説明

電解処理装置及び電解処理方法

【課題】たとえ高抵抗の多孔質体を使用することで、電解めっき等の電解処理に伴って、多孔質体が発熱して電解液が上昇したとしても、電解液の液温を所定の値に維持することで、基板面内に均一な電解処理方法を提供する。
【解決手段】アノード58を内部に収容するとともに、下端開口部を多孔質体50で閉塞したハウジング48を有するアノードヘッド46と、基板保持部30で保持した基板の被処理面周縁部に接触して該周縁部をシールするシールリング34及び該周縁部に接触して被処理面に通電するカソード接点36を有するカソード部32と、ハウジング48内に温度が制御された電解液を該電解液が多孔質体50と接触するように供給して循環させるアノード側液循環ライン70と、多孔質体50が基板Wと近接した電解処理位置にあるときに該多孔質体50と基板Wとの間に温度が制御された電解液を供給して循環させる基板側液循環ライン72を有する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、電解液を使用して半導体ウェーハ等の基板の被処理面(表面)に電解処理を施す電解処理装置及び電解処理方法に関する。本発明の電解処理には、電解めっき処理、めっき前処理及び電解エッチング処置等が含まれる。
【背景技術】
【0002】
電子機器の小型化、高速化、及び低消費電力化の進行に伴い、半導体装置内の配線についても、パターンの微細化が進行しており、このパターンの微細化に伴って、配線に用いられる材料も従来のアルミニウム及びアルミニウム合金から銅及び銅合金へと移り変わってきている。銅の抵抗率は、1.67μΩcmとアルミニウム(2.65μΩcm)よりも約37%低い。このため、銅配線はアルミニウム配線に比べ、配線による電力の消費を抑えると同時に、同等の配線抵抗でもその分の微細化が可能であり、更に配線の低抵抗化により信号遅延も抑えることができる。
【0003】
銅原子は、シリコンや絶縁膜中を容易に移動し、半導体装置の特性を狂わせてしまう。このため、銅配線の周辺をバリアメタルと呼ばれる保護層で被覆する必要がある。また配線全体をバリアメタルで被覆した構造を実現するために、配線形状のトレンチ内に配線材料(銅)を埋込むダマシン法が広く用いられている。ダマシン法では、バリアメタルとして、PVD、CVDまたはALDで成膜されたTi、TiN、TaまたはTaNが広く用いられており、銅の埋込みは、PVDやCVD等の比べて高速で成膜できる電解めっき法で行うのが一般的である。
【0004】
電解めっき法で銅をトレンチ内に埋込む際には、抵抗の高いバリアメタルの表面に抵抗の低いシード層(給電層)を形成し、シード層表面から銅めっき膜を成長させることが広く行われている。シード層としては、PVD法等によって形成された銅薄膜(銅シード層)を用いるのが一般的であるが、配線の微細化に伴い、膜厚のより薄いシード層が求められている。このため、一般に50nm程度であったシード層の膜厚が、今後10〜20nm以下になることが予想される。
【0005】
一方で、銅シード層を無くして、Ru(ルテニウム)からなるシード層の表面にダイレクトに銅めっきする試みも行われている。この理由の一つとして、銅材料の大気環境下での不安定を挙げることができる。即ち、銅は大気中で容易に酸化され。銅シード層の表面に数オングストロームから数十オングストロームの自然酸化膜(酸化銅)が形成されてしまう。酸化銅は電気を通さず、また酸性めっき液中に溶解しやすい。
【0006】
出願人は、基板とアノードとの間にイオン交換樹脂または多孔性中性子を配置して、めっき液をアノード側と基板側に隔離するようにしためっき装置を提案している(特許文献1参照)。また、基板とアノードとの間に多孔質体を配置し、この多孔質体で上下に仕切られたアノード側領域と基板(カソード)側領域に異なる組成のめっき液(電解液)を導入するようにしたものを提案している(特許文献2,3参照)。更に、ルテニウム膜表面に形成された不働態層を電解処理により電気化学的に除去し、しかる後、ルテニウム膜表面に電解銅めっきによって銅をダイレクトに成膜するようにしたものを提案している(特許文献4参照)。
【0007】
【特許文献1】特開2001−49498号公報
【特許文献2】特開2004−353061号公報
【特許文献3】特開2005−146398号公報
【特許文献4】特開2008−98449号公報
【発明の開示】
【発明が解決しようとする課題】
【0008】
近年の基板配線の微細化に伴って、銅やRuからなるシード層の膜厚が益々薄くなり、特にRuからなるシード層にあっては、銅シード層では1Ω/sq以下だったシート抵抗が100Ω/sq以上となると考えられる。その結果、シード層の表面にめっき膜を成膜する際に、基板の周縁部では電解量が増えてめっき膜の膜厚が厚くなり、基板の中心部では電解量が減ってめっき膜の膜厚が薄くなる、ターミナルエフェクトの影響がより大きくなって、基板面内に均一なめっき処理を行うことが難しくなってきている。
【0009】
このターミナルエフェクトの影響によるめっき膜厚の基板面内不均一を改善するために、アノードと基板(カソード)の間に抵抗体となる多孔質体を挟んでめっき等の処理を行うことが開発されており、めっき下地膜の電気抵抗の増大化に比例して、多孔質体に求められる抵抗値も大きくなってきている。大きな抵抗値を持つ多孔質体を使用して、例えばめっき処理を行うと、多孔質体が発熱し、この発熱に伴ってめっき液の液温が上昇する。例えば、下記のように、シート抵抗が100Ω/sqのRuからなるシード層をもつ300mmの基板の表面に、気孔率6%のアルミナ多孔質体を用いて膜厚2μmのめっき膜を成膜すると、多孔質体から約100kcalの発熱があり、多孔質体を挟んでアノード側に位置するめっき液の液温はめっき処理中に約50℃上昇する。
【0010】
このように、めっき液の液温がめっき処理中に上昇すると、めっき膜の埋込み性能への影響やめっき液に一般に含まれる添加剤の分解の影響等が問題となる。
【0011】
例えば、幅0.1μmのトレンチが0.1μm間隔で形成されたφ300mm基板の該トレンチ内に、電解めっきによって、銅めっき膜をボイド無く埋込むためには、液温を20℃以下に保っためっき液を使用した電解めっきを行う必要がある。つまり、液温が20℃以下のめっき液を使用して、トレンチ100を有する基板Wの表面に銅めっき膜102を成膜して該銅めっき膜102をトレンチ100内に埋込むと、図1(a)に示すように、トレンチ100内に内部にボイドのない銅めっき膜102を埋込むことができる。しかし、液温が25℃のめっき液を使用すると、図1(b)に示すように、トレンチ100内に埋込まれた銅めっき膜102の内部にボイド104が発生する。更に、液温が45℃のめっき液を使用すると、図1(c)に示すように、トレンチ100の内部に銅めっき膜102が届かなくなる。これは、めっき液に含まれる添加剤が曇点を超えて白濁し、めっき液の再使用または連続使用できなくなり、同時に埋込み性能が悪化するためであると考えられる。
【0012】
めっき初期における埋込み性能について、めっき液温度依存性をクーポン試験で評価した結果を図2に示す。ここで、めっき初期の埋込み性能を判断する目安として、ボイドの発生の他に、オーバープレート比(OP/t)とボトムアップ性(BU)がある。オーバープレート比は、配線のないフィールド部に成膜されためっき膜の膜厚(OP)と配線部に成膜されためっき膜の膜厚(t)の比(OP/t)であり、CMP後のディッシング量を減らすため、1に近いほど良い。ボトムアップ性は、トレンチ外と比較して、トレンチ内にどれだけ厚くめっき膜が成膜されたかを示す指標であり、その値が大きい程よい。
【0013】
図2から、この試験に使用しためっき液は、液温が15〜25℃の範囲でオーバープレート特性がよく、液温が15±2℃の領域でボトムアップ特性がよく、このことから、初期めっき液に使用するめっき液の液温を15〜17℃に保つことで特に埋込み性能が向上することが判る。埋込み特性が最適な液温はめっき液の成分によって変化し、実際の運用にあたっては、一般に10〜25℃が適当な液温となる。
【0014】
本発明は上記事情に鑑みてなされもので、たとえ高抵抗(低気孔率)の多孔質体を使用することで、電解めっき等の電解処理に伴って、多孔質体が発熱したとしても、電解液の液温を所定の値に維持することで、基板面内に均一な電解処理を行うことができるようにした電解処理装置及び電解処理方法を提供することを目的とする。
【課題を解決するための手段】
【0015】
本発明者は鋭意検討の結果、次のような知見を得た。すなわち、高い抵抗を持つ多孔質体を用いてめっき等の電解処理を行うことで、めっき下地膜の電気抵抗が高い基板に対しても基板全面に亘って均一な電解処理を行うことができるが、めっき処理を継続すると、多孔質体が発熱して多孔質体や液温が上昇してしまう。しかし、多孔質体を挟んでアノード側及び基板(カソード)側に位置する領域に、温度を管理した電解液を供給し循環させながら電解処理を行うことで、プロセス性能に影響を与えない範囲の液温の電解液で電解処理を行うことができる。
【0016】
即ち、気孔率6%のアルミナ多孔質体を用い、該多孔質体を挟んだアノード側と基板(カソード)側に硫酸銅めっき液をそれぞれ循環させながら、100Ω/sqのシート抵抗を持つRuからなるシード層を有するφ300mmの基板に対して、膜厚2μmのめっきを行い、その時のアノード側におけるめっき液の液温変化として多孔質体上面の温度測定を行った。アノード側の多孔質体から距離4mmの位置に仕切りを配置し、循環するめっき液の液量を15L/minとして、チラーユニットによってめっき液の温度管理を行ったところ、多孔質体からは略100kcalの発熱があった。
【0017】
この時、図3に示すように、めっき液の循環を行わない場合、多孔質体を挟んでアノード側に位置するめっき液の液温は約50℃上昇するが、流量5L/minでアノード側のめっき液を循環させると、アノード側のめっき液の液温は約18℃上昇し、流量9L/mimでアノード側のめっき液を循環させると、アノード側のめっき液の液温は約4℃上昇する。これらから気孔率6%の多孔質体を使用した場合は、流量約10L/minでめっき液を循環させることで、めっき液の液温の上昇を2℃以下に抑えられることが判る。また、気孔率10%の多孔質体を使用した場合、流量5L/minでめっき液を循環させることで、めっき液の液温の上昇を2℃以下に抑えることができる。上昇した多孔質体の温度は、めっき液を循環し続けることにより元の温度に戻るが、流量5L/minでめっき液を循環させた時、多孔質体が元の温度に戻るのに65秒かかり、流量9L/minのときは25秒かかることが確かめられている。
【0018】
本発明は、以上のような知見に基づいてなされたもので、請求項1に記載の発明は、基板を水平に保持する基板保持部と、前記基板保持部の上方に上下動自在に配置され、電解液に浸漬させてアノードを内部に収容するとともに、下端開口部を多孔質体で閉塞したハウジングを有するアノードヘッドと、前記基板保持部で保持した基板の被処理面周縁部に接触して該周縁部をシールするシールリング及び該周縁部に接触して被処理面に通電するカソード接点を有するカソード部と、前記ハウジング内に温度が制御された電解液を該電解液が前記多孔質体と接触するように供給して循環させるアノード側液循環ラインと、前記多孔質体が前記基板と近接した電解処理位置にあるときに該多孔質体と基板との間に温度が制御された電解液を供給して循環させる基板側液循環ラインを有することを特徴とする電解処理装置である。
【0019】
多孔質体を挟んでアノード側と基板(カソード)側に位置する領域に温度を管理した電解液を供給し循環させながら電解処理を行うことで、電解処理に伴って発熱した多孔質体を電解液で冷却しつつ、電解液の液温をプロセスに最適な温度に維持することができる。しかも、電解液を循環させることにより、電解処理中にアノードや基板(カソード)から発生する気体を除去することができる。
【0020】
請求項2に記載の発明は、前記アノード側液循環ライン及び前記基板側液循環ラインは、温度調節器を介して個別に温度を調節した電解液を個別に循環させるように構成されていることを特徴とする請求項1記載の電解処理装置である。
【0021】
このように、アノード側液循環ラインと基板側液循環ラインとを互いに独立させることで、アノード側液循環ラインと基板側液循環ラインに同じ温度の電解液を流して循環させることは勿論、必要に応じて、異なる温度の電解液を流して循環させることもできる。また、アノード側循環ラインに沿って流れる電解液と基板側循環ラインに沿って流れる電解液が互いに混じることがないため、例えばめっきを行う際は、めっきに影響のないアノード側循環ラインに沿って流れる電解液として、めっき液以外の任意の電解液、例えば硫酸を用いることができ、これによって、めっき液に含まれている添加剤がアノード上で消耗されることをなくして、電解液管理を容易となすとともに、コストダウンを図ることができる。
【0022】
請求項3に記載の発明は、前記アノード側液循環ライン及び前記基板側液循環ラインの前記多孔質体の下流側に位置する位置に、前記アノード側液循環ライン及び前記基板側液循環ラインに沿って流れる電解液の温度を検知する温度センサを設置したことを特徴とする請求項1または2記載の電解処理装置である。
【0023】
液循環ラインに沿って流れる電解液は、発熱体である多孔質体の近傍を通過することで加熱されて温度が上昇する。このため、温度センサを多孔質体の下流側に配置することで、多孔質体で加熱された電解液の温度を効率よく測定し、この液温センサの測定値を基に温度調節器または流量をフィードバック制御して電解液の液温管理を行うことができる。
【0024】
請求項4に記載の発明は、前記アノード側液循環ライン及び前記基板側液循環ラインに気液分離槽をそれぞれ設置したことを特徴とする請求項1乃至3のいずれかに記載の電解処理装置である。
これにより、アノード及び基板(カソード)から発生した気体を電解液中に溶解させて回収し、気液分離槽で分離して外部に排出することができる。
【0025】
請求項5に記載の発明は、前記アノードは、不溶解アノードであることを特徴とする請求項1乃至4のいずれかに記載の電解処理装置である。
アノードとして不溶解アノードを用いることで、ブラックフィルムの影響を排除し、しかも長期使用によるコストダウンを図ることができる。
【0026】
請求項6に記載の発明は、前記ハウジングの内部には、該ハウジング内の空間を上下に仕切る整流板が配置されていることを特徴とする請求項1乃至4のいずれかに記載の電解処理装置である。
【0027】
ハウジングの内部に、該ハウジング内の空間を上下に仕切る整流板を配置し、ハウジング内の流路を狭くすることで、ハウジング内に供給されて循環する電解液が発熱体である多孔質体のより近傍を流れるようにして、電解液の発熱体(多孔質体)に対する冷却効果を上昇させて、電解液の循環流量を少なく抑えることができる。また、例えばハウジングの高さをできるだけ低くしたり、ハウジングの電解液入口と電解液出口を互いに対向する位置に配置したりすることによっても、電解液が多孔質体近傍を流れるようにすることができる。
【0028】
請求項7に記載の発明は、前記多孔質体が前記基板と近接した電解処理位置にあるときの該多孔質体と基板との間隔は、0.1〜30mmであることを特徴とする請求項1乃至6のいずれかに記載の電解処理装置である。
【0029】
基板と多孔質体の間隔を変化させることで電解特性に影響を与えることができ、多孔質体と基板との間隔を0.1〜30mmとすることで、電解特性と基板側液循環ラインに沿って流れる電解液の温度調節を両立させることができる。多孔質体と基板との間隔が狭い程、基板側液循環ラインに沿って流れる電解液の多孔質体に対する冷却効果が高い。
【0030】
請求項8に記載の発明は、前記基板の被処理面には白金属元素であるシード層が設けられており、前記多孔質体の気孔率は19%以下であることを特徴とする請求項1乃至7のいずれかに記載の電解処理装置である。
【0031】
例えば、Ru(ルテニウム)等の白金属元素をシード層として使用すると、シード層のシート抵抗がかなり高くなるが、気孔率が19%以下、好ましくは10%以下の多孔質体を使用することで、内部に電解液を含有した時における多孔質体の電気抵抗をシード層のシート抵抗が無視できる程度に高めてターミナルエフェクトの影響を低減させることができる。
【0032】
請求項9に記載の発明は、電解液に浸漬させてアノードを内部に収容し下端開口部を多孔質体で閉塞したハウジングを有するアノードヘッドを、前記多孔質体が基板に近接した電解処理位置に位置するように配置し、前記ハウジング内に温度が制御された電解液を該電解液が前記多孔質体に接触するように供給して循環させ、前記多孔質体と基板との間に温度が制御された電解液を供給して循環させながら、基板とアノードとの間に電圧を印加して基板の電解処理を行うことを特徴とする電解処理方法である。
【0033】
請求項10に記載の発明は、前記多孔質体と基板との間に供給して循環させる電解液としてめっき液を、前記ハウジング内に供給して循環させる電解液としてめっき液またはめっき液以外の電解液をそれぞれ使用してめっき処理を行うことを特徴とする請求項9記載の電解処理方法である。
【0034】
ハウジング内に供給して循環させる電解液として、めっき液以外の電解液、例えば硫酸を使用してめっき処理を行うことで、めっき液に含まれている添加剤がアノード上で消耗されることをなくして、電解液管理を容易となすととも、コストダウンを図ることができる。
【0035】
請求項11に記載の発明は、前記多孔質体と基板との間に供給して循環させるめっき液の液温Tを、めっき初期に10℃<T≦25℃に維持し、該めっき液の液温をめっき液に含まれる添加剤の曇点以下に保持しながらめっき処理を継続することを特徴とする請求項10記載の電解処理方法である。
【0036】
これにより、めっき初期における埋込み特性を向上させ、しかもめっき液に含まれる界面活性剤等の添加剤が曇点以下となることを防止しながら、めっき処理を継続することで、めっきの進行に伴って、埋込み特性が悪化することを防止することができる。めっき初期にめっき液の液温は、13〜20℃であることが好ましく、15〜17℃であることがより好ましい。めっき液に含まれる界面活性剤等の添加剤の曇点は、添加剤の種類によって異なり、30℃の場合もあれば25℃の場合もある。
【発明の効果】
【0037】
この発明によれば、アノード側及び基板(カソード)側の電解液を電解処理中に循環させることにより、たとえ高抵抗の多孔質体を使用することで多孔質体が発熱しても、多孔質体を電解液で冷却しつつ、電解液の温度をプロセス性能に影響を与えることがない温度に管理することで、安定した電解処理を行うことができる。しかも、電解液を循環させることで、電解処理時にアノードもしくは基板(カソード)上に発生する気体を電解液で除去することができる。特に、めっき処理に使用し、めっき初期におけるめっき液の液温を、最も好ましくは15〜17℃に維持することで、埋込み特性を向上させることができる。
【発明を実施するための最良の形態】
【0038】
以下、電解液としてめっき液を使用した電解めっき装置に適用した本発明の実施の形態の電解処理装置について説明する。この電解めっき装置(電解処理装置)は、例えば基板表面に形成されたRu(ルテニウム)からなるシード層の表面に銅めっきを施して、銅からなる配線を形成するのに使用される。なお、本発明の電解処理装置は、使用する電解液を任意に選択することで、めっき前処理を行うめっき前処理装置や電解エッチングを行う電解エッチング装置等に適用することもできる。
【0039】
図4を参照して、Ruをシード層として、銅配線を形成するようにした例を説明する。先ず、図4(a)に示すように、半導体素子を形成した半導体基材1上の導電層1aの上にSiOやLow−K材からなる絶縁膜(層間絶縁膜)2を堆積し、絶縁膜2の内部に、リソグラフィ・エッチング技術により、配線用凹部としてのビアホール3とトレンチ4を形成し、その上にRuからなるシード層5を形成した基板Wを用意する。
【0040】
そして、図4(b)に示すように、基板Wの表面に銅めっきを施すことで、ビアホール3及びトレンチ4内に銅を充填するとともに、絶縁膜2上に銅めっき膜6を堆積する。その後、化学的機械的研磨(CMP)により、絶縁膜2上の銅めっき膜6及びシード層5を除去して、ビアホール3及びトレンチ4内に充填させた銅めっき膜6の表面と絶縁膜2の表面とをほぼ同一平面にする。これにより、図4(c)に示すように、絶縁膜2の内部に銅めっき膜6からなる配線を形成する。
【0041】
図5は、本発明の実施の形態の電解めっき装置(電解処理装置)を備えた基板処理装置の平面配置図を示す。図5に示すように、この基板処理装置には、コントロールパネル10を有する矩形状の装置フレーム12が備えられている。装置フレーム12の内部には、複数の基板を内部に収納した基板カセットを搬入する2つのロード・アンロード部14、2つのベベルエッチング・裏面洗浄装置16、基板ステーション18、リンス・乾燥装置20、1基のめっき前処理装置22及び4基の電解めっき装置24が配置されている。更に、ロード・アンロード部14、ベベルエッチング・裏面洗浄装置16、基板ステーション18及びリンス・乾燥装置20に挟まれた位置に第1搬送ロボット26が、基板ステーション18、リンス・乾燥装置20、めっき前処理装置22及び電解めっき装置24に挟まれた位置に第2搬送ロボット28がそれぞれ走行自在に配置されている。
【0042】
めっき前処理装置22は、電解めっき装置24による電解銅めっきに先立って、電解銅めっき時にシード層の役割をするルテニウム膜表面の不動態膜(酸化ルテニウム)を電解処理により電気化学的に除去するためのものである。
【0043】
図6及び図7は、電解めっき装置24の概要を示す。図6及び図7に示すように、電解めっき装置24は、表面(被処理面)を上向きにして基板Wを着脱自在に水平に保持する、上下動及び回転自在な基板保持部30と、この基板保持部30の上方に配置されたカソード部32を有している。カソード部32は、基板保持部30で保持した基板Wを上昇させた時に、基板Wの周縁部上面に圧接して、ここをシールするリング状のシールリング34と、シールリング34の外方で基板Wの周縁部上面のシード層5(図4参照)と接触して該シード層5に通電するカソード接点36とを有している。これにより、基板Wを保持した基板保持部30を上昇させて基板Wの周縁部上面をシールリング34でシールした時に、カソード接点36がシールリング34の外方に位置することで、カソード接点36がめっき液に接触しないようになっている。このカソード接点36は、めっき電源38の陰極から延びる導線40aに接続される。
【0044】
この例では、シールリング34及びカソード接点36は、基板保持部30で保持した基板Wの周縁部上面に接触した状態で、基板保持部30と一体に回転するように構成されている。カソード部32のシールリング36の上面には、下記のカソードヘッド46の下降を機械的に規制するストッパ42と、ストッパ42の外方に位置してストッパ42の上面に達しためっき液の流出を堰き止めるリング状の堰部材44が取付けられている。
【0045】
カソード部32の上方に位置して、アノードヘッド46が基板保持部30の直上方の位置と側方の待避位置との間を移動自在でかつ上下動自在に配置されている。アノードヘッド46は、下方に開口した有底円筒状のハウジング48と、このハウジング48の下端開口部内に嵌入させて該開口部を塞ぐように配置固定された多孔質体50を有しており、ハウジング48と多孔質体50との間には、めっき液の漏れを防止する、例えばOリングからなるシール部材52が介装されている。このように、ハウジング48の下端開口部を多孔質体50で塞ぐことで、ハウジング48の内部にアノード室54が区画形成されている。
【0046】
多孔質体50の外周側面には、これを囲むようにバンド状のシールドリング56が巻き付けられており、電流が多孔質体50の外周側面から流れることを防いでいる。シールドリング56の材質としては、例えばフッ素ゴムのような伸縮性材料が挙げられる。
【0047】
アノードヘッド46のアノード室54の内部には、例えばチタン上に酸化イリジウムをコーティングした不溶解アノードからなるアノード58が配置されている。アノード58は、めっき電源38の陽極から延びる導線40bに接続される。このようにアノード58として、不溶解アノードを使用することで、ブラックフィルムの影響を排除し、しかも長期使用によるコストダウンを図ることができる。
【0048】
多孔質体50は、例えばアルミナ、SiC、ムライト、ジルコニア、チタニア、コージライト等の多孔質セラミックスまたはポリプロピレンやポリエチレンの焼結体等の硬質多孔質体、あるいはこれらの複合体で構成されている。多孔質体50の気孔率は、一般的には30%以下であるが、19%以下であることが好ましく、10%以下であることが更に好ましい。そして、多孔質体50の内部にめっき液を含有させることで、つまり多孔質体50自体は絶縁体であるが、この内部にめっき液を複雑に入り込ませ、厚さ方向にかなり長い経路を辿らせることで、めっき液の電気伝導率より小さい電気伝導率を有するように構成されている。
【0049】
このように多孔質体50をハウジング48の開口部に配置し、この多孔質体50によって大きな抵抗を発生させることで、シード層の表面に銅めっき膜を成膜する時、シード層のシート抵抗の影響を低減させ、シード層の表面の電気抵抗による電流密度の面内差を小さくして、面内均一性を向上させためっき膜を成膜することができる。
【0050】
アノードヘッド46のハウジング48の下面には、アノードヘッド46を所定の位置まで下降させ、ハウジング48をストッパ42に当接させてアノードヘッド46を停止させた時、ハウジング48とストッパ42との間をシールする、例えばOリングからなるシール部材60が取付けられている。
【0051】
このような内部にめっき液を含有させることで電気抵抗を高める目的に用いられる多孔質体50の気孔率は、一般に30%以下であるが、図4に示すように、Ru(ルテニウム)からなるシード層5の表面に銅めっき膜を成膜しようとすると、シード層5のシート抵抗が銅シード層の場合に比べかなり高くなる。このような場合、多孔質体50として、気孔率が19%以下のもの、好ましくは10%以下のものを使用することで、内部にめっき液を含有した時における多孔質体50の電気抵抗をシード層5のシート抵抗が無視できる程度に高めてターミナルエフェクトの影響を低減させることができる。
【0052】
気孔率が19%以下、好ましくは10%以下の多孔質体50を使用してめっき処理を行うと、めっき処理中に多孔質体50が発熱し、この多孔質体50の発熱に伴ってめっき液の液温が上昇する。そこで、この例では、多孔質体50を挟んで上下に供給されるめっき液で多孔質体50を冷却しつつ、めっき液の液温をプロセスに最適な温度に維持するようにしている。
【0053】
即ち、この例では、アノード室54の内部に該アノード室54を上下に仕切る、例えば多孔質体からなる調整板62が多孔質体50とアノード58との間に位置して配置されており、多孔質体50と調整板62との間にアノード側めっき液Qを供給し循環させるアノード側液循環ライン70が備えられている。更に、カソードヘッド46を下降させて多孔質体50を該多孔質体50が基板Wに近接するめっき位置に位置させた時に、基板Wと多孔質体50との間に基板側めっき液Qを供給し循環させる基板(アノード)側液循環ライン72が備えられている。
【0054】
つまり、アノードヘッド46のハウジング48の一端部側には、ハウジング48の上面に開口し鉤状に屈曲して多孔質体50と調整板62で挟まれた空間に繋がる入口側ポート48aが、他端部側には、ハウジング48の上面に開口し鉤状に屈曲して多孔質体50と調整板62で挟まれた空間に繋がる出口側ポート48bがそれぞれ設けられている。そして、めっき液タンク74と入口側ポート48aは、途中に送液ポンプ76を設置したアノード側液供給ライン78で接続され、めっき液タンク74と出口側ポート48bは、内部に気液分離槽80を設置したアノード側液戻りライン82で接続されている。アノード側液戻りライン82には、気液分離槽80の上流側で、排気口48cから延びてアノード室54内の酸素を排気する酸素ガス排気管84が接続されている。そして、めっき液タンク74には、この内部のめっき液の液温を調整する温度調節器としてのチラーユニット86が接続されている。
【0055】
これによって、送液ポンプ76の駆動に伴って、チラーユニット86で温度を例えば一定に調節しためっき液タンク74内のめっき液をアノード側めっき液Qとして多孔質体50と調整板62で挟まれた領域に供給して循環させるアノード側液循環ライン70が構成されている。
【0056】
一方、アノードヘッド46のハウジング48の一端部側には、ハウジング48の周壁を入口側ポート48dが、他端部側には、ハウジング48の周壁を上下に貫通して延びる出口側ポート48dがそれぞれ設けられている。そして、めっき液タンク74と入口側ポート48cは、途中に第1送液ポンプ88aを設置した基板側液供給ライン90で接続され、めっき液タンク74と出口側ポート48dは、内部に第2送液ポンプ88b及び気液分離槽92を設置した基板側液戻りライン94で接続されている。
【0057】
これによって、第1送液ポンプ88a、更には必要に応じて第2送液ポンプ88bの駆動に伴って、チラーユニット86で温度を例えば一定に調節しためっき液タンク74内のめっき液を基板側めっき液Qとして基板Wと多孔質体50で挟まれた領域に供給して循環させる基板(カソード)側液循環ライン72が構成されている。
【0058】
このように、アノード側液循環ライン70と基板側液循環ライン72とを備え、多孔質体50を挟んだアノード側と基板(カソード)側の各領域に温度を管理しためっき液を供給し循環させながらめっき処理を行うことで、めっき処理に伴って発熱した多孔質体50をめっき液で冷却しつつ、めっき液の液温をプロセスに最適な温度に維持することができる。しかも、アノード側液循環ライン70及び基板側液循環ライン72に気液分離槽80,92をそれぞれ設けることで、めっき処理中にアノード58や基板(カソード)Wから発生する気体をめっき液中に溶解させて回収し、気液分離槽80,92で分離して外部に排出することができる。
【0059】
この時、アノード側液循環ライン70と基板側液循環ライン72の双方で循環させるめっき液の流量は、多孔質体50として気孔率6%のアルミナ多孔質体を使用し、100Ω/sqのシート抵抗を持つRuシード層を有するφ300mm基板に対してめっきを行う場合は、約10L/min以上、例えば15L/minであり、多孔質体50として気孔率10%のアルミナ多孔質体を使用した場合は、約5L/min以上である。
【0060】
めっき液タンク74には、この内部のめっき液の液温を検知する温度センサ96aを設置されている。更に、アノード側液循環ライン70及び基板側液循環ライン72には、多孔質体50の下流側に位置して該アノード側液循環ライン70及び基板側液循環ライン72に沿って流れるめっき液の液温を検知する温度センサ96b、96cがそれぞれ設置されている。これらの温度センサ96a,96b,96cは、例えば熱電対からなる。そして、この温度センサ96a,96b,96cの測定値を基に、チラーユニット(温度調節器)86及び送液ポンプ76,88a,88bをフィードバック制御して、めっき液の温度管理を行うようになっている。
【0061】
アノード側液循環ライン70及び基板側液循環ライン72に沿って流れるめっき液は、発熱体である多孔質体50の近傍を通過することで加熱されて温度が上昇する。このため、アノード側液循環ライン70及び基板側液循環ライン72の多孔質体50の下流側に配置する位置に温度センサ96b,96cを設置することで、多孔質体50で加熱されためっき液の温度を効率よく測定することができる。
【0062】
この例では、ハウジング48の内部に、該ハウジング48内の空間を上下に仕切る整流板62を配置し、ハウジング48の内部のアノード側液循環ライン70を構成する流路を狭くするようにしている。これにより、ハウジング48内に供給されて循環するめっき液が発熱体である多孔質体50のより近傍を流れるようにして、めっき液の多孔質体(発熱体)50に対する冷却効果を上昇させて、めっき液の循環流量を少なく抑えることができる。
【0063】
この例において、アノード側液循環ライン70のハウジング48に設けられる入口ポート48aと出口ポート48bは、ハウジング48内に供給されためっき液が多孔質体50の表面に沿って均一に流れて、多孔質体50を効率よく冷却するようにするため、図8に示すように、多孔質体50の中心を挟んで該多孔質体50の周縁部に位置する位置に各2個備えられている。
【0064】
なお、図9に示すように、多孔質体50の中心を挟んで該多孔質体50の周縁部に位置する位置に、1個の例えば円形の入口ポート48aと、多孔質体50の周縁部に沿ってスリット状に延びる出口ポート48bを設けるようにしてもよい。
【0065】
次に、電解めっき装置24の操作について説明する。
先ず、基板保持部30が下降した位置にある時に、表面(被処理面)を上向きとして、基板保持部30の上面に基板Wを水平に保持する。そして、基板保持部30を上昇させ、基板Wの上面周縁部をシールリング34に圧接させ、同時にカソード接点36を基板Wの上面周縁部において、シード層5(図4参照)に接触させる。
【0066】
一方、カソードヘッド46側にあっては、アノード室54内にめっき液(アノード側めっき液Q)を入れ、必要に応じて、アノード側液循環ライン70を通して、めっき液(アノード側めっき液Q)を循環させておく。そして、待避位置にあったアノードヘッド46を基板保持部30の直上方位置に移動させる。この状態で、アノードヘッド46を下降させ、ハウジング48の下面に取付けたシール部材60をストッパ42の上面に圧接させてアノードヘッド46を停止させる。この時の基板Wと多孔質体50との間隔は、例えば0.1〜3mm、好ましくは0.5〜2mm程度である。
【0067】
この状態で、チラーユニット86で液温を例えば15℃の一定に制御しためっき液(アノード側めっき液Q)を、アノード側液循環ライン70を通して、多孔質体50と調整板62で挟まれた領域に供給して循環させ、チラーユニット86で液温を例えば15℃の一定に制御しためっき液(基板側めっき液Q)を、基板側液循環ライン72を通して、基板Wと多孔質体50で挟まれた領域に供給して循環させる。このようにして、温度を制御しためっき液を循環させながら、めっき電源38の陰極をカソード接点36に陽極をアノード58にそれぞれ接続して、Ruからなるシード層5をカソードとした初期めっきを行う。この初期めっきを行っている状態を図6に示す。
【0068】
この初期めっき中にあっては、前述のように、めっき液の液温を15〜17℃に維持することが埋込み特性を向上させる上で最も好ましく、めっき液の液温を15℃の一定に制御し、アノード側液循環ライン70及び基板側循環ライン72におけるめっき液の循環流量を共に5L/min程度に設定して、めっき処理中におけるめっき液に液温の上昇を2℃以下に抑えることで、この要請に応えることができる。
【0069】
つまり、基板Wと多孔質体50との間隔を0.5mmに設定し、気孔率6%の多孔質体を用いて、めっき液を循環させることなく、100Ω/sqのシート抵抗を持つRuからなるシード層を有するφ300mmの基板に80nmの膜厚の初期めっきを行うと、図10に点Aで示すように、めっき液の液温は約5.3℃上昇する。基板Wと多孔質体50との間隔を0.5〜2mmに設定し、気孔率7%の多孔質体を用いて、同様なめっきを行うと、図10に曲線Bで示すように、めっき液の液温は約2.2〜4.5℃上昇する。
【0070】
これに対して、基板Wと多孔質体50との間隔を0.5mmに設定し、気孔率6%の多孔質体を用いて、多孔質体を挟んでアノード及び基板(カソード)側のめっき液を5L/minの液量で循環させながら、100Ω/sqのシート抵抗を持つRuからなるシード層を有するφ300mmの基板に80nmの膜厚の初期めっきを行うと、図10に点Cで示すように、めっき液の液温は約1.4℃上昇する。基板Wと多孔質体50との間隔を0.5〜2mmに設定し、気孔率7%の多孔質体を用いて、同様なめっきを行うと、図10に曲線Dで示すように、めっき液の液温は約0.1〜1.0℃上昇する。これにより、めっき液の液温の上昇を2℃以下に抑えることができる。
【0071】
なお、Ruのような高抵抗基板上へめっきする際には、初期めっきの均一性を保つため、基板Wと多孔質体50の距離は狭いほうが良い。また、実際のφ300mm基板へめっきする際には、基板の表面温度を直接測定することはできないが、基板上を通過した直後のめっき液の温度をモニタすることで、間接的に基板の表面温度を測定することができる。
【0072】
この初期めっきでRuからなるシード層5の表面に100nm以内、例えば80nmの膜厚の初期めっき膜を成膜した後、基板Wと多孔質体50との間隔が、例えば3〜30mmとなるように、カソードヘッド46を上昇させる。そして、この状態で、前述の同様に、アノード側液循環ライン70を通して、多孔質体50と調整板62で挟まれた領域に温度が制御されためっき液を供給して循環させ、基板側液循環ライン72を通して、基板Wと多孔質体50で挟まれた領域に温度が制御されためっき液を供給して循環させながら、めっき電源38の陰極をカソード接点36に陽極をアノード58にそれぞれ接続して、初期めっき膜の表面に後期めっきを行う。この後期めっきを行っている状態を図7に示す。
【0073】
このように、基板Wと多孔質体50との間隔を、例えば3〜30mmに拡げて後期めっきを行うことで、基板Wの表面に成膜されるめっき膜の面内均一性を調整することができる。
【0074】
この後期めっきを行う時には、めっき液に含まれる界面活性剤等の添加剤の曇点以下となるようにめっき液の液温を制御する。つまり、めっき液の液温がめっき液に含まれる界面活性剤等の添加剤の曇点を超えるとめっき液が白濁し、めっき液の再使用または連続使用できなくなり、同時に埋込み性能が特に悪化する。添加剤の曇天の温度はめっき液の種類によって異なる、例えば30℃の場合もあれば25℃の場合もある。このように、めっき液に含まれる界面活性剤等の添加剤の曇点以下となるようにめっき液の液温を制御することで、めっき液の劣化を防ぎめっき液の連続使用が可能となる。
【0075】
そして、めっき膜の膜厚が所定の膜厚に達した時に、基板のシード層5とアノード58との間のめっき電圧の印加を解いて、めっき処理を終了する。そして、アノードヘッド46を上昇させ、基板Wの表面に残っためっき液を吸引等で除去した後、基板保持部30を下降させ、めっき処理後の基板を次工程に搬送する。
【0076】
次に、図5に示す基板処理装置の一連の処理について説明する。先ず、複数の基板を収納した基板カセットを装置フレーム12内のロード・アンロード部14に搬入する。第1搬送ロボット26は、ロード・アンロード部14内に搬入した基板カセットから、1枚の基板を取出し、基板ステーション18に搬送する。第2搬送ロボット28は、基板ステーション18から基板を受取り、めっき前処理22に基板を受渡す。
【0077】
基板を受取っためっき前処理装置22は、基板に対する電解処理を行って、Ruからなるシード層の表面の不動態膜(酸化ルテニウム)を電解処理により電気化学的に除去する。そして、このめっき前処理装置22にめっき前処理後の基板の表面に純水を供給して基板をリンスし、高速回転させて乾燥させる機能を有する場合には、めっき前処理装置22で基板に対するリンス及び乾燥処理を施し、その他の場合には、めっき前処理後の基板を第2搬送ロボット28でリンス・乾燥装置20に搬送し、ここで、基板に対するリンス及び乾燥処理を施す。なお、場合によっては、乾燥処理を省略したり、リンス及び乾燥処理の双方を省略したりしても良い。
【0078】
第2搬送ロボット28は、めっき前処理装置22またはリンス・乾燥装置20から基板を受取り、電解めっき装置24の基板保持部30に搬送する。基板保持部30で基板を受取った電解めっき銅装置24は、Ruからなるシード層表面に電解銅めっきを行って、シード層表面に銅めっき膜を成膜する。そして、めっき後の基板を第2搬送ロボット28でリンス・乾燥装置20に搬送し、ここで、基板に対するリンス及び乾燥処理を施す。なお、電解めっき装置24にめっき後の基板の表面に純水を供給して基板をリンスし、高速回転させて乾燥させる機能を有する場合には、電解めっき装置24で基板に対するリンス及び乾燥処理を施してもよい。
【0079】
第1搬送ロボット26は、リンス・乾燥装置20から乾燥後の基板を受取り、ベベルエッチング・裏面洗浄装置16に受渡す。ベベルエッチング・裏面洗浄装置16は、基板のベベル部に付着した銅めっき膜等をエッチング除去するベベルエッチング及び基板の裏面を洗浄する裏面洗浄を行う。第1搬送ロボット26は、ベベルエッチング・裏面洗浄装置16から基板を受取り、ロード・アンロード部14の基板カセットに戻す。
これにより、一連のめっき処理を終了する。
【0080】
図11は、電解めっき装置に適用した本発明の他の実施の形態の電解処理装置の概要を示す。この図11に示す電解めっき装置(電解処理装置)の図6乃至図8に示す電解めっき装置(電解処理装置)と異なる点は、アノード側液循環ライン70と基板(カソード)側液循環ライン72をそれぞれ独立させた点にある。つまり、アノード側循環ライン70には、めっき液タンク74aと該タンク74a内のめっき液の温度を調節する温度調節器としてのチラーユニット86aが、基板側循環ライン72には、めっき液タンク74bと該タンク74b内のめっき液の温度を調節する温度調節器としてのチラーユニット86bがそれぞれ設けられ、これによって、アノード側循環ライン70に沿って流れるめっき液と基板側液循環ラインに沿って流れるめっき液が互いに混じらないようになっている。そして、各めっき液タンク74a,74bには、温度センサ96d,96eが個別に設けられて、この例では、ストッパ42が省略されている。その他の構成は、図6乃至図8に示す電解めっき装置と同様である。
【0081】
このように、アノード側液循環ライン70と基板側液循環ライン72とを互いに独立させることで、アノード側液循環ライン70と基板側液循環ライン72に同じ温度のめっき液を流して循環させることは勿論、必要に応じて、異なる温度のめっき液を流して循環させることもできる。また、アノード側循環ライン70に沿って流れるめっき液はめっきに影響が無く、このため、任意の電解液、例えば硫酸をアノード側循環ライン70に沿って流するようにしてもよく、これによって、めっき液に含まれている添加剤がアノード上で消耗されることをなくして、めっき液管理を容易となすととも、コストダウンを図ることができる。
【0082】
図12は、電解めっき装置に適用した本発明の更に他の実施の形態の電解処理装置の概要を示す。この図12に示す電解めっき装置(電解処理装置)の図11に示す電解めっき装置(電解処理装置)と異なる点は、整流板62を省略するとともに、アノード室54の高さを可能な限り低してアノード室54を狭くし、更に酸素ガス排気管84も省略した点にある。その他の構成は、図11に示す電解めっき装置と同様である。
【0083】
この例によれば、整流板62を省略することで構造の簡素化を図り、しかもアノード室54の高さを低くし、ハウジング48の内部のアノード側液循環ライン70を構成する流路を狭くすることで、めっき液の多孔質体(発熱体)50に対する冷却効果を上昇させることができる。
【0084】
図13は、電解めっき装置に適用した本発明の他の実施の形態の電解処理装置の概要を示す。この図13に示す電解めっき装置(電解処理装置)の図12に示す電解めっき装置(電解処理装置)と異なる点は、アノード室54を構成するハウジング48の天井壁下面を一部に頂部を有するように傾斜させ、この頂部に排気口48cを設け、この排気口48cに、酸素ガス排気管84の一端を接続し、酸素ガス排気管84の他端をアノード側液循環ライン70のアノード側液戻りライン78に接続した点にある。その他の構成は、図12に示す例と同様である。このような構成により、アノード58の表面で発生する酸素の排気を促進させることができる。
【0085】
なお、上記の例では、本発明の電解処理装置を電解めっき装置に適用した例を示しているが、例えば図6乃至図8に示す電解めっき装置において、めっき液の代わりに硫酸等の電解液を使用し、アノード側液循環ライン70及び基板側液循環ライン72に沿って電解液を供給し循環させるようにすることで、図5に示すめっき前処理装置22に適用することができる。このことは、図11乃至図13に示す各電解めっき装置においても同様である。
【0086】
つまり、図5に示すめっき前処理装置は、基板に硫酸等の電解液を接触させた状態で、基板がカソードになるように電流を流すことによって、Ruからなるシード層の表面の不動態膜(酸化ルテニウム)を電解処理により電気化学的に除去する装置であり、めっき前処理に行う時、めっき処理を行う時と同様にターミナルエフェクト効果が問題になる。そして、このターミナルエフェクト効果を低減させて、基板面内で均一な処理を行うために、気孔率の低い多孔質体を使用すると、電解めっき装置の場合と同様に、多孔質体からの発熱が問題となる。
【0087】
例えば、図6乃至図8に示す電解めっき装置において、めっき液の代わりに硫酸等の電解液を使用してめっき前処理装置を構成し、多孔質体50として気孔率6%のアルミナ多孔質体を使用し、アノード側液循環ライン70及び基板(カソード)側液循環ライン72にそれぞれ電解液として80g/Lの硫酸を10L/minの流量で供給し循環させながら、40mA/cmで60秒の電解処理を行うと、多孔質体50から約40kcalの発熱がある。
【0088】
このため、図6乃至図8に示す電解めっき装置において、めっき液の代わりに硫酸等の電解液を使用してめっき前処理装置を構成することで、温度管理された硫酸を循環させて多孔質体50を冷却することができる。また、基板(カソード)からは約200mLの水素が発生し、電解液(硫酸)の循環を行わないと基板と多孔質体の間に水素が溜まって電解処理に影響を及ぼしてしまうが、電解液(硫酸)を循環させることで、基板から発生する水素を常に外部に押し流すことができる。
【0089】
これまで本発明の実施の形態について説明したが、本発明は上述の実施の形態に限定されず、その技術的思想の範囲内において種々異なる形態にて実施されてよいことは言うまでもない。例えば、配線材料として銅を使用しているが、銅の代わりに銅合金を使用してもよい。
【図面の簡単な説明】
【0090】
【図1】(a)は液温が20℃のめっき液を使用して埋込みめっきを行った時のトレンチとめっき膜との概要を示す図で、(b)は液温が25℃のめっき液を使用して埋込みめっきを行った時のトレンチとめっき膜との概要を示す図で、(c)は液温が45℃のめっき液を使用して埋込みめっきを行った時のトレンチとめっき膜との概要を示す図である。
【図2】めっき初期における埋込み性能についてのめっき液温度依存性をクーポン試験で評価した結果を示すグラフである。
【図3】アノード側液循環流量とアノード側めっき液液温の上昇温度との関係を示すグラフである。
【図4】Ruをシード層として銅配線を形成するようにした銅配線形成例を工程順に示す図である。
【図5】本発明の実施の形態の電解めっき装置に適用した電解処理装置を備えた基板処理装置の平面配置図である。
【図6】本発明の実施の形態の電解めっき装置(電解処理装置)の初期めっき時における概要図である。
【図7】本発明の実施の形態の電解めっき装置の後期めっき時における概要図である。
【図8】本発明の実施の形態の電解めっき装置のアノード側液循環ラインのハウジングに設けられる入口ポート及び出口ポートと多孔質体との関係を示す図である。
【図9】アノード側液循環ラインのハウジングに設けられる入口ポート及び出口ポートと多孔質体との他の関係を示す図である。
【図10】多孔質体を挟んでアノード及び基板側にめっき液を循環させることなくめっきを行った場合(点A及び曲線B)、及び多孔質体を挟んでアノード及び基板側にめっき液を循環させながらめっきを行った場合(点C及び曲線D)における、基板と多孔質体との間隔とめっき液液温の温度変化との関係を示すグラフである。
【図11】本発明の他の実施の形態の電解めっき装置に適用した電解処理装置を示す概要図である。
【図12】本発明の更に他の実施の形態の電解めっき装置に適用した電解処理装置を示す概要図である。
【図13】本発明の更に他の実施の形態の電解めっき装置に適用した電解処理装置を示す概要図である。
【符号の説明】
【0091】
12 装置フレーム
14 ロード・アンロード部
16 ベベルエッチング・裏面洗浄装置
20 リンス・乾燥装置
22 めっき前処理装置
24 電解めっき装置
30 基板保持部
32 カソード部
34 シールリング
36 カソード接点
38 めっき電源
46 アノードヘッド
48 ハウジング
50 多孔質体
54 アノード室
58 アノード
62 調整板
70 アノード側液循環ライン
72 基板(カソード)側液循環ライン
74,74a,74b めっき液タンク
76,88a,88b 送液ポンプ
78 アノード側液供給ライン
80,92 気液分離槽
82 アノード側液戻りライン
84 酸素ガス排気管
86,86a,86b チラーユニット(温度調節器)
90 基板側液供給ライン
94 基板側液戻りライン
96a,96b,96c,96d,96e 温度センサ

【特許請求の範囲】
【請求項1】
基板を水平に保持する基板保持部と、
前記基板保持部の上方に上下動自在に配置され、電解液に浸漬させてアノードを内部に収容するとともに、下端開口部を多孔質体で閉塞したハウジングを有するアノードヘッドと、
前記基板保持部で保持した基板の被処理面周縁部に接触して該周縁部をシールするシールリング及び該周縁部に接触して被処理面に通電するカソード接点を有するカソード部と、
前記ハウジング内に温度が制御された電解液を該電解液が前記多孔質体と接触するように供給して循環させるアノード側液循環ラインと、
前記多孔質体が前記基板と近接した電解処理位置にあるときに該多孔質体と基板との間に温度が制御された電解液を供給して循環させる基板側液循環ラインを有することを特徴とする電解処理装置。
【請求項2】
前記アノード側液循環ライン及び前記基板側液循環ラインは、温度調節器を介して個別に温度を調節した電解液を個別に循環させるように構成されていることを特徴とする請求項1記載の電解処理装置。
【請求項3】
前記アノード側液循環ライン及び前記基板側液循環ラインの前記多孔質体の下流側に位置する位置に、前記アノード側液循環ライン及び前記基板側液循環ラインに沿って流れる電解液の温度を検知する温度センサを設置したことを特徴とする請求項1または2記載の電解処理装置。
【請求項4】
前記アノード側液循環ライン及び前記基板側液循環ラインに気液分離槽をそれぞれ設置したことを特徴とする請求項1乃至3のいずれかに記載の電解処理装置。
【請求項5】
前記アノードは、不溶解アノードであることを特徴とする請求項1乃至4のいずれかに記載の電解処理装置。
【請求項6】
前記ハウジングの内部には、該ハウジング内の空間を上下に仕切る整流板が配置されていることを特徴とする請求項1乃至4のいずれかに記載の電解処理装置。
【請求項7】
前記多孔質体が前記基板と近接した電解処理位置にあるときの該多孔質体と基板との間隔は、0.1〜30mmであることを特徴とする請求項1乃至6のいずれかに記載の電解処理装置。
【請求項8】
前記基板の被処理面には白金属元素であるシード層が設けられており、前記多孔質体の気孔率は19%以下であることを特徴とする請求項1乃至7のいずれかに記載の電解処理装置。
【請求項9】
電解液に浸漬させてアノードを内部に収容し下端開口部を多孔質体で閉塞したハウジングを有するアノードヘッドを、前記多孔質体が基板に近接した電解処理位置に位置するように配置し、
前記ハウジング内に温度が制御された電解液を該電解液が前記多孔質体に接触するように供給して循環させ、
前記多孔質体と基板との間に温度が制御された電解液を供給して循環させながら、基板とアノードとの間に電圧を印加して基板の電解処理を行うことを特徴とする電解処理方法。
【請求項10】
前記多孔質体と基板との間に供給して循環させる電解液としてめっき液を、前記ハウジング内に供給して循環させる電解液としてめっき液またはめっき液以外の電解液をそれぞれ使用してめっき処理を行うことを特徴とする請求項9記載の電解処理方法。
【請求項11】
前記多孔質体と基板との間に供給して循環させるめっき液の液温Tを、めっき初期時に10℃<T≦25℃に維持し、該めっき液の液温をめっき液に含まれる添加剤の曇点以下に保持しながらめっき処理を継続することを特徴とする請求項10記載の電解処理方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate


【公開番号】特開2010−65287(P2010−65287A)
【公開日】平成22年3月25日(2010.3.25)
【国際特許分類】
【出願番号】特願2008−233342(P2008−233342)
【出願日】平成20年9月11日(2008.9.11)
【出願人】(000000239)株式会社荏原製作所 (1,477)
【Fターム(参考)】