説明

Fターム[2G058DA07]の内容

自動分析、そのための試料等の取扱い (28,698) | フロー方式自動分析に関するもの (1,482) | 分析反応流路の形状、構造に工夫 (1,044)

Fターム[2G058DA07]に分類される特許

981 - 1,000 / 1,044


【課題】 表面にプローブを固定したビーズを配列したビーズチップシステムにおいて、ユーザ自信が洗浄液の補充をしなければならず使い勝手が悪いという問題があった。また、ビーズチップアレイ装置は検査装置に用いるため、さらに反応効率を上昇させ、反応時間を短くしたいという課題があった。
【解決手段】 反応流路を形成したビーズチップに洗浄液流路を一体化させた。また、プローブアレイの反応を促進させるために、ビーズが格納されている反応流路に対して、矩形流路ではなく、反応量が増大することを可能とする流路形状とした。上記のビーズチップは、PDMS(Polydimethylsiloxane,(CSiO))にて形成することにより、安価にそして反応流路ならびに洗浄液流路の形状を自由に作成することを可能とする。 (もっと読む)


本発明は流体サンプルの操作および分析のためのマイクロ流体デバイスおよび方法に関する。本発明は、より詳しくは、液体サンプルの操作および分析のためのマイクロ流体デバイスおよび方法に関する。開示されたマイクロ流体デバイスは、分析用の流体サンプルを用意するために、かかるサンプルのフローを操作するため、複数のマイクロ流体チャネル(122)、注入口(140)、バルブ(170)、フィルタ(140)、ポンプ、液体バリア(160)および様々な構成に配置されたその他の要素を利用する。
(もっと読む)


【課題】 POC分析等をはじめとする種々の分析装置に好適に用いられる小型且つ低コストな送液装置を提供する。
【解決手段】 送液装置は、液体貯槽を有する液体収容体と、液体貯槽の容積変化を生じさせるための圧力を伝達する非圧縮性媒体を収容する非圧縮性媒体収容体と、を備えている。液体貯槽には、液体貯槽の内部又は外部に向かって突出するように変形可能な隔膜が備えられている。また、非圧縮性媒体収容体は、圧力を発生させる変圧手段を備え且つ非圧縮性媒体が満たされた第一媒体貯槽と、非圧縮性媒体流路によって第一媒体貯槽に連通された第二媒体貯槽と、を備えている。液体貯槽と第二媒体貯槽とは、隔膜を挟んで隣接して配置されており、変圧手段により非圧縮性媒体に加えられた圧力変化に追随して、隔膜が変形するようになっている。 (もっと読む)


【課題】 第1の流体として多量の粒子を含む流体を用いた場合にも、第1の流体に含有される粒子を1個ずつ主流路の断面を通過させることができ、フローサイトメトリー等に好適に用いることができるマイクロ流体素子を提供する。
【解決手段】 主流路102と、主流路102に第1の流体供給流路104を介して連通し、重力を用いて主流路102に第1の流体を供給するための第1の供給口108と、主流路102に第2の流体供給流路106,106を介して連通し、重力を用いて主流路102に第2の流体を供給するための第2供給口110,110を含む流体回路100を有するマイクロ流体素子10であって、
流体回路100は、第1の供給口108と第2の供給口110,110との高低差を用いて、第1の流体を第1の流体供給流路104から絞られた状態で主流路102に供給するように構成されていることを特徴とするマイクロ流体素子。 (もっと読む)


本発明は液体試料(20)用の侵入開口部(7)および排出開口部(8)を有する液体試料(20)の毛細管搬送に適したチャンネル(9)を含む液体試料(20)を分析するための分析試験エレメントに関する。チャンネル(9)には侵入開口部(7)から間隔を開けて少なくとも1つの試験フィールド(17)が配置される。充填材を開くことによって試験エレメントの周囲に向かって試料採取位置(4)およびチャンネル(9)の侵入開口部(7)を同時に開くようにこの試料採取位置は作られている充填材により密閉された試料採取位置(4)を試験エレメント(1)が含んでいる。試験エレメント(1)が試料採取位置(4)および侵入開口部(7)を経由して液体試料(20)を分析用のチャンネル(9)にある試験フィールド(17)に吸収することができる。さらに本発明は、試験エレメントマガジンおよび少なくとも1つの分析試験エレメントを有する液体試料を分析するためのシステムに関する。
(もっと読む)


【課題】超小型流体素子を含む種々の分野において流路中の液体の流れを調整する方法を提供する。
【解決手段】調整方法では、少なくとも1つのステップダウン接合部(36a,36b)を有する毛管通路(35)と接触状態にある疎水性領域(50)を有する流れ調整経路に液体を導入し、それにより液体が疎水性領域及び少なくとも1つのステップダウン接合部を有する経路の領域で止められる。 (もっと読む)


【課題】 微小流路中で生化学的な分析や反応を行うマイクロ流体装置において、センシング部を流れる流体試料の微小流路断面方向での速度分布のむらを小さくする。
【解決手段】 微小流路中で生化学的な分析や反応を行うマイクロ流体装置内のセンシング部において、流れる流体試料の速度分布むらを解消する速度分布むら解消手段、具体的には前記流体試料が流れる経路中の一部または全部に、前記流体試料の流れに対して抵抗を与えるような凸形状の仕切り部材、即ち、障害物を配置して、微小流路断面方向における流体試料流れの速度分布むらを小さくするように構成した。 (もっと読む)


【課題】 本発明は、任意の材料で製造でき、微細流路を完全に閉鎖しうるバルブ機構を有するマイクロ全分析システムを提供する。
【解決手段】 基板内に微細流路が形成されているマイクロ全分析システムにおいて、微細流路に熱又は光線によりガスを発生するガス発生性樹脂組成物が封入されている袋体が設置されており、加熱又は光線照射により発生したガスにより袋体が膨張して微細流路を閉鎖しうるようになされていることを特徴とするマイクロ全分析システム。 (もっと読む)


本発明の第1の課題は、エレクトロウェッティング平面による移動における液滴の取り扱いに関する装置であって、少なくとも一つの移動経路を含む。経路は、その表面上に二つ以上の交互嵌合導電性電極を配置する電気的に絶縁性の基板を含む。これらの電極は、電気的に絶縁性の層によって覆われ、それ自身は部分的に濡れ性の層で覆われる。
(もっと読む)


【課題】 合流路内に変形可能なまたは可動性の障害物を備えることにより、混合特性を任意の範囲内に随時制御することを可能とするマイクロリアクタを提供する。
【解決手段】 複数の流路と、該複数の流路が合流した合流路とを有し、合流路内に変形可能な障害物を備え、該障害物を変形させることによって流路内に乱流を発生させることを特徴とするマイクロリアクタに関する。本発明のマイクロリアクタは、変形可能な障害物の動作が外部から制御されるよう構成されることができる。また、変形可能な障害物として、障害物と流体との相互作用により変形が生じる障害物を使用することも好ましい。この場合、障害物の変形量は該障害物の代表長さの1%以上となるように設定されることが好ましい。 (もっと読む)


【課題】 流体試料を注入するデバイスおよびその方法において、荷電試料だけでなく非イオン性試料や気体試料にも適用可能で、非電解質液体媒体中、気体媒体中、または真空系への試料注入が可能であり、試料注入に複雑で大がかりな装置や複雑な制御を要することなく、簡易な操作で、極微量の試料を定量性よく、テーリングも少なく注入することが可能なマイクロ流体デバイス、およびそれを用いた試料注入方法を提供すること。
【解決手段】 第一流路と、その途中の分岐部にて分岐した第二流路と、分岐部近傍の第二流路中に設けられた弁と、分岐部近傍の第一流路の流路壁にあり、第一流路の外部からの圧力により第一流路の断面積を減少させる圧迫部とを有し、前記弁が常態では閉じており、且つ圧迫部を圧迫することにより開いて第一流路内の流体が第二流路内に流入する弁であるマイクロ流体デバイス。 (もっと読む)


【課題】
耐性の高いナノピラーを得る。
【解決手段】
マイクロチップ基板への金薄膜の蒸着を10〜20nmの厚さに行い、その後チップを400〜600度で1時間程度熱処理して自己組織化させることにより、金属によるランダムピラー構造のナノピラーを基板上に形成させる。
(もっと読む)


小滴を操作するために1つの装置が提供される。この装置は、単一表面電極デザインであり、すべての導電性部材が小滴を操作する第1の表面上に含まれる。操作すべき小滴を収容するために、追加的な表面を第1の表面と並行に設けることができる。エレクトロウェッティング方式を用いた技術を実行することにより、小滴を操作することができ、第1の基板の上に形成されるか、その中に埋設された電極を制御しながら順次活性化し、不活性化する。この装置は、2つの小滴を併合および混合する動作、1つの小滴を2つまたはそれ以上の小滴に分離する動作、連続液体フローから独立して制御可能な小滴を形成することにより、連続液体フローをサンプル採取する動作、および所望の混合比を得るために、小滴を反復的にバイナリ式またはデジタル式に混合する動作などの数多くの小滴動作を実行することができる。
(もっと読む)


【課題】 マイクロチップ内に微量の液体を長期間保存可能で且つ安価なマイクロチップ及びその製造方法を提供する。
【解決手段】 凹部を有するプラスチック製の基材と、該凹部を密閉するように基材に取り付けられる蓋とを備え、凹部の容積が1ml以下であるマイクロチップにおいて、蓋の凹部と対向する表面部分と、凹部の内壁とに、水蒸気バリアフィルムが設けられており、真空圧空成形法等で水蒸気バリアフィルムを凹部表面に設けることにより上記課題を解決する。 (もっと読む)


複数のマイクロチャネル構造より成り、そして、それは:A)無許可なアクセスに対する制限手段を持って書き込み可能であり;ならびに/またはB):a):(i)使用される(非冗長構造)および/もしくは使用されない(冗長構造)マイクロチャネル構造、ならびに/または(ii)承認されたおよび/もしくは承認されていないマイクロチャネル構造、の位置に関する情報、ならびに/またはb)マイクロチャネル構造のマクロワールドとインタフェースする位置に関する情報、ならびに/またはc)マイクロチャネル構造に許容されるプロセスプロトコルに関する補足情報を含むメモリーを含むことを特徴とする、マイクロ流体デバイス。好ましくは、それが、冗長および/もしくは非冗長マイクロチャネル構造を与える情報と組合せて、50%である冗長性を持つ複数のマイクロチャネル構造を含むことを特徴とする、マイクロ流体デバイス。無許可の使用に制限を有する書き込み可能なメモリーを含むマイクロ流体デバイス。好ましい変形において、メモリーは書き込み可能でありそしてその中でデバイスが使用されかつ処理されるシステムにより書き込みにアクセス可能である。
(もっと読む)


サンプル処理カートリッジは、少なくとも2行長で2列幅のアレイに配列された複数のセグメントを含むことができる。各セグメントは、サンプルカートリッジの少なくとも1つの壁によって規定され得、少なくとも1つの破損可能シールにより、または少なくとも1つの永久シールにより、隣接するセグメントから少なくとも部分的に流体的に隔離され、別のセグメントから出た流体の容量を受容するように拡張可能であり、実質的に流体を含まないように圧縮されたときそのように圧縮されることが可能である。アレイの少なくとも1行の少なくとも2つの隣接するセグメントは、行の経度軸に沿って位置決めされ、行の緯度軸に沿って実質的に同一の高さを有することができる。少なくとも1行の少なくとも2つの隣接するセグメントは、永久シールによって分離され得て少なくとも2つのトラックを形成する。少なくとも1つのセグメントは、または破損可能シールによって分離される少なくとも2つの隣接するセグメントは、少なくとも2つのトラックと流体連絡することができる。少なくとも1つのセグメントが少なくとも1つの試薬を含むことができる。
(もっと読む)


本発明は化学分析を行うための電極モジュールと流体を組み入れた診断用装置に関する。考案された装置は電極モジュール上に形成されたセンサーアレイからなり、該センサーアレイは流体ハウジング内に包含されている。該電極モジュールは有孔のエポキシ箔および穿孔に成膜されるセンサー膜を有する写真平版の金属箔との積層板である。該流体ハウジングは流体導管を有するカードのようなプラスチック製の本体および箔で裏打ちされたキャビティーに包含される密封された流体容器からなる要素である。
(もっと読む)


【解決手段】 1つのサンプルで、少なくとも2つの異なる技法を使って少なくとも2つの異なる検体を検出又は量化するためのシステム、装置、カートリッジ、方法及びキットが記載されている。カートリッジは、通常、少なくとも2つの試験部位を備えており、少なくとも1つの試験部位の位置は、対応する測定装置に依存していない。システムは、概括的には、装置、メモリ、及び処理モジュールを備えている。装置は、光源、アレイ検出器、及びカートリッジの少なくとも一部分を受け入れるように構成されているポートを備えている。処理モジュールは、カートリッジの画像分析を実行するように構成されている。本方法は、補正情報を取得する段階と、カートリッジの画像を取得する段階と、画像分析を実行する段階と、試験部位が必要とする技法に対応する特定の検出又は定量化技法を繰り返す段階とから成る。コンピューター読み取り可能媒体についても説明されている。 (もっと読む)


流体輸送/封じ込め装置は、流体保持モジュールおよび操作モジュールを有する。この流体保持モジュールは、サブストレートと、このサブストレートに分散させた流体輸送/封じ込め素子とを有し、この流体輸送/封じ込め素子のうちの1個またはそれ以上の流体輸送/封じ込め素子は、マイクロ流体寸法を有する。操作モジュールは、操作素子が流体輸送/封じ込め素子と接触して作用インタフェース(境界面)を生ずるように、流体保持モジュールに着脱可能に固定する。 (もっと読む)


【課題】使い捨て試験装置と検体量測定/混合方法
【解決手段】検体試験装置は、既知量の検体と残りの検体との間に流体を導入することにより、既知量の検体を残りの検体から分離するボリュームチャンバを有し、ここで流体の導入は、開成状態と閉成状態とを有する流体入口を通じて果たされる。装置はさらに、ボリュームチャンバに接続され且つ検体を混合するように適合された混合チャンバと、混合チャンバに接続され且つ検体に対し試験を行うように適合された試験チャンバと、開成状態と閉成状態とを有する通気口とを含む、通路を備える。流体入口と通気口とが開成状態にあるときには、流体入口の中への加圧流体の導入によって、ボリュームチャンバから1つ以上の混合チャンバの中へ、そして次に試験チャンバの中へ、検体が推進される。 (もっと読む)


981 - 1,000 / 1,044