説明

Fターム[2G085EA07]の内容

粒子加速器 (3,302) | 材料、電気回路、製造方法、検査、用途 (362) | 用途 (168) | 医療用(放射線照射) (132)

Fターム[2G085EA07]に分類される特許

101 - 120 / 132


線形加速器は、複数の加速キャビティであって、隣り合う一対の加速キャビティが連結キャビティを介して連結され、少なくとも1つの連結キャビティが、当該連結キャビティにより得られる連結を変化させるよう回転自在な回転非対称部材を有するような、複数の加速キャビティを備えている。線形加速器の制御手段は、線形加速器の動作および回転非対称部材の回転を制御するよう設置されている。この制御手段は、パルス方式により線形加速器を作動し、一対のパルス間で回転非対称部材を回転させて連続するパルスのエネルギーを制御するようになっている。実行することによる有益な方法は、線形加速器が作動する間に回転非対称部材を連続的に回転させることである。そして、制御手段は、連続するパルスの位相を調整することのみを必要とし、パルスの短い期間の間、回転非対称部材は所定位置にあるようにみえる。回転非対称部材は、線形加速器の真空部分内に設置され、当該回転非対称部材は、真空部分の外側にある部分によって電磁相互作用により回転させられる。真空シールを通過するような、駆動に関連する部材を設ける必要がない。このことは、回転非対称部材上にある少なくとも1つの磁気的に偏極した部材と、真空部分の外部にある少なくとも1つの電気コイルを設けることにより達成される。
(もっと読む)


【課題】厚みが回転方向において変化して通過するイオンビームのエネルギーを変える1つの回転体で治療できる患者数を増加する。
【解決手段】イオンビームを患者32に照射して治療を行うイオンビーム出射装置において、イオンビームを発生させるビーム発生装置1と、周回方向に所定の厚さ分布を備え、ビーム発生装置1から発生されたイオンビームの進路上で回転しイオンビームの飛程を制御するレンジモジュレーションホイール29を備えたビーム照射ノズル15と、レンジモジュレーションホイール29の回転位相に応じて、ビーム発生装置1のビーム発生加速動作を制御する照射制御装置38とを備える。 (もっと読む)


【課題】照射精度を良好に維持しつつ、素早く制動することができる。
【解決手段】回転ガントリー3を回転自在に支持する複数のローラ22を支持するリンクフレーム25と、エアが供給されるとローラ22に対する制動力を開放し、エアが排出されるとローラ22に対し制動力を付与するブレーキ装置31と、閉じることによりブレーキ装置31に供給されたエアを封入し、開くことによりブレーキ装置31からエアを排出する電磁弁32とを備え、上記電磁弁32をリンクフレーム25に設けた電磁弁支持部材55で支持することにより、電磁弁32をブレーキ装置31の直近に配置する。 (もっと読む)


【解決手段】 レーザー加速イオンビームを設計する方法を開示している。当該方法は、重イオン層と、電場と、最大の軽い陽イオンエネルギーを有した高エネルギーの軽い陽イオンとを含むシステムをモデル化する工程と、前記重イオン層と、前記電場と、前記最大の軽い陽イオンエネルギーとの物理パラメータを、前記モデルを使って相関する工程と、前記高エネルギーの軽い陽イオンのエネルギー分布を最適化するため、前記重イオン層の前記パラメータを変化させる工程とを含む。一方法は、2次元PIC(particle in cell)シミュレーションおよび1次元解析モデルを使って、高出力レーザーパルスと2層構造の標的との相互作用から軽い陽イオン(例えば陽子)の加速を解析する工程を含む。加速された軽い陽イオン(陽子など)が獲得する最大エネルギーは、このモデルにおいて、前記重イオン層の物理特性―電子とイオンとの質量比およびイオンの実効荷電状態―に依存する。電子種および重イオン種の双方についての流体力学方程式の解と、陽子についてのテスト粒子近似値とが、適用される。前記重イオンの運動が長手方向の電場分布を修正し、軽い陽イオンに対する加速条件を変化させることがわかった。 (もっと読む)


【課題】イオンビームのビーム電流の可変範囲を拡大する。
【解決手段】イオン源65は、マイクロ波パワー制御装置13,マイクロ波発信器15,放電容器19及び電極21a,21b,21cを有する。マイクロ波パワー制御装置13がケーブル14によりマイクロ波発信器15に接続される。放電容器19内にマイクロ波を入射することによってプラズマが発生され、プラズマ中のイオンはイオンビーム23となってイオン源65より出射される。マイクロ波パワー制御装置13はマイクロ波発信器15を制御し、マイクロ波16のパワーをパルスの途中で最低放電点弧可能パワーPC よりも低減させる。これによって、最低放電点弧可能パワーPC に対応する電流値よりも低いイオンビーム電流のパルスイオンビームが得られる。 (もっと読む)


【課題】加速された荷電粒子ビームを照射対象に照射する前に荷電粒子ビームのエネルギーを確認できる粒子線治療装置を提供することにある。
【解決手段】ビーム位置モニタ20がシンクロトロン3に設けられ、空胴電圧モニタ18が加速空胴10に設けられる。シンクロトロン3内を周回するイオンビームは、加速空胴10への高周波電圧の印加によって加速され、高周波印加装置6への高周波電圧の印加により出射される。周波数計測装置19は空胴電圧モニタ18が検出した空胴電圧信号を用いて加速空胴10に印加される高周波電圧の周波数を計測する。ビーム軌道信号処理装置21はビーム位置モニタ20で検出した電圧を用いてビーム軌道の位置を計測する。エネルギー判定処理装置26は高周波電圧の周波数及びビーム軌道の位置に基づいて加速終了後のイオンビームのエネルギーが正常であるか異常であるかを判定する。 (もっと読む)


【課題】
患者の体内の深さ方向におけるビームの照射位置ずれを抑制することにある。
【解決手段】
エネルギー補正装置27は、ビーム加速終了時の加速高周波信号の周波数Fmesと目標周波数Fdesの差が許容範囲±Ferr内にある場合、周波数Fmesを目標周波数Fdesにするための時間的に滑らかな変化の補正周波数データを逐次算出する。高周波制御装置24は、これらの補正周波数データを、逐次、高周波発振器11に設定する。高周波発振器11は、それらの補正周波数データに基づいて出力した周波数の高周波信号を、逐次、シンクロトロン3に設けた加速空胴10に印加する。このため、シンクロトロン3内を周回するビームのエネルギーが、加速後の目標エネルギーに一致する。目標エネルギーになったビームが、シンクロトロン3から出射されて照射野形成装置16から患者に照射される。 (もっと読む)


【課題】金属ターゲットの除熱を良好に行い、安定して中性子を発生することができる。
【解決手段】RFQライナック2やドリフトチューブライナック3等の線形加速器により加速された陽子ビーム10を用いて中性子を発生させる加速器中性子源6において、陽子ビーム10が照射される板状の金属ターゲット11と、冷却水流路12a〜12eをその内部に有し、金属ターゲット11が一方側の面13に接合され、その一方側の面13が金属ターゲット11との接合部14の面積よりも大きな面積を有する冷却装置15を備える。 (もっと読む)


【課題】 電界で壊れやすい陰極を使用し、かつ高電界を加えて電子流を希望する速度まで加速する方法及び装置を開発すること。
【解決手段】 本発明は、電界により壊れやすい陰極を設置した、低電界電子放射部と、高電界を加えて電子流を高速度に加速する高電界電子流加速部とを、90度から180度の位置関係に設置し、いくつかの電磁石を使用して、低電界電子放射部と高電界電子流加速部との間を、曲線的に連結することにより、高電界電子流加速部の電界の影響を、陰極の設置された低電界電子放射部に及ぼさないようにし、壊れやすい陰極を長時間の使用に耐えられる構造にした。 (もっと読む)


【課題】 X方向のワブラー電磁石とY方向のワブラー電磁石のうちいずれか一方の電磁石を省略して、装置全体の小型化を図るようにする。
【解決手段】 四極電磁石4,5,6を経由して最終偏向電磁石7内に入射してきた荷電粒子ビーム2は、最終偏向電磁石7内で生じる偏向電磁場を例えば一定の周期をもって増減させることにより、最終偏向電磁石7内を円弧状に進行しつつ、X方向の成分を含んでスキャンされる。そして、X方向の成分を含んでスキャンされた荷電粒子ビーム2はY方向のワブラー電磁石8を通過する間にY方向の成分を含んでスキャンされる。これにより荷電粒子ビーム2は、X方向の成分とY方向の成分を含んでスキャンされ、標的9に対して例えば円を描くように照射される。 (もっと読む)


【課題】 小型かつ軽量の装置でありながら高いエネルギーを実現することができる電子線照射装置を提供する。
【解決手段】 この電子線照射装置は、電子34を発生させる電子源32と、それからの電子34を周回させて加速する円形の加速器であって、電子の軌道半径が大きくなるにつれて磁場の強さが強くなる磁場勾配を持ち時間的に一定の磁場を発生させる複数の電磁石42を有しているFFAG加速器40と、それからの電子34を走査する走査器12と、それからの電子34を透過させると共に走査器12の内外の雰囲気を分離する窓箔16とを備えている。 (もっと読む)


【課題】安全で使用環境及び使用条件などに制限を加えることなく、熱中性子あるいは熱外中性子などの中性子を高強度に得る方法及び装置を提供する。
【解決手段】陽子又は重陽子をリング状の加速器により所定のエネルギーまで加速する。次いで、前記所定のエネルギーを有する前記陽子又は前記重陽子を所定のターゲットに衝突させ、原子核反応を通じて中性子を発生させる。 (もっと読む)


【課題】 従来、ベータトロン加速装置の高出射効率化を図るため、主励磁用加速コアと副励磁用加速コアを設け、加速電圧パターンを主コアの主励磁電源、副コアの副励磁電源による電圧を重畳しているが、粒子加速期間中に副励磁電源の逆励磁過程における負電圧が重畳され、粒子加速電圧が若干低下するという課題解消を目的としている。
【解決手段】 粒子加速期間中に副励磁電源には、これにつながるコイル両端を短絡し、自由電流を流し、副励磁用加速の磁束を保持する動作を備え、加速期間中に負の電圧が印加されないようにした。 (もっと読む)


【課題】
ビーム出射停止信号が出力されてから、加速器からの荷電粒子ビームの出射が停止されるまでに時間を要する場合であっても、照射対象の線量分布をより均一化する。
【解決手段】
シンクロトロン12と、走査電磁石5A,5Bを有し、シンクロトロン12から出射されたイオンビームを出力する照射装置15と、照射装置15からのイオンビームの出力をビーム出射停止信号に基づいて停止させ、イオンビームの出力を停止した状態で、走査電磁石5A,5Bを制御することによりイオンビームの照射位置を変更させ、この変更後に、照射装置15からのイオンビームの出力を開始させ、ビーム出射停止信号を起点とした積算照射量の増分が、予め記憶された設定照射量に達したことに基づいて次のビームの出射停止信号を出力する制御装置とを備える。 (もっと読む)


【課題】 加速粒子によるターゲットのスパッタを抑え、かつターゲット物質を効率よく冷却して、放射性同位元素の製造効率を高めることができる放射性同位元素製造用ターゲットを提供する。
【解決手段】 ターゲット3は、ターゲット物質としてのターゲット水を収容する収容部34を有するターゲット本体31と、収容部34の表面を被覆するターゲット被膜32とを備える。ターゲット被膜32の加速粒子によるスパッタ率は、ターゲット本体31の加速粒子によるスパッタ率よりも小さい。またターゲット本体31の熱伝導率は、ターゲット被膜32の熱伝導率よりも大きい。 (もっと読む)


【課題】異なる照射方式の照射装置を有する場合であっても、照射精度及び安全性を確保
する。
【解決手段】荷電粒子ビームを照射対象に対して出射する荷電粒子ビーム出射装置におい
て、
荷電粒子ビームを発生する荷電粒子ビーム発生装置1と、荷電粒子ビームを照射対象に
照射する、散乱体方式の照射装置3p及びスキャニング方式の照射装置3sと、荷電粒子
ビーム発生装置1から出射された荷電粒子ビームを2つの照射装置3p,3sのうちの選
択された1つの照射装置へ輸送するビーム輸送系2と、荷電粒子ビーム発生装置1の運転
条件を、選択された照射装置の照射方式に応じて変更する中央制御装置23とを備える。 (もっと読む)


【課題】 従来のBNCT応用分野に用いられている荷電粒子加速装置では、サイクロトロン加速原理を用い、等時性磁場中を加速した荷電粒子を、装置の外側に配置したターゲットに衝突させ、2次粒子を発生させているが、2次粒子発生量が少なく、また、点光源でなく、分解能の悪い画像となる。そこで多量の2次粒子を発生し、点光源とみなすことが可能な荷電粒子加速器を提供する。
【解決手段】 電磁石の偏向磁場が、等時性/非等時性の磁場で構成され、非等時性磁場の領域に2次粒子発生手段が設けられ、加速イオンビームを衝突させる。 (もっと読む)


【課題】
稼働率を向上できる粒子線照射システムを提供することにある。
【解決手段】
陽子線ライナック1から出射されたイオンビームは、スイッチング電磁石5によって
90度偏向され、ビーム輸送系9を経てRI製造装置10に導かれる。RI製造装置10内ではそのイオンビームによってRIが製造される。陽子線ライナック3からのイオンビームは、スイッチング電磁石5によって90度偏向され、ビーム輸送系6を経てシンクロトロン7に導かれる。シンクロトロン7から出射されたイオンビームは照射装置12から患者に照射される。陽子線ライナック3が異常状態になった場合には、その運転を停止して保守点検を行う。このとき、陽子線ライナック1から出射されたイオンビームは、スイッチング電磁石5によってRI製造装置10およびシンクロトロン7に交互に導かれる。 (もっと読む)


陽子線治療システム(PBTS)のような複雑でマルチプロセッサのソフトウェア制御型のシステム(10)では、動作の様々なモードについてのソフトウェア制御型のシステムを準備するために、許可されたユーザによって容易に変更が為される、処置を構成可能なパラメータ(80、82)を提供することが重要となり得る。この特定の発明は、データ及び構成用パラメータ(80、82)を管理し、また処置を供給するためのPBTS(10)によって使用され得るシステム制御ファイル(56)を生成して配布するためにデータベース(72)を利用する、PBTS(10)用の構成管理システム(54)に関する。システム制御ファイル(56)の使用は、PBTS(10)がデータベース(72)から独立して機能することを可能にすることによって、データベース(72)内の単一点障害の弊害を低減する。PBTS(10)は、システム制御ファイル(56)を通じてデータベース(72)からのデータ、パラメータ、及び制御設定にアクセスし、それが、データベース(72)に関して単一点障害が生じるときに、データ及び構成用パラメータ(80、82)がアクセス可能であることを保証する。
(もっと読む)


この発明は、少なくとも1つのターゲット(200)に照射するための加速荷電粒子ビームを発生させることができるサイクロトロンに係わる。この発明のサイクロトロンは、少なくとも2つの磁極(1、1’)、即ち、サイクロトロンの中心軸(100)と直交する正中面(110)に関して対称に配置され、円運動する荷電粒子及び磁気回路を閉じるためのフラックスリターンを含むギャップ(120)で隔てられている上方磁極(1)及び下方磁極(1’)を備える電磁石;磁極(1、1’)間のギャップにほぼ一定の主誘導磁場を発生させる1対の主誘導コイル(5、5’)を含む。この発明は、電源(8)によって給電され、サイクロトロンの第1領域における誘導磁場の強さを増大させ、サイクロトロンの中心軸(100)を挟んで直径方向に第1領域と対向するサイクロトロンの第2領域における誘導磁場の強さを低下させるために主コイル(5、5’)によって生じる主誘導磁場の強さを調節することが可能な少なくとも1対のバッキングコイル(6、7)を含むビームのセンタリング手段を含むことを特徴とする。
(もっと読む)


101 - 120 / 132