説明

Fターム[2G088FF14]の内容

放射線の測定 (34,480) | 測定量 (4,792) | 放射線ビーム (177) | ビーム分布、ビーム位置 (88)

Fターム[2G088FF14]に分類される特許

41 - 60 / 88


【課題】 散乱成分をより効率良く分離可能なエネルギー閾値を決定できる閾値決定方法を提供する。
【解決手段】線源2からの放射線Rをコリメータ6を通して放射線検出器3で光子計数法により検出し、その検出データに基づいて、検出器の検出領域のうち、放射線の直進成分の検出領域を第1領域Aとし、散乱成分の検出領域を第2領域B1,B2とし、第1領域内及び第2領域内のカウント値の平均値の比(第1カウント比)を算出する。次に、検出器のエネルギー閾値を上げながら被照射物5を通過した放射線を検出器によって検出し、各エネルギー閾値の検出データに基づき、第1領域内及び第2領域内のカウント値の平均値の比(第2カウント比)を算出する。次いで、複数のエネルギー閾値のうち第1カウント比に基づいた所定の条件により第2カウント比を選択し、その第2カウント比に対するエネルギー閾値を直進成分弁別用閾値とする。 (もっと読む)


【課題】高精度かつ省スペースで、製作コストが削減された粒子加速器のビーム位置モニタの提供。
【解決手段】ビームダクトD内の電極11A〜11Dからの電極信号aの模擬信号である基準信号bを発生する基準信号発生部12を備え、通常は電極信号aを入力信号とするが基準信号発生部12が基準信号bを発生している場合には入力信号を基準信号bへ切り替える入力信号切替部13と、増幅・検波部14と、アナログ・ディジタル変換部15とを、各々の電極11A〜11Bに対して備えるとともに、基準信号bを用いて各々の増幅・検波部14の回路特性を求める制御部18と、制御部18で求められた回路特性により、各々の増幅・検波部14で検波された電極信号aを補正して、この補正された各々の電極信号aを用いてビームダクトD内のビームBの中心位置を計算する演算部16とを備えた。 (もっと読む)


【課題】 ビームモニタの各ビーム検出器に流入するビーム電流の波形を、少ない数の電流測定器を用いて短時間で精度良く測定する。
【解決手段】 ビームモニタ30の各ビーム検出器32を、スイッチSをそれぞれ介して一つの電流測定器40に接続しておく。そして、各ビーム検出器32のビーム入射孔のX方向の幅をWf、隣り合うビーム入射孔間のX方向の間隔をWs、イオンビーム4のX方向のビーム幅をWb、ビーム検出器32の総数をpとし、nを0≦n≦(p−2)の整数とすると、次式を満たすn個ずつ飛ばして複数のスイッチSを同時にオン状態にしている状態で、ビームモニタ30によってイオンビーム4を受けて電流測定器40に流入するビーム電流の波形を測定する測定工程と、同時にオン状態にしているスイッチSを前記条件の下で切り換える切換工程とを繰り返す。
Wb<{n・Wf+(n+1)Ws} (もっと読む)


【課題】高炉の炉内状況の推測は温度計測に依存しているのが現状で、耐火レンガの損耗を推定するのに利用された宇宙線ミュオンを用いて炉内状況の推定を行う。
【解決手段】宇宙線ミュオンを計測する計測装置により高炉を透過して飛来する高炉透過の宇宙線ミュオン強度と、該高炉透過の宇宙線ミュオンの飛来方向の判別情報と、高炉を非透過の非透過宇宙線ミュオン強度とを一定時間蓄積し、該実測による蓄積データに基づいて、高炉の状態を密度として炉底透過の宇宙線ミュオン強度と非透過宇宙線ミュオン強度との強度比で表し、特定箇所における強度比より当該箇所に存在する炉内充填物の密度を求め、該密度より炉内を構成する充填物を推定する。 (もっと読む)


【課題】 可視光や紫外光等によって影響を受けることなく、試料に照射された電子線エネルギーを正確に測定することのできる電子線照射システムを提供する。
【解決手段】 電子線照射システムにおいては、チャンバ2に収容された試料4に電子線Eを照射し、その試料4に照射された電子線エネルギーを、電子線検出器7によって測定する。このとき、電子線検出器7の検出面7aを、導電性遮光膜7bで覆うことにより、当該電子線検出器7にて電子線Eを検出する際に、チャンバ2内における可視光や紫外光等から影響を受けることを防止する。これによって、試料4に照射された電子線エネルギーを正確に測定することができる。 (もっと読む)


【課題】放射線ビームの位置や範囲を、明室下で目視により、明瞭かつ正確に短時間で確認する方法に用いられる簡便な放射線感応シートを提供する。
【解決手段】放射線感応シート10a・10bは、ハロゲン基とアセタール基との少なくともいずれかの基及び水酸基を有する高分子化合物と、呈色性の電子供与体有機化合物と、電子供与体有機化合物を呈色させる活性種生成有機化合物と、放射線吸収剤及び/又は放射線蛍光剤とが含まれた放射線呈色性組成物、又はポリアセチレン化合物とジアリールエテン化合物との少なくともいずれかが含まれた放射線呈色性組成物が、基材表面の少なくとも一部に付されており、放射線ビーム1の通過ライン上に載置される放射線感応シートであって、前記放射線ビーム1によって呈色する前記放射線呈色性組成物が、確認すべき前記放射線ビーム1の位置及び/又は範囲に応じ、それより広範囲に、前記基材表面へ付されている。 (もっと読む)


【課題】基板間のケーブルおよびコネクタをなくすることのできる荷電粒子線の線量分布測定装置を提案する。
【解決手段】プリント基板10の一表面S1には、複数の第1電極21(アノード)が形成され、また、この複数の各第1電極21と電離空間26を介して対向する第2電極23(カソード)を有する第2電極基板22が配置され、プリント基板10の一表面S1と対向する他の表面S2には、信号処理回路が配置される。この信号処理回路は、複数の信号処理ブロック40と配線ブロックを含む。信号処理ブロック40は、前記各第1電極21の電荷をそれぞれ積分する複数の積分用コンデンサと、少なくとも1つの増幅回路と、前記増幅回路に対してそれに対応する前記各積分コンデンサを切換え接続する少なくとも1つの切換スイッチとを含む。プリント基板は、多層プリント基板で構成することもできる。 (もっと読む)


放射線を放出する材料サンプル(12)の材料組成を決定する方法であって、放射線によって検出器材料中でデポジットされたエネルギーのスペクトルを記録する工程(P2)と、第1のエネルギー範囲においてデポジットされた第1のエネルギー(F1)と、第2のエネルギー範囲においてデポジットされた第2のエネルギー(F2)と、第3のエネルギー範囲においてデポジットされた第3のエネルギー(F3)とを決定する工程と、第1の色パラメータ(F1)を第1のデポジットされたエネルギーに、第2の色パラメータ(F2)を第2のデポジットされたエネルギーに、第3の色パラメータ(F3)を第3のデポジットされたエネルギーに割り当てる工程(P4)と、割り当てられた色パラメータ(F1,F2,F3)を、色パラメータに対する予め決定された値(R1,R2,R3)と比較する工程(P5)であって、予め決定された値(R1,R2,R3)は典型的には予め決定された材料組成の色パラメータに対応する工程と、を備える方法。
(もっと読む)


ビーム密度測定システムは、シールドと、ビームセンサと、アクチュエータとを備える。ビームセンサは、シールドのビーム進行方向の下流に配置される。ビームセンサは、ビーム強度を感知し、長い方の寸法と短い方の寸法とを有する。アクチュエータは、ビームセンサに対してシールドを並進させる。シールドは、ビームセンサに対して並進されるに伴い、ビームセンサからのビームの少なくとも一部分を遮断する。ビームセンサに対するシールドの位置の変化に関連する強度の測定値は、ビームセンサの長い方の寸法により定められた第1の方向におけるビームのビーム密度分布を表す。 (もっと読む)


イオンビーム電流の均一性を監視するモニタ、イオン注入装置及び関連の方法を開示する。一実施形態では、イオンビーム電流均一性モニタ(15)は、複数のロケーションにおけるイオンビーム(12)の電流を測定する複数の測定デバイス(17)を有するイオンビーム電流測定器と、イオンビーム電流測定器によるイオンビームの電流の測定値に基づいてイオンビーム電流の均一性を維持する制御器(18)とを備える。 (もっと読む)


【課題】 複雑な演算処理を要することなく、多孔電極を有するイオン源のイオン引出し孔から出射される際のイオンビームが持つ特性を測定することができる装置および方法を提供する。
【解決手段】 このイオンビーム測定装置40aは、イオン源2の多孔電極6から引き出されたイオンビーム10の一部を通過させる開口14を有する遮蔽板12と、開口14を通過したイオンビーム10のビーム電流を検出する検出器18と、それをx方向に移動させる検出器駆動装置24とを備えている。かつ、多孔電極6と検出器18間の距離をL、遮蔽板12と検出器18間の距離をd、x方向に関して、多孔電極6の各イオン引出し孔8の寸法をa、その間隔をp、開口14の寸法をb、検出器18の寸法をwとすると、次式の関係を満たしている。
{w(L−d)+bL}/d<(p−a) (もっと読む)


【課題】強度としては弱いものの、物質透過性が高い水平ミュオンを用いて精度よく構造物の内部構造情報を得る方法を提供する。
【解決手段】位置敏感検出手段1は、第1および第2前方位置敏感検出器複合体2,3と鉄等の金属部材4と後方位置敏感検出器複合体5とを具え、前記ミュオンのうち、天頂角50〜90°の範囲で地表に降り注ぐ水平ミュオンを用い、前記構造物の測定対象部を貫通して第1前方位置敏感検出器複合体2に到達する前方水平ミュオンによって、前方水平ミュオンが貫通する前記測定対象部内の経路を特定し、金属部材4を透過して後方位置敏感検出器複合体5に到達した前方水平ミュオンのうち、低エネルギー前方水平ミュオンだけをデータとして収集し、後方水平ミュオンの強度を測定した上で、前記低エネルギー前方水平ミュオンの強度と前記後方水平ミュオンの強度の比から、構造物の内部構造情報を得ることを特徴とする。 (もっと読む)


【課題】放射光ビームや軟X線ビーム等の位置及びその強度分布、更には、これらの時間変化を高精度で長期間安定して検出することが可能で、従来の検出装置よりも低コストで製造し得るビーム検出部材およびそれを用いたビーム検出器を提供する。
【解決手段】ビームの位置や強度を検出するためのビーム検出部材2であって、ビーム7が照射されるビーム照射部6が、少なくとも珪素(Si)、窒素(N)、リチウム(Li)、ベリリウム(Be)、ホウ素(B)、リン(P)、硫黄(S)、ニッケル(Ni)、バナジウム(V)から選ばれた一種または二種以上の元素(X)を、X/C=0.1〜1000ppm含む多結晶ダイヤモンド(C)膜4からなり、この多結晶ダイヤモンド膜4に前記ビーム7が照射されると発光8,8aする発光機能を有する。このようなビーム検出部材2と前記発光現象を観測する発光観測手段3,3aとによりビーム検出器1を構成する。 (もっと読む)


【課題】電子の増幅率を低下させることなく従来よりも電子の広がりを小さくすることを可能にし、高い電子増幅率を備えかつ位置分解能を向上する。
【解決手段】放射線とガスとの光電効果による相互作用を用いたガス電子増幅器において、ガスを充填したチャンバーと、上記チャンバー内に配置された単一のガス電子増幅フォイルとを有し、上記ガス電子増幅フォイルは、厚さ100〜300μm程度の高分子ポリマー材料からなる板状の絶縁層と上記絶縁層の両面に被覆された平面状の金属層とを有して構成された板状多層体よりなり、上記板状多層体には貫通孔構造を設ける。 (もっと読む)


【課題】ノイズの影響を排除し、高精度、高再現性があり、大規模加速器における複数のビーム位置計測手段を設置する場合に、それぞれのビーム位置計測信号の同期を確保することができる加速器のビーム位置計測装置を提供する。
【解決手段】アナログ信号処理回路21は、恒温槽401を信号処理回路と温度センサー403を収納した信号処理部恒温槽407と発熱体402を収納した温度調整恒温槽408とに分割し、温度調整恒温槽408を信号処理部恒温槽407と距離を置いて配置し、この両者の恒温槽を管路409Aと409Bで接続し、管路上に送風装置410を配置し、そして電源404と発熱体スイッチ405と温度制御回路406とを恒温槽401の外部に配置した構成となっている。また、温度センサー403からの温度モニタ信号は温度制御回路406に入力し、温度制御回路406から発熱体スイッチ405へ開閉指令を出力する構成とする。 (もっと読む)


本願発明は、粒子線を分析する装置に関わる。該分析装置は、光ファイバ(9)の網状組織を含む少なくとも1つの検出器であって、並列の複数のファイバからなる上記網状組織が、第1の方向Xに沿って方向付けられた並列の複数の光ファイバの少なくとも1つの第1の面を含み、上記粒子線が上記光ファイバの網状組織を通過するときに光信号を生成するようにデザインされた検出器と、上記光信号の特性を表す信号を出力するように上記検出器に結合している画像センサと、を備える。本願発明は、上記画像センサがCCDまたはCMOSセンサを含み、上記光ファイバの網状組織の光ファイバの端部が上記CCDまたはCMOSセンサの面内に光信号の画像を形成するようにデザインされていることを特徴とする。 (もっと読む)


【課題】従来のブレード型検出素子を用いた放射光モニターは高速性に欠けるため、放射光のパルス性を利用する実験には対応することができなかった。
【解決手段】本発明の高耐熱・高速放射光モニターは、冷却用の無酸素銅製の台座上に誘電体プレートを接合させ、さらにその上に特性インピーダンスを信号ケーブルのそれに整合させた伝送線路を接合させることでマイクロストリップライン構造を構成し、その伝送線路を放射光ビームの受光面とすることで、光電子の放出による伝送線路上の電位の上昇をパルス信号として計測するものである。 (もっと読む)


【課題】ストリップ電極からの電流信号を用いてビームの中心位置を計測するときのS/N比が改善されたビーム位置モニタを提供する。
【解決手段】ビーム位置モニタは、電荷粒子またはX線のビームが通過するときに電離するガスイオンまたは電子が上記ビームの通過方向に垂直な面の一軸方向に並列して配列される複数の短冊状のストリップ電極に流れる電流の大きさと上記ストリップ電極の位置情報とから上記ビームの上記一軸方向の中心位置を計測するビーム位置モニタにおいて、上記複数のストリップ電極には、上記一軸方向の両端部に配置され、上記一軸方向の中央部に配置されている上記ストリップ電極より幅の広いストリップ電極が含まれる。 (もっと読む)


【課題】リアルタイムのイオン分析が可能であって高効率かつ安価なイオン分析装置を提供する。
【解決手段】イオン分析装置1は、イオン発生源9から発生したイオンの比電荷および運動エネルギを分析するトムソンパラボラ型のものであって、真空容器10の内部に配置されており、コリメータ11、電磁場発生部12、金属箔13a,13b、プラスチックシンチレータ14、光フィルタ15、光検出部16、分析部17、制御部18および表示部19を備える。プラスチックシンチレータ14は、電磁場発生部12により形成された電磁場により偏向され金属箔13a,13bを通過して到達したイオンを主面に入射して、そのイオン入射位置から光を発生する。 (もっと読む)


【課題】宇宙線ミュオンを利用して高炉炉底の耐火レンガの損耗量の計測には改良すべき点があった。
【解決手段】ミュオンを計測する計測装置により高炉炉底を透過して飛来する炉底透過のミュオン強度と、該炉底透過のミュオンの飛来方向の判別情報と、高炉を非透過の非透過ミュオン強度とを一定時間蓄積し、該実測による蓄積データに基づいて炉底の状態を密度として炉底透過のミュオン強度と非透過ミュオン強度との強度比で表し、炉底耐火物の密度に対応する該強度比と、炉内の物質の密度に対応する強度比との相違に基づいて高炉炉底耐火物と炉内の境界位置を判定し、また前記強度比と炉底耐火物の損耗量との関係を推定し、この推定した関係から境界位置の判定に供された強度比に対応する損耗量を求め、これを実測値による炉底耐火物の損耗量と推定する。 (もっと読む)


41 - 60 / 88