形成されている。
【0014】
これらの構造は、例えば、SOI(Silicon on Insulator)基板の埋め込み絶縁層上のシリコン(SOI)層を、公知のリソグラフィー技術とエッチング技術とにより、コア121を形成すると共にスラブ部を薄く残すように微細加工することで形成可能である。この場合、SOI基板の埋め込み絶縁層が下部クラッド層101となる。また、コア121,p型スラブ部122,及びn型スラブ部123は、これらより屈折率の小さい材料からなる上部クラッド層103により覆われている。上部クラッド層103は、下部クラッド層101と同様に、酸化シリコンや窒化シリコンから構成されていればよい。図1に示す電磁波偏波面回転装置では、いわゆるリブ型導波路を構成している。
【0015】
また、図1に示す電磁波偏波面回転装置では、上述した構成のコア121を中心とした導波路の導波方向の一部において、コア121の両脇のp型スラブ部122及びn型スラブ部123に、p型領域104及びn型領域105を備えている。例えば、よく知られたイオン注入法などにより、硼素を導入することでp型領域104が形成可能であり、ヒ素を導入することでn型領域105が形成可能である。この構成により、電極106及び電極107に所定の電圧を印加することで、コア121よりなる導波路のキャリア注入領域に対し、導波方向に垂直な方向にキャリアの注入を可能としている。
【0016】
加えて、図1に示す電磁波偏波面回転装置では、図1(c)に示すように、コア121よりなる導波路の導波方向(電磁波進行方向)に磁場を与える電磁石(磁場供給手段)131及び電磁石131を制御する磁場制御部132を備える。電磁石131により、上記キャリア注入領域において、電磁波進行方向に磁場を供給可能としている。従って、p型領域104及びn型領域105に挾まれた領域のコア121においては、キャリアが注入されると共に磁場が与えられる状態となっている。なお、p型領域104及びn型領域105には、電極106及び電極107がオーミック接続し、また、電極106及び電極107には、プラグ108及びプラグ109を介して配線110及び配線111が接続し、図示しない回路などにより、電極106及び電極107に所定の電圧を印加可能としている。
【0017】
上述したように構成された図1に示す電磁波偏波面回転装置によれば、以降に説明するように、コア121よりなる導波路を導波する電磁波の偏波面を回転させることが可能となる。以下、偏波面の回転制御について図2の斜視図を用いて説明する。まず、電極106及び電極107に所定の電圧を印加することで、コア121よりなる電磁波導波路のキャリア注入領域には、多数の自由キャリア203が発生しているものとする。加えて、この状態で、電磁波導波路のキャリア注入領域には、電磁石131により電磁波の進行方向に平行な磁場202が与えられているものとする。
【0018】
自由キャリア203は、自由空間中のプラズマとして解釈できるが、上述したように磁場202が存在しているので、プラズマとすることができる自由キャリア203は、電磁波進行方向に磁化している。このような磁化プラズマの磁化軸に沿って電磁波を伝搬させると、磁化プラズマのファラデー効果により、伝搬している電磁波の偏波面201が回転する(非特許文献3参照)。図1に示す電磁波偏波面回転装置によれば、p型領域104及びn型領域105によりコア121にキャリアが供給されている状態で、このキャリア注入領域に対して電磁石131によりコア121の電磁波進行方向に磁場202が与えられているようにしたので、上述したファラデー効果により、コア121よりなる導波路を導波する電磁波の偏波面201を回転させることができる。
【0019】
このように、図1に示す電磁波偏波面回転装置によれば、コア121など導波路を複雑な形状に形成する必要がなく、また、特殊な磁性体も必要とせず、容易に形成可能な状態で、電磁波の偏波面を回転させることができる。例えば、コア121(半導体層102)は、シリコンの他に、GaAsやInPなどの化合物半導体材料より構成してもよく、これらの材料は、微細加工性に優れ、また、量産性に富んでいる。特に、シリコンは、安価に入手可能な最も一般的に用いられている半導体材料であり、シリコンを用いることで、図1に示す電磁波偏波面回転装置が、容易に製造可能である。
【0020】
また、偏波面の回転量は、磁場制御部132により電磁石131より発生する磁場の強度を制御することで、偏波面の回転量が制御可能である。また、偏波面の回転量は、供給されているキャリアの密度と与えられている磁場の強度とに比例する。このため、例えば、電極106及び電極107に印加する電圧を制御してコア121に供給するキャリアの密度を制御することで、偏波面の回転量が制御可能である。従って、電磁石131の代わりに永久磁石を用いて磁場を供給するようにしても、偏波面の回転量は制御できる。なお、p型領域104及びn型領域105は、コア121よりなる導波路を導波する電磁波の強度の大きな領域以外に配置されているため、上記導波路を導波(進行)する電磁波を減衰させることがない。
【0021】
次に、本発明の実施の形態における他の電磁波偏波面回転装置について説明する。図3は、本実施の形態における他の電磁波偏波面回転装置の構成例を示す断面図(a)及び平面図(b)である。図3に示す電磁波偏波面回転装置は、まず、酸化シリコンや窒化シリコンなどからなる下部クラッド層301の上に、例えば、シリコンからなる膜厚0.2μmの半導体層302を備え、半導体層302の上には、例えば酸化シリコンや窒化シリコンからなる上部クラッド層303を備える。このように、上下をクラッド層に挾まれた半導体層302の所定領域には、フォトニック結晶層322が形成されている。フォトニック結晶層322は、例えば、複数の円柱孔302aが0.4μm周期で三角格子状に配列されたものである。このように構成されたフォトニック結晶層322の一部に、円柱孔302aが形成されていない線状の領域(線状欠陥)を設けることで、コア321が形成されている。
【0022】
上述した構成とされたフォトニック結晶層322によれば、複数の円柱孔302aの存在による2次元の屈折率周期分布により、半導体層302の平面方向にフォトニックバンドギャップが形成され、これらにコア321は挾まれている。このため、コア321に導入(入射)された電磁波は、フォトニック結晶層322の平面方向には、フォトニックバンドギャップにより伝搬が禁じられ、法線(上下)方向には、下部クラッド層301及び上部クラッド層303による反射で閉じ込められる。このように、図3に示す電磁波偏波面回転装置では、フォトニック結晶層322とここに設けられた線状欠陥よりなるコア321とにより、いわゆるフォトニック結晶線欠陥導波路が構成されている。
【0023】
また、半導体層302のフォトニック結晶層322の両脇には、p型領域304及びn型領域305が形成され、p型領域304及びn型領域305には、電極306及び電極307がオーミック接続されている。この構成により、電極306及び電極307に所定の電圧を印加することで、コア321よりなる導波路のキャリア注入領域に対し、導波方向に垂直な方向にキャリアの注入を可能としている。また、図3に示す電磁波偏波面回転装置においても、図示していないが、図1(c)を用いて説明したように、電磁石及びこれを制御する磁場制御部を備え、コア321よりなる導波路のキャリア注入領域に対して、導波方向に磁場を印加可能としている。
【0024】
このように、図3に示す電磁波偏波面回転装置においても、コア321に、キャリアを注入すると共に、このキャリア注入領域に対して導波方向に磁場を与えることが可能とされている。この結果、図3に示す電磁波偏波面回転装置においても、図1に示した電磁波偏波面回転装置と同様に、コア321よりなる導波路を導波する電磁波の偏波面を回転させることが可能である。なお、図3では省略しているが、電極306及び電極307には、プラグや配線などを介して所定の回路が接続し、電極306及び電極307に対して所定の電圧を印加可能としている。
【0025】
次に、本発明の実施の形態における他の電磁波偏波面回転装置について説明する。図4は、本実施の形態における他の電磁波偏波面回転装置の構成例を示す断面図(a)及び平面図(b)である。図4に示す電磁波偏波面回転装置は、まず、n型のInPからなる基板401の上に、リッジ(ストライプ)形状に形成されたn型のInPからなる下部クラッド層402,同様にリッジ状に形成されたInGaAsPからなるコア層403と、同様にリッジ状に形成されたp型のInPからなる上部クラッド層404と、InGaAsからなるコンタクト層405とが積層されている。本例の場合は、コア層403の上下は、下部クラッド層402及び上部クラッド層404に挟まれ、両脇は空気よりなるクラッド部に挾まれ、電磁波の閉じ込めがなされ、これらのハイメサ構造により導波路(ハイメサ構造導波路)が構成されている。なお、上述したリッジ(ストライプ)形状とは、断面視矩形で所定の方向に延在する構造体(直方体)のことを示している。
【0026】
また、コンタクト層405の上には、p側電極406が形成され、リッジ構造のコア403よりなる導波路の両脇の基板402の上には、n側電極407が形成され、コア層403よりなる導波路のキャリア注入領域に対し、導波方向に垂直な方向にキャリアの注入を可能としている。なお、p型とn型とを入れ替えても構成可能である。加えて、図示しない電磁石及びこれを制御する磁場制御部が、図1(c)に示した電磁波偏波面回転装置と同様に設けられ、コア層403よりなる導波路のキャリア注入領域に対して、導波方向に磁場を印加可能としている。
【0027】
このように、図4に示す電磁波偏波面回転装置においても、コア層403に、キャリアを注入すると共に、このキャリア注入領域に対して導波方向に磁場を与えることが可能とされている。この結果、図4に示す電磁波偏波面回転装置においても、図1及び図3に示した電磁波偏波面回転装置と同様に、コア層403よりなる導波路を導波する電磁波の偏波面を回転させることが可能である。なお、図4では省略しているが、p側電極406及びn側電極407には、配線などを介して所定の回路が接続し、p側電極406及びn側電極407に対して所定の電圧を印加可能としている。また、下部クラッド層402,コア層403などの部分の側部が、絶縁材料で埋め込まれて電流狭窄されるようにしてもよい。この場合、上部クラッド層404は、電流狭窄の層にかけて形成されていてもよく、リッジ状に形成されている必要はない。
【0028】
なお、上述では、コアがシリコン及びInGaAsPから構成されている場合について説明したが、これに限るものではない。コアの部分は、伝搬させる電磁波に対して透明な半導体材料を用いればよい。例えば、通信用に主に用いられている波長1.5μm体の赤外線に対しては、シリコン系半導体,ゲルマニウム系半導体,GaAs系化合物半導体,及びInP系化合物半導体がある。また、テラヘルツ領域の電磁波に対しては、セレン化亜鉛系半導体,テルル化亜鉛系半導体が適用可能である。また、電気的なキャリアの注入構造の部分は、製造の容易さを考慮すると、コアの部分と同系の材料を用いることが望ましい。例えば、図4に示す構成を、シリコンから構成することも可能である。例えば、p型の不純物が導入されたシリコン細線と、n型の不純物が導入されたシリコン細線とで、不純物が導入されていないi形のシリコン細線を挾むことで、シリコン細線よりなるハイメサ構造の導波路が形成できる。
【0029】
また、クラッドの部分は、例えば、通信用の1.3〜1.65μm帯の赤外線に対しては、酸化シリコン,酸窒化シリコン,GaAs系化合物半導体,及びInP系化合物半導体が適用可能である。また、テラヘルツ領域の電磁波に対しては、酸化シリコン,酸化アルミニウム(コランダム),酸化マグネシウムなどが適用可能である。また、いずれの場合においても、空気や真空の雰囲気を、クラッド領域として利用することが可能である。また、電気的なキャリアの注入(キャリア注入手段)は、前述した図1,図3,図4に示すものに限らないが、これらのPIN接合構造によるキャリアの注入が、簡便である。
【0030】
ところで、上述した電磁波偏波面回転装置の原理は、導波路が単一モードである場合に限るものではなく、原理的には、導波路(コア)の断面形状及び寸法には制約はない。しかしながら、一般には、他の平面電磁波回路が、単一モード条件を満たす構造となっているため、これにほぼ一致する形状にすることが望ましい。また、低消費電力化や高速化などを考慮すると、導波路の断面寸法は、より小さい方が好ましい。ここで、最も導波路断面の寸法を小さくできるのは、埋め込み型チャネル導波路の場合である。一般的には、埋め込み型チャネル導波路には、電極などを設けるスラブ部を設けるようにはしていないが、部分的に薄いスラブ部を設けても電磁波の伝搬には影響がないため、埋め込み型チャネル導波路の形態が、導波路(コア)の断面寸法の参考になる。
【0031】
例えば、通信用の1.3〜1.65μm帯の赤外線を対象としたシリコン細線導波路と呼ばれる埋め込み型チャネル導波路の場合、単一モード条件を満たすコア部の最大断面寸法は、0.5μm程度と推測できる(非特許文献4参照)。また、導波している電磁波と注入したキャリアとを効率よく相互作用させるためには、電磁波が、コアの部分へより強く閉じ込められる状態が好ましい。同様に、導波路の回路部分においては、曲げ半径が可能な限り小さい方がよいが、この観点においても、より強い閉じ込めが要求される。ここで、非特許文献4には、数μmの曲げ半径で偏向可能なシリコン細線導波路について多数列挙されているが、これらから、シリコンよりなるコア部の最小寸法は、0.2μm程度であることが分かり、これが、十分な閉じ込めが得られる最小寸法と考えてよい。
【図面の簡単な説明】
【0032】
【図1】本発明の実施の形態における電磁波偏波面回転装置の構成例を示す断面図(a),平面図(b),(c)である。
【図2】偏波面の回転制御について説明するための斜視図である。
【図3】本実施の形態における他の電磁波偏波面回転装置の構成例を示す断面図(a)及び平面図(b)である。
【図4】本実施の形態における他の電磁波偏波面回転装置の構成例を示す断面図(a)及び平面図(b)である。
【図5】非特許文献1のFig.1.に示されている図である。
【図6】非特許文献2のFIG.2.に示されている図である。
【符号の説明】
【0033】
101…下部クラッド層、102…半導体層、103…上部クラッド層、104…p型領域、105…n型領域、106,107…電極、108,109…プラグ、110.111…配線、121…コア、122…p型スラブ部、123…n型スラブ部、131…電磁石(磁場供給手段)、132…磁場制御部。

【特許請求の範囲】
【請求項1】
下部クラッド層と、
この下部クラッド層の上に形成された半導体よりなるコアと、
このコアの上に形成された上部クラッド層と、
前記コアよりなる導波路のキャリア注入領域に対してキャリアを注入するキャリア注入手段と、
前記キャリア注入領域に対して導波方向に磁場を与える磁場供給手段と
を備えることを特徴とする電磁波偏波面回転装置。
【請求項2】
請求項1記載の電磁波偏波面回転装置において、
前記キャリア注入領域において前記下部クラッド層と前記上部クラッド層との間で前記コアを挾むように前記コアに接して配置され、前記コアより薄く形成された半導体よりなるn型スラブ部及びp型スラブ部と、
前記n型スラブ部に設けられたn型領域及び前記p型スラブ部に設けられたp型領域と、
前記n型領域及び前記p型領域に各々接続して設けられた電極と
を少なくとも備え、
前記上部クラッド層は、前記コアを覆うように形成され、
前記n型領域,前記p型領域,及び前記電極により前記キャリア注入手段が構成されている
ことを特徴とする電磁波偏波面回転装置。
【請求項3】
請求項1記載の電磁波偏波面回転装置において、
前記下部クラッド層と前記上部クラッド層とに挾まれた配置された半導体層と、
この半導体層に形成された2次元フォトニック結晶からなるフォトニック結晶領域と、
このフォトニック結晶領域の中に形成された線状欠陥領域と、
前記キャリア注入領域において前記フォトニック結晶領域を挾むように前記半導体層に形成されたn型領域及びp型領域と、
前記n型領域及び前記p型領域に各々接続して設けられた電極と
を備え、
前記線状欠陥領域より前記コアが形成され、
前記n型領域,前記p型領域,及び前記電極により前記キャリア注入手段が構成されている
ことを特徴とする電磁波偏波面回転装置。
【請求項4】
請求項1記載の電磁波偏波面回転装置において、
第1導電型の半導体よりなる基板の上に形成された第1導電型の半導体よりなるストライプ形状の前記下部クラッド層と、
この下部クラッド層の上に形成された半導体よりなるストライプ形状の前記コアと、
このコアの上に形成された第2導電型の半導体よりなる上部クラッド層と、
前記基板の上に形成された第1電極と、
前記上部クラッド層の上に形成された第2電極と
を備え、
前記下部クラッド層,前記上部クラッド層、前記第1電極,及び前記第2電極により前記キャリア注入手段が構成されている
ことを特徴とする電磁波偏波面回転装置。
【請求項5】
請求項1〜4のいずれか1項に記載の電磁波偏波面回転装置において、
前記磁場供給手段は、電磁石から構成され、
この電磁石より発生する磁場の強度を制御する磁場制御手段を備える
ことを特徴とする電磁波偏波面回転装置。
【請求項6】
請求項1〜5のいずれか1項に記載の電磁波偏波面回転装置において、
前記半導体は、シリコン系半導体,ゲルマニウム系半導体,GaAs系半導体,InP系半導体,セレン化亜鉛系半導体,及びテルル化亜鉛系半導体の少なくとも1つから構成され、
前記下部クラッド層及び前記上部クラッド層は、酸化シリコン,酸窒化シリコン,GaAs系半導体,InP系半導体,酸化アルミニウム,及び酸化マグネシウムの少なくとも1つから構成されている
ことを特徴とする電磁波偏波面回転装置。
【請求項7】
請求項1〜6のいずれか1項に記載の電磁波偏波面回転装置において、
前記導波路は、波長1.3〜1.65μmの電磁波が導波され、
前記コアの断面寸法は、0.2μm以上とされている
ことを特徴とする電磁波偏波面回転装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate


【公開番号】特開2007−155967(P2007−155967A)
【公開日】平成19年6月21日(2007.6.21)
【国際特許分類】
【出願番号】特願2005−348937(P2005−348937)
【出願日】平成17年12月2日(2005.12.2)
【国等の委託研究の成果に係る記載事項】(出願人による申告)国等の委託研究の成果に係わる特許出願(平成17年度、総務省、「シリコン光・電気融合プラットフォームによる光集積回路の研究開発」、産業活力再生特別措置法第30条の適用を受けるもの)
【出願人】(000004226)日本電信電話株式会社 (13,992)
【Fターム(参考)】