説明

Fターム[3G093CA09]の内容

車両用機関又は特定用途機関の制御 (95,902) | 制御・作動条件(機関) (4,923) | 機関回転状態 (476)

Fターム[3G093CA09]の下位に属するFターム

低回転時 (156)
高回転時 (104)

Fターム[3G093CA09]に分類される特許

81 - 100 / 216


【課題】触媒劣化抑制制御の実行後において燃費を向上できる車両の制御装置を提供する。
【解決手段】ECUは、エンジンがアイドルON状態であると判断し(ステップS11でYes)、触媒劣化抑制制御中であると判断した場合には(ステップS12でYes)、フュエルカットおよび減速フレックスロックアップ制御を禁止し、触媒劣化を防止する。そして、ECUは、触媒劣化抑制制御が終了したと判断し(ステップS14でYes)、エンジンに対するフュエルカットが開始された場合に(ステップS15)、エンジン回転数が所定値以下になったときは(ステップS16)、フュエルカットを一旦中断するとともに、ISC制御を実行させることによりエンジン回転数を上昇させ、減速フレックスロックアップ制御を開始する(ステップS17)。 (もっと読む)


【課題】内燃機関の機関本体を一時的に停止した後に再始動した時に、優れた排気ガスの浄化能力を有するように内燃機関を制御する制御装置を提供する。
【解決手段】機関排気通路の内部に配置され、排気を浄化する排気処理装置と、排気処理装置の上流側に配置され、排気ガスに含まれる未燃燃料を燃焼させる燃焼手段とを備え、機関本体の運転を一時的に停止可能にした内燃機関の制御装置であって、機関本体の運転を一時的に停止する条件が成立したときに、気筒内においてリーンの空燃比で燃料を燃焼し、気筒内から排出される排気ガス中の酸素を使用して、燃焼手段により未燃燃料を燃焼させた後に機関本体を停止する。 (もっと読む)


【課題】遅角位置から目標進角位置までのVVTの進角速度が速いことに起因したショックの発生を抑制することが可能な内燃機関の制御装置を提供する。
【解決手段】内燃機関の制御装置は、ハイブリッド車両に搭載され、エンジンと、制御手段とを備える。エンジンは、可変バルブタイミング機構を備える。制御手段は、エンジン回転数目標値上昇レートに基づき前記エンジンの回転数を制御する。また、制御手段は、エンジンの始動後、バルブタイミングを遅角位置から目標進角位置に移行する際、エンジン回転数目標値上昇レートに山形上昇レートを付加する。 (もっと読む)


【課題】車両が加速中又は減速中であっても、エンジンを所定の目標停止位置に高い精度で停止させることができる車両制御装置を提供する。
【解決手段】エンジンEに駆動連結される入力部材Iと、出力部材Oと、入力部材Iと出力部材Oとを駆動連結する駆動伝達機構5と、少なくとも入力部材Iに駆動連結された回転電機MG1と、を備えた車両用駆動装置2に対する制御を行う車両制御装置1であって、エンジンEの回転を停止させるために、エンジン回転方向に目標停止位置を設定し、当該目標停止位置までの残り回転量に応じてエンジン回転速度を低減させるように、回転電機MG1を制御する停止制御を行い、エンジン回転速度が所定の制御終了値未満となったときに前記停止制御を終了する停止制御手段34と、車両加速度を取得する加速度取得手段35と、車両加速度に応じて残り回転量を補正する補正手段36と、を備える。 (もっと読む)


【課題】減筒運転が実行可能な多気筒内燃機関に対し、この減筒運転への移行に伴う車両の振動を抑制しながらも、この減筒運転の実行期間を長く確保することができる多気筒内燃機関の運転制御装置を提供する。
【解決手段】無負荷運転時または軽負荷運転時において、クラッチ機構が係合状態または手動変速機が非ニュートラル状態であるときには全気筒運転から減筒運転への切り換えを禁止し、クラッチ機構が解放状態または手動変速機がニュートラル状態であるときには全気筒運転から減筒運転への切り換えを許可する。クラッチ機構が解放状態であるか否かの判定としては、エンジンの回転変動幅が、所定の閾値よりも大きい場合に解放状態であると判断する。 (もっと読む)


【課題】燃費向上の観点に加えて、車両の周辺状況情報をも考慮した運転操作アシスト情報の提示を行うエコドライブ支援装置を提供する。
【解決手段】前記車両の動力源の使用状況を示すパラメータを取得する走行情報取得部200と、走行情報取得部200で取得されたパラメータに基づいて前記動力源の使用ポイントを算出する手段と、前記動力源の燃費効率が良好な最適使用領域と、前記最適使用領域より広い許容使用領域とを記憶する使用領域記憶手段と、前記車両の周辺状況情報を取得する取得部400と、取得された前記車両の周辺状況情報に応じて前記使用領域記憶手段に記憶される最適使用領域又は許容使用領域のいずれかを選択する手段と、前記使用ポイント算出手段で算出された使用ポイントが、前記使用領域選択手段で選択された使用領域に含まれているかを判定する第1判定手段と、表示を変更するディスプレイ610と、を有することを特徴とする。 (もっと読む)


【課題】安全性を向上するために、アイドル運転時にエンジン回転数が不用意に上昇して刃物が回転してしまうのを防止する。
【解決手段】始動時、スロットルバルブ10はファーストアイドル位置にある。起動初期のエンジン2は運転状態が不安定であるためエンジン回転数が上昇しない。運転状態が安定し始めると回転数が急激に上昇する。エンジン回転数(Ne)が4,000rpm以上になった時点で失火制御モードに入る。失火制御モードでは、エンジン回転数が4,500rpm以上になると失火処理が実行される(S4)。遠心クラッチ6は5,000rpmで係合するように設定されている。失火制御モードは、作業者がスロットルコントロールトリガ12を操作したときに解除される(S6) (もっと読む)


【課題】エンジン停止制御開始から燃料カットまでの時間を短縮し、燃費を改善することができるハイブリッド車両の制御装置を提供すること。
【解決手段】エンジンEngとモータ/ジェネレータMGとの間に第1クラッチCL1が介装され、第1クラッチCL1を締結し、エンジンEngとモータを駆動源とするエンジン及びモータ併用走行中、所定のエンジン停止条件が成立したら、第1クラッチCL1を開放した後、燃料カットによりエンジンEngを停止する。このFRハイブリッド車両において、エンジン制御手段(図5)は、エンジン及びモータ併用走行中、モータ走行要求信号が出されるのに先行してモータ走行要求予告信号が出されたら、第1クラッチCL1の開放を開始するエンジン停止制御部(ステップS1〜ステップS12)を有する。 (もっと読む)


【課題】機関停止時に効率的にNOx吸蔵還元触媒に吸蔵されたNOxを還元浄化する。
【解決手段】機関排気通路内に、NOx吸蔵還元触媒13を配置し、排気通路12内に燃料を添加してNOx吸蔵還元触媒13に流入する排気ガスの空燃比をリッチにする燃料添加弁16を具備した内燃機関の排気浄化装置において、機関停止要求があったとき、機関停止処理が燃焼室内への燃料供給を停止して機関運転を停止させ、機関停止処理中に燃料添加弁16から燃料を添加すると共に、このとき形成されるリッチ空燃比の排気ガス部分がNOx吸蔵還元触媒13内に滞留するように燃料添加時期を設定する。 (もっと読む)


【課題】別個に加熱装置を用いることなく効率的に且つ迅速にバッテリを暖めることができるハイブリッド式建設機械の暖機方法を提供することを課題とする。
【解決手段】バッテリ19の温度が予め設定された温度より低いときにエンジン11を作動させて暖機運転を行なう。同時に、アシストモータ12を作動させてバッテリ19を充放電させることにより、バッテリ19の内部発熱を利用してバッテリ19の温度を上昇させる。 (もっと読む)


【課題】有段の自動変速部を有する車両用駆動装置において、電動機がトルク不足になることに起因して変速ショックが大きくなることを回避して変速ショックを低減できる車両用駆動装置の制御装置を提供する。
【解決手段】トルク補償手段74は、トルク相補償制御において、自動変速部20の高入力回転速度域では、自動変速部20の変速時の自動変速部入力回転速度N18が高いほど電動機トルク補償量QMTFLを小さくする。そして、トルク補償総量QTTFLに対して電動機トルク補償量QMTFLが不足する場合には、電動機トルク補償量QMTFLのトルク補償総量QTTFLに対する不足分がエンジン8の作動によって補われる。従って、第2電動機M2の許容出力以下の出力で作動させられ、エンジン8の作動によって、前記トルク相補償制御がトルク不足にならないように実行されることになる。その結果として、変速ショックを低減することが可能である。 (もっと読む)


【課題】車両の停止中にエンジンを一時的に停止する制御を行う際に、車室内の温度低下を制限した上で、燃料消費の低減を図ることができる車両の制御装置を提供する。
【解決手段】エンジン制御手段44は、停止条件が成立してエンジン2を停止したときに、エンジン停止中もブロアファン121を作動させ、エンジン停止時間Tsが経過した時にエンジン2を始動してポンプPを起動する。エンジン停止時間決定手段43は、ブロアファン121による車室内への空気の吹出し量が多いほど、エンジン停止時間Tsを短い時間に決定する。 (もっと読む)


【課題】この発明は、エンリッチ制御を働かせるエンリッチ条件を、成立させ難く、あるいは、その成立を遅延させるよう制御し、その制御のために付加する検知装置類を少なく、あるいは、なくして、既存のエンジン補機の利用効率を高めるようにし、通常運転での走行と特定運転条件下での走行の両方での触媒保護を行うことを目的とする。
【解決手段】この発明は、エンジン制御装置において、エンジン制御手段にエンリッチ制御領域が第1マップより狭い第2マップを設け、エンジン制御手段は、エンジンの温度が設定温度より高く、かつ車両速度が設定速度より低い特定運転条件下では、第2マップを選択してファン装置を駆動するよう制御するとともに燃料噴射制御すること特徴とする。 (もっと読む)


【課題】快適な空調を実現しながら、エンジンのアイドリングを停止させておく時間をできるだけ長くして燃料消費量や排気ガスの排出量の低減効果を十分に得る。
【解決手段】車両の制御装置は、エバポレータ及びヒータコアを有する空調装置を備えており、車両の停止時にエンジンのアイドリングを停止させるように構成されている。空調装置は、ヒータコアの温度状態を検出するヒータコアセンサと、吹出空気の温度を予測する制御部とを有している。制御部は、エンジンのアイドリング停止中に、ヒータコアの温度状態と、アイドリング停止前における吹出空気の予測温度とに基づいて、吹出空気の温度調節を行い(ステップSB7)、さらに、ヒータコアの温度状態と、アイドリング停止前における吹出空気の予測温度とを比較して、この比較結果に基づいてエンジンのアイドリングを停止させておく時間を変更する(ステップSB5)。 (もっと読む)


【課題】アイドルストップ状態からのエンジン再始動時に、エンジントルクないしはエンジン回転数の急上昇を抑制又は防止することを可能にする手段を提供する。
【解決手段】自動車Wは、エンジン1と、ロックアップクラッチ26を有するトルクコンバータ20と、自動変速機10とを搭載している。自動車Wの停止時において自動変速機10がDレンジにあるときに、エンジン停止条件が成立すればコントロールユニットによってエンジン1が停止させられ、この後エンジン再始動条件が成立すればエンジン1が再始動させられる。自動車Wのドライバの意図ないしは操作と無関係な原因によりエンジン再始動条件が成立したときには、ロックアップクラッチ26をスリップ締結することにより、エンジン再始動時におけるエンジン回転の急上昇が抑制又は防止され、エンジン1のローリング振動が抑制される。 (もっと読む)


【課題】減速時に負圧生成した場合でも、再加速時のトルク段差を解消する。
【解決手段】 内燃機関の制御装置は、吸気弁1のリフト・作動角を同時にかつ連続的に拡大・縮小制御可能な吸気弁側リフト・作動角可変機構11と、ブレーキペダルの踏み込み量を検知するブレーキストロークセンサ14と、車両の速度を検知する車速センサ15と、を有している。そして、ブレーキペダルが踏み込まれ、車両が減速した際には、吸入空気量が一定となるように、ブレーキペダルの踏み込み量が大きくなるほど、吸気弁1の閉弁時期を遅角すると共に、スロットル開度を小さくする。これによって、ブレーキペダルの踏み込み量に応じてスロットル弁18下流側の負圧を変化させることができるので、ブレーキOFFから再加速するときのトルク段差を緩和することができる。 (もっと読む)


【課題】アクセル全閉での走行中、手動操作によるダウンシフト変速指令やN→D、N→Rへの変速指令があった場合に、変速機側からのエンジン回転の持ち上げに起因する反動ショックを軽減できる車両の制御方法を提供する。
【解決手段】ポンプインペラとタービンランナとの間にワンウエイクラッチ及びトーショナルダンパーとを直列に介設したトルクコンバータを備えた車両において、アクセル全閉での走行中、手動操作によって自動変速機のNレンジからDレンジへの切替、NレンジからRレンジへの切替、もしくはダウンシフト変速の指令が出た時、タービン回転数が変速後のタービン回転数に到達する前に、エンジン回転数を変速後のタービン回転数以上まで上昇させることで、トーショナルダンパーによる反動ショックを軽減する。 (もっと読む)


【課題】アイドルストップ時にエンジン回転停止位置を精度良く目標停止位置に制御できるようにする。
【解決手段】エンジン回転の目標停止位置から所定クランク角手前の上死点(TDC)に設定した基準点の目標回転速度を設定すると共に、エンジン回転停止挙動開始から基準点の目標回転速度に至るまでの目標とするエンジン回転挙動の軌道(目標軌道)を基準点の目標回転速度とエンジンフリクションとに基づいて算出する。そして、エンジン回転停止挙動中に、エンジン回転挙動を前記目標軌道に一致させるようにオルタネータ(電動機)のトルクを制御する。基準点の目標回転速度は、オルタネータのトルクが発生する回転速度範囲の下限回転速度以下で且つ該下限回転速度に近い回転速度に設定されている。 (もっと読む)


【課題】エンジン回転数NEの過渡特性を定める。
【解決手段】パワートレーンドライバモデル9300の目標エンジン回転数算出モデル9320は、目標出力パワーを現在のエンジン回転数NEで除算することにより、目標エンジントルクを算出し、目標エンジントルクをエンジンのイナーシャで除算することにより、目標エンジン回転数NETの変化量を算出し、目標エンジン回転数NETの変化量に応じて変化するように、現在の目標エンジン回転数NETを算出する。 (もっと読む)


【課題】内燃機関の制御において、デュアルマスフライホイールの共振回転数への内燃機関回転数の接近状態を考慮することにより共振防止処理を適切なタイミングで実行し強い共振やエンストが生じるのを防止する。
【解決手段】回転数基準値A及び回転数変動量基準値Bをエンジン回転数減速度Dneと変速段SFTとに応じて設定し(S112,S114)、これらの基準値A,Bと、平均回転数Nea及び回転数変動量ΔNeとを比較している(S116,S118)。エンジン回転数減速度Dneが高いほど、回転数基準値Aを大きく、かつ回転数変動量基準値Bを小さくし、更に変速段により変化する共振回転数に対応させてこれら基準値A,Bの調節状態を変化させている。このため共振防止処理を適切なタイミングで実行でき、強い共振やエンストが生じるのを防止できる。 (もっと読む)


81 - 100 / 216