説明

Fターム[3G301PA17]の内容

Fターム[3G301PA17]の下位に属するFターム

Q/N (308)

Fターム[3G301PA17]に分類される特許

41 - 60 / 890


【課題】燃料通路を介して吸気管に接続されたインジェクターからの最初の燃料噴射に際しても吸気中に適量の燃料を供給することのできるエンジンの燃料供給制御装置を提供する。
【解決手段】液体燃料用インジェクター3と、燃料通路5を介して吸気管2に接続された気体燃料用インジェクター4とを備え、液体燃料と気体燃料との間で吸気中に供給する燃料を切り換えるエンジンにおいて、電子制御ユニット6は、液体燃料から気体燃料への切り換え後における気体燃料用インジェクター4の最初の燃料噴射に際して、燃料通路5に気体燃料を満すために必要な量の燃料の増量補正を行う。 (もっと読む)


【課題】触媒内の中心空燃比や目標空燃比補正量に基づいて、内燃機関に取り付けられた触媒前の空燃比センサのオフセット故障を的確に診断することのできる触媒前の空燃比センサの故障診断装置を提供する。
【解決手段】空燃比センサの診断装置250は、空燃比センサ112と酸素センサ113と空気流量検出手段110の出力信号に基づいて演算された中心空燃比と目標空燃比補正量のうち、目標空燃比補正量が中心空燃比に対して著しく大きいまたは小さい時には、空燃比センサ112のオフセット故障と判定する。また、中心空燃比が理論空燃比に対して著しく大きいまたは小さい時にも、空燃比センサ112のオフセット故障と判定する。そして、空燃比センサ112のオフセット故障と判定した場合はランプ等を点灯して運転者にその異常を警告する。 (もっと読む)


【課題】ドライバビリティを悪化させることなく、減速中にエンジンのトルクが「0」になると直ちに燃料噴射を停止させること。
【解決手段】エンジン10と電動機13とを有し、エンジン10もしくは電動機13、またはエンジン10と電動機13とが協働して走行可能であり、少なくとも減速中に、電動機13により回生発電が可能であるハイブリッド自動車1のハイブリッドECU18において、エンジン10の回転軸がハイブリッド自動車1を加速させるトルクを発生していないときには、エンジン10の燃料噴射を停止させると共に、エンジン10の回転を電動機13の所定のトルクによってアシストするような制御を行う。 (もっと読む)


【課題】エンジンがノッキングまたは失火状態にあるかを含め燃焼が最適であるか否かを判定する燃焼診断装置から送出される燃焼診断結果の信号に係る異常が生じて正しい診断結果を出力・入力していない場合であっても、燃焼診断結果に基づいて行われる燃料噴射タイミングの補正を許容範囲内に保持することを目的とする。
【解決手段】燃焼診断装置44によって燃焼が最適でないと判定された気筒で、燃料噴射タイミングを最適燃焼と判定されるまで補正を繰り返して補正量を累積していく噴射タイミング補正手段62と、複数気筒の過去の燃料噴射タイミングのデータを基に燃料噴射タイミングの補正許容範囲を設定する補正許容範囲設定手段64と、噴射タイミング補正手段62によって補正される燃料噴射タイミングが補正許容範囲内か否かを判定する噴射タイミング判定手段70と、該判定手段によって補正許容範囲内と判定した場合に補正燃料噴射タイミングで噴射指令を出力する指令制御手段72と、を備えたことを特徴とする。 (もっと読む)


【課題】安全性が向上し、スートブロア効率の高い、強いては主機関用廃熱回収効率の高い、排ガスエコノマイザーのスートブローシステムを提供する。
【解決手段】ディーゼル主機関の排熱を熱源とする排ガスエコノマイザーと、排ガスエコノマイザーの伝熱管に付着した煤を吹き飛ばすスートブロアと、スートブロアに蒸気を供給する蒸気供給手段と、蒸気供給手段からの蒸気の一部を導入して発電を行うターボ発電機プラントと、ディーゼル主機関の燃焼制御を行う主機関燃焼制御装置とを装備する排ガスエコノマイザーのスートブローシステムであって、主機関燃焼制御装置は、主機負荷の設定レベルをチェックする設定主機負荷チェック手段と、蒸気圧力の設定レベルをチェックする設定蒸気圧力チェック手段とを有し、スートブロー時に、排ガス流速の上昇および排ガス温度の上昇をもたらすように燃焼制御を行う。 (もっと読む)


【課題】1つの燃焼室に対して複数の吸気ポートに共通な共通吸気通路に、燃焼室への吸気量を制御するスロットル弁がアクチュエータで駆動されるようにして配設され、共通吸気通路から分岐して複数の吸気ポートにそれぞれ接続される複数の分岐吸気通路の1つにスワール制御弁が配設される内燃機関において、機関出力の変化を緩和しつつスワール燃焼領域を拡大する。
【解決手段】制御ユニット30は、スワール制御弁24の閉弁状態および開弁状態の切換前後で機関出力がほぼ等しくなるスロットル開度とするように、アクチュエータ23の作動を制御する。 (もっと読む)


【課題】エンジンの低負荷域で適正に圧縮自己着火燃焼を行うことができるとともに、エンジンの高負荷域で異常燃焼の発生を効果的に防止できるようにする。
【解決手段】吸気ポート16に燃料を噴射するポート燃料噴射手段57と、燃焼室19の中心部に燃料を噴射する筒内燃料噴射手段62とを備えた火花点火式ガソリンエンジンであって、エンジンの低負荷域では、上記ポート燃料噴射手段57により吸気行程で吸気ポート16に燃料を噴射して理論空燃比よりもリーンで均質な混合気を形成し、この混合気を自着火させ、エンジンの高負荷域では、上記筒内燃料噴射手段62から30MPa以上の燃圧で圧縮行程から膨張行程初期までの間に燃料を燃焼室19内に噴射して上記低負荷域よりもリッチな混合気を形成し、この混合気に圧縮上死点近傍で点火して圧縮上死点よりも所定期間遅れたタイミングで急速燃焼させるように制御する制御手段10を備えた。 (もっと読む)


【課題】負荷解除時においてエンジンの調速制御の遅れによる過剰な燃料の噴射を防止するエンジン制御装置を提供すること。
【解決手段】
エンジンの目標回転数と実回転数の回転偏差を算出するメインコントローラと、エンジンの実回転数と制御目標エンジンの実回転数と回転数偏差が大きくなれば、その偏差量に応じて上記ポンプ容量制御手段を駆動し、可変容量型油圧ポンプの吐出流量を減少させて、馬力制限制御を行ういわゆるスピードセンシング制御機構とを備え、メインコントローラは、操作量検出手段で検出した操作レバーの操作量に基づきアクチュエータの要求流量を演算するとともに、検出したポンプ吐出圧力とアクチュエータ要求流量とによりポンプ吸収トルクを演算し、演算したポンプ吸収トルクの予測値が目標とするトルク以下になった場合に、エンジンの燃料噴射量を減量側に調整することを特徴とするエンジン制御装置である。 (もっと読む)


【課題】燃圧センサの故障時であっても、要求よりも実際の燃料噴射量が不足してリーン空燃比で運転されてしまうことを抑制できるようにする。
【解決手段】燃圧センサで検出された燃圧と目標値とに基づいて燃料ポンプの通電を制御するデューティ比を決定するエンジンの燃料供給装置において、前記燃圧センサの異常時に、燃料ポンプのデューティ比を前記目標値に相当する値に固定すると共に、前記目標値に相当するデューティ比で燃料ポンプを駆動する状態において、燃料供給量が不足する惧れがある高負荷時には、燃料カットを行うか、スロットル弁の開度を制限する。 (もっと読む)


【課題】燃焼騒音、HCやCO、スモークを十分低減することができる燃料噴射装置を提供する。
【解決手段】燃料噴射装置は、燃焼室内に燃料を噴射するインジェクタと、燃料を2回に分けて噴射させるようにインジェクタを制御するECUとを備えている。このとき、1回目の燃料噴射は、1回目の燃料噴射直後の予混合時間が最小になる時期よりも遅角側で行うように設定される。2回目の燃料噴射は、1回目の燃料噴射及び着火と2回目の燃料噴射及び着火とにより生じる熱発生率波形を二山形状にする時期に行うように設定される。具体的には、2回目の燃料噴射は、1回目の燃料噴射によって生じる低温酸化反応による熱発生率ピーク以降であり且つ1回目の燃料噴射によって低温酸化反応後に生じる高温酸化反応による熱発生率ピーク以前に行うことが好ましい。 (もっと読む)


【課題】標準モードと低燃費モードを備えたエンジンにおいて、低燃費モードでのPMを抑制する。
【解決手段】コモンレール1を備えたエンジンEと、該エンジンEの制御を行うECU100、及び作業機21を搭載したトラクタにおいて、排気ガスを浄化する後処理装置37を機体の適宜位置に設け、ECU100内にエンジン回転数とトルクとの関係を示す性能曲線を少なくとも標準モードラインL1と低燃費モードラインL2とから構成し、該標準モードラインL1と低燃費モードラインL2との切り換えは燃費モード変更手段36で行う構成とし、低燃費モードラインL2に切り換えるとメイン噴射Iの噴射タイミングを進角ADさせるとともにアフター噴射AIの噴射量を増量させるように構成したことを特徴とするトラクタの構成とする。 (もっと読む)


【課題】噴射弁側メモリに要求される記憶容量の低減、および噴射率パラメータの送信時間短縮を可能にした、燃料噴射制御装置を提供する。
【解決手段】検出した燃圧波形に基づき噴射率パラメータを算出するとともに、算出した噴射率パラメータに基づき燃料噴射弁の作動を制御するECU(制御装置)と、制御装置に搭載された制御側メモリと、記燃料噴射弁に搭載された噴射弁側メモリと、を備える。そして、算出した噴射率パラメータを、噴射量および燃圧(環境値)と関連付けてECU側メモリ(制御側メモリ)の学習マップに記憶更新させていき、更新量や更新頻度等に基づき、環境値の全範囲よりも小さい範囲である更新範囲Wを設定する(S13)。そして、更新範囲Wに対応する噴射率パラメータを、エンジン運転終了時にINJ側メモリへ送信する(S14)。 (もっと読む)


【課題】燃料の噴射状態を高精度で制御できる燃料噴射制御装置を提供する。
【解決手段】燃料噴射弁に搭載された燃圧センサの検出値に基づき圧力波形を取得する圧力波形取得手段と、その圧力波形に基づき噴射率パラメータを算出する噴射率パラメータ算出手段31と、算出した噴射率パラメータを、噴射量と関連付けた学習値として記憶するパラメータ学習手段32と、噴射量の変化に対して学習値が周期的に変化する状態を表した学習うねり波形を、前記圧力波形に含まれる圧力うねり成分に基づき推定する学習うねり波形推定手段36と、要求噴射量に対応する噴射率パラメータの値を、学習うねり波形を用いて前記学習値を補間して算出する補間手段33と、を備える。 (もっと読む)


【課題】空調用熱交換手段の性能を確保しつつ暖機運転の促進および燃焼状態の安定化を図ることができる内燃機関の制御装置を提供する。
【解決手段】冷却水制御手段16Aは、エンジン10の暖機が完了する前に、ヒータコア12による冷却水の温熱の利用要求の有無に応じてウォータポンプ34による冷却水の循環を実行または停止させる。制御量設定手段16Bは、エンジン10の暖機運転期間、運転状態検出手段により検出されたエンジン10の運転状態に基づいてエンジン10の運転に関わる制御量の目標値を設定し、かつ、目標値として、冷却水の循環の実行時に対応する第1の目標値と、冷却水の循環の停止時に対応する第2の目標値とを設定する。内燃機関制御手段16Cは、目標値に基づいてエンジン10の運転を制御する。 (もっと読む)


【課題】機関の運転状態が過渡運転状態となったこと等に起因して下流側空燃比センサの出力値がリッチとなったとき、空燃比のフィードバック制御と触媒の反応とに起因して空燃比を更にリッチに設定することを防止する。
【解決手段】空燃比制御装置は、下流側空燃比センサ56の出力値Voxsがリッチ判定閾値以上となったときに触媒43に流入するガスがリーン空燃比となり、且つ、出力値Voxsがリーン判定閾値以下となったとき触媒流入ガスがリッチ空燃比となるように空燃比のフィードバック制御を行う。更に、上流側空燃比が所定値以下となり、且つ、その後に取得される下流側空燃比センサ56の出力値Voxsの極大値がある範囲内の値であるとき、下流側空燃比センサ56の出力値Voxsが「触媒43の状態が酸素過剰状態となる前」に低下すると予測し、酸素過剰状態であると判定するためのリーン判定閾値を通常値よりも小さくする。 (もっと読む)


【課題】 内燃機関の排気ガスシステム内に配置されているセンサの過熱が避けられるように、センサの電気的加熱のための制御方法および装置を提供する。
【解決手段】 内燃機関の排気ガスシステム内に配置されているセンサの電気的加熱のための制御方法において、センサの全加熱出力(42)が制御され、且つセンサの温度の実際値(33)が特性パラメータ、例えば抵抗の測定によって決定される。定格加熱出力(41)が、特性マップ(20)を介して内燃機関の運転ポイント(30、31)に応じて決定される。制御加熱出力(40)が、制御器(10)において温度の実際値(33)と新しい目標値(34)とから決定される。全加熱出力(42)が、定格加熱出力(41)と制御加熱出力(40)との和として生成される。 (もっと読む)


【課題】電気負荷量を検出することなく電気負荷がある場合でも学習値の学習を実行して、アイドル回転の安定化を図ることができる内燃機関のアイドル回転数制御方法を提供する。
【解決手段】内燃機関のアイドル運転時に内燃機関の機関回転数がアイドル目標回転数になるように、アイドル時吸入空気量をフィードバック補正量によりフィードバック制御し、所定条件が成立した場合にフィードバック補正量の学習値を学習する内燃機関のアイドル回転数制御方法であって、内燃機関に対する電気負荷の有無を判定し、電気負荷があると判定した場合は学習値に所定値を加算したフィードバック補正量からフィードバック制御を実行し、電気負荷があると判定した場合のフィードバック制御中にフィードバック補正量の変化量が学習の判定のための判定値を超えて変化する場合に学習値の学習を実施する。 (もっと読む)


【課題】この発明は、内燃機関の制御装置に関し、過給機を備える内燃機関において、吸気通路側から排気通路側に向けての燃焼室を介したガスの吹き抜けの発生の有無にかかわらず、プレイグニッションを良好に抑制することを目的とする。
【解決手段】吸入空気を過給するコンプレッサ26を有するターボ過給機と、内燃機関10の筒内に燃料を供給する筒内燃料噴射弁34とを備える。プレイグニッションが検出された場合に、内燃機関10のトルク発生のためのメイン噴射に先立って、筒内燃料噴射弁34を用いてプレイグニッションの抑制のための燃料噴射であるプレ噴射を実行する構成において、吸気通路16側から排気通路18側に向けての燃焼室14を介したガスの吹き抜けの発生の有無に応じて、プレ噴射の実行時期を調整する。 (もっと読む)


【課題】燃費悪化を抑制しつつ排気浄化装置を適切に保護する。
【解決手段】本システムには、エンジン10の排気通路において排気浄化装置としての触媒17が設けられているとともに、エンジン10の冷却システム30が設けられている。ECU50は、排気温度が、排気熱による触媒17の劣化のおそれが生じる所定高温域にあるか否かを判定する。そして、排気温度が上記所定高温域にあると判定された場合に、冷却装置としてのエンジン冷却システム30のエンジン冷却性能を向上させる冷却向上処理を実施するとともに、その冷却向上処理の開始後においてエンジン10の点火時期を進角させる点火進角処理を実施する。 (もっと読む)


【課題】ダイナミックな制御品質で許容不能な温度を確実に回避しつつ、内燃機関のパワーポテンシャルを完全に利用できるようにする。
【解決手段】基準条件のもとでの内燃機関の各動作点に対する排気ガス温度のベース値を設定するベース値設定回路と、このベース値を、排気ガス対向圧または吸入空気温度または内燃機関温度または噴射パターンのうち少なくとも1つのパラメータの実際値と基準値との差に応じて補正するための補正値を設定する補正値設定回路と、ベース値と補正値とに基づいて排気ガス温度の許容可能最大値を生成する排気ガス温度値生成手段と、許容可能最大値をラムダ信号の目標値へ変換する第1の換算回路と、ラムダ信号の目標値に基づいて噴射すべき燃料量の最大値を計算する第2の換算回路とが設けられている。 (もっと読む)


41 - 60 / 890