説明

Fターム[3J066BF02]の内容

振動減衰装置 (6,439) | 塑性体形状細部 (578) | 変形によるもの (505) | 中空部の変形 (208)

Fターム[3J066BF02]の下位に属するFターム

Fターム[3J066BF02]に分類される特許

61 - 80 / 155


【課題】車両衝突時の衝撃エネルギーを吸収するのに十分な荷重特性を得ることができ、車両用ドアなどの狭小な空間でも設置でき、かつ乗員の身体を衝突時の衝撃から確実に保護できる車両用衝撃吸収部材及び車両用乗員保護装置を提供する。
【解決手段】軸線Lの方向に延在する一定の長さを有するとともに軸線Lの方向と直角な面の断面積が軸線Lの方向の一端から他端に行くに従い減少する中空の筒体11から車両用衝撃吸収部材10を構成し、この筒体11の一端から他端との間に位置する外周面にはリング状に突出する複数の節部13を筒体11の延在方向に一定の間隔に形成する。筒体11の延在方向で互いに隣接する節部13間に存在する各筒部112を軸線L方向の圧縮荷重に対して座屈変形する衝撃吸収用の筒部とし、この各筒部112の肉厚を前記隣接する両節部13から筒部112の軸線L方向の中間部に行くに従い減少する厚さにした。 (もっと読む)


【課題】筒状の本体部2を座屈変形させることなく筒軸Z方向に安定して変形させることが可能でかつ取扱い性に優れた衝撃エネルギ吸収部材1を提供する。
【解決手段】本体部2が、分割変形部3と境界部4とが一体成形されてなり、この境界部4が、本体部2径方向の外側に向かって筒軸Z方向の一方側又は他方側に傾斜する傘状をなし、筒軸Z方向に隣り合う任意の2つの境界部4が、本体部2径方向の外側に向かって互いに反対側に傾斜し、更に境界部4が、本体部2に対して筒軸Z方向に所定以上の圧縮荷重が入力されたときに、境界部4を挟む2つの分割変形部3を、筒軸Z方向への圧縮塑性変形と同時に本体部2径方向の互いに反対側へそれぞれ塑性変形させるとともに、該境界部を挟む2つの分割変形部3の境界側端部が本体部2径方向の互いに反対側へそれぞれせん断変形するのを促進するように構成する。 (もっと読む)


【課題】 鉄骨構造物に対する大きな設計変更を伴うことなく耐震化させる鉄骨構造物の制振ダンパー機構を提供すること。
【解決手段】 ウエブ部31とフランジ部32とを有する梁3と柱とで鉄骨構造物を形成し、この梁3と柱とで形成される架構面領域50に傾斜配置のブレース40を設け、前記梁3は、前記ブレース40との連結部側に前記フランジ部32の開放部33を有し、前記ブレース40は、この開放部33で、所定の外力で変形するダンパー構造体36を介在させたガセットプレート34を介して前記梁3と連結されている。 (もっと読む)


【課題】車両骨格部材に荷重が入力されて変形する際に、該荷重に対する反力を高めて、該車両骨格部材の変形を抑制することを目的とする。
【解決手段】サイドメンバ10及びフロアパネル18(車両骨格部材)における閉断面20内に、該サイドメンバ10の長手軸方向に沿って所定間隔でリブ26が設けられた樹脂製の補強部材14が配設されており、該補強部材14における隣接する該リブ26間のうち、サイドメンバ10の長手軸方向に荷重が入力された際に塑性変形する圧縮側部位に、該長手軸方向において相対する少なくとも一組の突起部28が設けられているので、該サイドメンバ10に荷重が入力されて補強部材14が塑性変形した際に、相対する突起部28が互いに接触する。 (もっと読む)


【課題】略8の字断面のアルミニウム合金押出中空形材からなるクラッシュボックス3を用いたバンパーシステム1において、クラッシュボックスの大型化及び重量増を抑制しつつ、上下に偏心した衝突荷重に対する衝突特性やタイダウン時の耐荷重特性を改善する。
【解決手段】アルミニウム合金押出中空形材が、縦方向に偏平化した2つの略六角形又は八角形断面が互いにその一辺を共有して縦方向に重なり一体化された略8の字型の断面形状を有する。偏平化した六角形又は八角形断面とは、正六角形断面又は正八角形断面を横幅をそのままで縦方向に拡大、偏平化した形状である。 (もっと読む)


【課題】より高い衝撃吸収性を有する衝撃吸収部材を提供すること。
【解決手段】互いに距離を隔てて略平行に対向配置された正面板2及び背面板3と、正面板2と背面板3との間に配置され両者を連結する4枚の連結板4とよりなる衝撃吸収部材1である。横断面形状において、4枚の連結板4は、正面板2の幅方向中央の点を通り正面板2に直交する中心軸に対して傾斜し、その傾斜方向が交互に逆転し、かつ、上記中心軸Oに関して2枚ずつ線対称に配置されている。正面板2及び背面板3の両端のすべてには、連結板4との交点部よりも外側に延長された突出部5を有している。正面板2の内側面と背面板3の内側面との間の距離をHと、正面板2の幅寸法の半分の長さをLとは、20mm≦H≦100mm、0.60≦(H/L)≦1.40の関係にある。 (もっと読む)


【課題】衝撃吸収能力の高い鈴形中空金属球とその製造方法と衝撃吸収用構造材を提供する。
【解決手段】鈴形中空金属球1は、金属薄板を湾曲させて球状の隔壁に形成して得た球体であって、隔壁に開孔部1bが形成されている。金属薄板を楕円形に切り抜いて、長軸寸法と短軸寸法が異なるようにしたブランクを用い、このブランクを深絞りして、短軸方向の両縁部を曲げると共に長軸方向の両端部を立ち上らせる深絞り工程Iと、深絞り工程Iで得られたブランクの長軸方向の両端部を互いに接近させる口閉め工程IIと、口閉め工程IIで得られたブランクの全周の縁部を互いに接近させつつ球形に仕上げる仕上げ工程IIIとを順に実行する。中空構造材に多数の鈴形中空金属球1を充填した構造体は、外力を加えると鈴形中空金属球1が時間をかけてつぶれていくので、良好な圧縮エネルギー吸収特性を発揮する。このため、衝撃吸収用構造材を軽量にできる。 (もっと読む)


【課題】より大きなエネルギ吸収量の実現が可能なエネルギ吸収体、およびエネルギ吸収方法を提供する。
【解決手段】エネルギ吸収体21は、壁部31によって囲まれる中空部32を備え、繊維強化プラスチックから形成された中空成形体30を有している。中空成形体は、壁部に圧縮荷重が作用したときに、壁部の外表面31aが中空部の中に折り返されるように壁部を折り曲げることによって、または、壁部の内表面31bが外側に折り返されて外表面同士が向かい合うように壁部を折り曲げることによって、エネルギを吸収する。中空成形体は、中空部の中に壁部を折り曲げるときには、折り曲げられた壁部同士を相互に接触させ、摩擦力によってもエネルギを吸収する。 (もっと読む)


【課題】 低密度であっても十分な強度と難燃性を有し、かつ衝撃吸収性に優れる硬質ポリイソシアヌレートフォームの製造方法の提供。
【解決手段】
ポリオール成分(A)とポリイソシアネート成分(B)とを反応させて得られる硬質ポリイソシアヌレートフォームの製造方法であって、前記ポリオール成分(A)が、平均水酸基数が6〜8で、平均水酸基価が300〜700mgKOH/gであるポリエーテルポリオール(A1)と、芳香環を含有し、平均水酸基価が40〜120mgKOH/gであるポリエーテルモノオール(A2)と、発泡剤として水(A3)とを含有する。 (もっと読む)


【課題】一般の木造家屋やプレハブ住宅用に、しかも新築物件あるいは既存物件を問わず非常に簡単に設置適用することができ、メンテナンスでのダンパー交換も簡単な住宅用制振装置を提供する。
【解決手段】2本の横材11,12と、2本の縦材13,14とが互いに溶接接合されて矩形の枠体が形作られているとともに、下部横材の両側端近傍にそれぞれ一端が固着され、他端がそれぞれ枠体の中央部方向に伸びる2本の斜材15,15’が配され、当該2本の斜材の前記他端がそれぞれ両端に固着された斜材受け材16の上面と前記上部横材11の中央部下面との間にダンパー17が取り付けられた制振装置であって、このダンパーが軽量形鋼からなり、その両フランジの中央部に長手方向にそって複数の孔20が連穿されているとともに、両フランジの先端部が上部横材のフランジ間に挿入されてドリルねじ18で上部横材のフランジに取り付けられ、ウエブ下面が斜材受け材のウエブ外面にドリルねじで取り付けられている。 (もっと読む)


【課題】荷重を受ける方向によらず、そのエネルギを充分に吸収する。
【解決手段】エネルギ吸収構造体1は、筒状体2と、筒状体2の外周面2aに設けられ、外方に向かって突出すると共に可撓性を有する複数の突起体33と、を備えている。このエネルギ吸収構造体1では、例えば支持体4で筒状体2を傾動可能に軸支すると、筒状体2の軸線方向と傾斜する傾斜方向から衝突体50が衝突した場合、突起体33が衝突体50に接触し、突起体33がその可撓性でもって適宜撓む。これに伴って、筒状体2がその軸線方向を傾斜方向とするように傾動する。そして、衝突が進行するにつれて筒状体2が支持体4に接触し、筒状体2に軸圧縮力が生じてプログレッシブ・クラッシングが生じる。つまり、傾斜方向の荷重Wを受けた場合、かかる荷重Wを筒状体2の軸圧縮力に自立的に変換させ、そのエネルギを充分に吸収できる。 (もっと読む)


【課題】 衝突時の衝撃吸収性を向上させることができる衝撃吸収部材を提供する。
【解決手段】 衝撃吸収部材1の横断面は、縦横両方向に対して矩形状の凸部2が複数形成された凹凸形状をなしている。衝撃吸収部材1の横断面(以下、部材横断面)を形成する稜線3は、全て直線で形成されている。部材横断面を形成する稜線3の各外辺(外側の辺)3a及び各内辺(内側の辺)3bの長さは、全て実質的に等しくなっている。また、部材横断面を形成する稜線3における凸部2の両側の角部(凸状角部)4の角度は、全て90度となっている。 (もっと読む)


【課題】高次元での高強度と衝撃エネルギー吸収能を兼ね備えた高強度鋼板を、高い接合強度で接合し、車両用強度部材に好適なものとする。
【解決手段】引張り試験で求められた真歪み3〜7%の間における応力歪み線図の傾きdσ/dεが5000MPa以上の高強度鋼板どうしを、摩擦撹拌接合(FSW)によって互いに接合する。 (もっと読む)


【課題】 ブロー成形により薄肉になる部分の荷重に対する強度低下をなくして、衝撃吸収体が押し潰され変形することによる安定した衝撃吸収性能を発揮させることができる車両用衝撃吸収体を提供する。
【解決手段】 衝撃吸収体1は、ブロー成形によって一体に成形された中空構造であり、中空部を有する本体と、この本体の互いに対向する第一壁4および第二壁5をそれぞれ他方へ向けて窪ませて互いの先端部を接合させた対をなす凹状リブ6、7を複数個有している。衝撃吸収体1を構成する壁面の隅部12または縁部14およびその両方の部分に、隅部12または縁部14にかかってその周辺に及ぶ形状の凹陥部13、15が形成されている。隅部12または縁部14にかかってその周辺に及ぶ形状の凹陥部13、15は、中空部に向けて切り込み状に形成されている。 (もっと読む)


【課題】衝突エネルギーの吸収性能を向上させる。
【解決手段】クラッシュボックス100は全体が筒状とされ、車両体前後方向を軸方向として配設された筒部102を有している。筒部102は一方が円形状断面104とされ、他方が正六角形状断面106とされている。筒部102の周壁110は、正六角形状断面106の各辺106Aから円形状断面104に向かうに従って幅狭とされ収束点104Aで収束する平面部110Aを有している。平面部110A間の周壁110を構成する曲面部110Bは、円形状断面104から正六角形状断面106に向かうに従って幅狭とされ収束する。稜線110Cは、円形状断面104に向かうに従って収束点104Aに向けて曲率が大きくなる曲線となる。よって、筒部102は、軸方向と直交する断面形状が、円形状から正六角形状に徐々に変化し、これに伴い軸方向と直交する断面積が徐々に変化する。 (もっと読む)


【課題】発泡金属体を筒状体の中空部へ充填するという従来のプロセスのままで、筒状体の中空部内へ発泡金属体を確実に固定することができる衝撃エネルギー吸収部材の製造方法と衝撃エネルギー吸収部材を提供することを課題とする。
【解決手段】閉断面を有する金属製の筒状体1の中空部2の開口部側から、その中空部2の断面寸法より、その断面寸法が僅かに大きな発泡金属体3を、その発泡金属体3の表層部4のみを塑性変形させながら、圧入させることを特徴とする。 (もっと読む)


【課題】安定的な順次破壊モードに移行するまでの間に生じる自己破壊の初期荷重のピーク値を制御することができるとともに、所望のエネルギー吸収量を確保することができる衝撃吸収部材を提供すること。
【解決手段】衝撃を受けた際に、自己破壊により前記衝撃を吸収する、複数の繊維強化樹脂層を有した強化繊維と樹脂からなる衝撃吸収部材3であって、先端部3aにおける少なくとも一つの繊維強化樹脂層5の強化繊維が、エネルギー吸収軸方向に対して90°±45°の範囲内の方向に延びているとともに、同一繊維強化樹脂層内の前記先端部3a以外の衝撃吸収部材本体部3bの強化繊維7が、エネルギー吸収軸方向に対して0°±45°の範囲内の方向に延びている。 (もっと読む)


【課題】車体を軽量化することができ、かつ衝撃吸収機能を有する車両用外板部材を提供すること。
【解決手段】車両の外板部材を、気泡の平均発泡径が10μm以下の微細発泡プラスチックとすることにより、車体の強度を維持しつつ軽量化をはかり、かつ衝突等の衝撃を受けた際には、プラスチック部材の微細発泡体がつぶれることによる衝撃吸収機能も備える。微細発泡体からなるプラスチックとガラスまたは炭素繊維層からなる繊維層とを、近接する繊維層が交差するように、交互に積層することにより、さらに、引っ張り強度が強く、衝撃吸収力の高い車両用外板部材とすることが可能となる。 (もっと読む)


【課題】幅広い衝突状況に対応可能な衝撃吸収装置を提供する。
【解決手段】クラッシュボックス(20)の内部空間には、ガス発生器(30)が収容される。ガス発生器(30)は、火薬を燃焼させることによって高圧ガスを発生させ、発生した高圧ガスをクラッシュボックス(20)の内部空間へ供給する。衝突時の衝撃がある程度大きい場合は、ガス発生器(30)で火薬を燃焼させてクラッシュボックス(20)の内部空間を加圧し、クラッシュボックス(20)の強度を高める。 (もっと読む)


【課題】エネルギ吸収の重量効率の高い、エネルギ吸収部材10を提供する。
【解決手段】エネルギ吸収部材10は、周壁を有する筒状の本体11と、周壁に対し周方向に等間隔を空けて設けられかつ、当該周壁を構成する他の部位よりも変形抵抗の高い、複数の筋状高変形抵抗部12と、を備える。各筋状高変形抵抗部12は、本体における一端から他端に亘って筒軸方向に波形に蛇行しながら延びている。本体11に対して筒軸方向の圧縮荷重が入力したときには、筋状高変形抵抗部12の間の部分それぞれが個別に蛇腹状に変形する。 (もっと読む)


61 - 80 / 155