説明

Fターム[4E002AA07]の内容

金属圧延一般 (9,037) | 圧延共通 (953) | 圧延材質 (800)

Fターム[4E002AA07]の下位に属するFターム

非鉄 (308)

Fターム[4E002AA07]に分類される特許

41 - 60 / 492


【課題】490MPa以上の引張強度、80%以下の降伏比及び−20℃以下の破面遷移温度を有し、高騰するエネルギーコストを抑えて安価に製造できる耐食性に優れたに優れた低降伏比鋼材の提供。
【解決手段】質量%で、C:0.05〜0.20%、Si:0.10〜0.50%、Mn:1.0〜2.0%、P:0.05%以下、S:0.02%以下、Nb:0.01%以下、Al:0.003〜0.050%およびSn:0.03〜0.50%を含有し、残部がFeおよび不純物からなる化学組成を有し、ミクロ組織が、平均結晶粒径が3μmを超えて20μm以下のフェライト相、平均アスペクト比が10未満である硬質相および不可避的形成相からなり、かつ、該フェライト相の割合が40%以上で、さらに不可避的形成相の割合が5%以下であることを特徴とする耐食性に優れた低降伏比鋼材。
Cu、Ni、Cr、Mo、Vの1種以上を含有する化学組成を有するものであってもよい。 (もっと読む)


【課題】 ステンレス鋼スラブの表面をグラインダーによって手入れするにあたり、研削バリの除去作業を設けなくても、製品の表面品質を確保することができる、生産性に優れた表面手入れ方法を提供する。
【解決手段】 熱間圧延時にスラブ幅が圧下されるステンレス鋼スラブをグラインダーによって手入れする方法において、回転方向がスラブ長手方向に対して傾斜したグラインダー砥石2を、固定したスラブ1の一方の端部から他方の端部に向かって移動させて研削し、スラブ端部に到達したなら、グラインダー砥石を1回の研削面の幅に相当する長さ分またはそれよりも少ない長さ分だけ幅方向にずらし、当該砥石を前回の移動方向とは逆方向に移動させて表面を研削し、この操作を反復繰り返しする表面手入れ方法であって、グラインダー砥石の回転方向下流側に位置するスラブコーナー部は、研削を行わずに未研削のままとする。 (もっと読む)


【課題】建築構造物部材用として好適な、非調質低降伏比高張力厚鋼板を提供する。
【解決手段】C:0.05〜0.10%、Mn:1.2〜1.8%、S:0.0010〜0.0030%、Ti:0.005〜0.020%、N:0.0030〜0.0060%を含み、Ti/Nが2.0〜4.0を満足するように含有し、さらに、Cu、Ni、Cr、V、Bのうちから選ばれた1種または2種以上を含有し、さらに、不純物元素としてNb、Moを、Nb:0.004%以下、Mo:0.04%以下に制限し、Ceqが、0.35〜0.48を満足する組成とする。そして、少なくとも、表層部を、フェライトと、硬質相としてパーライト、ベイナイト、マルテンサイトのうち1種または2種以上を有し、フェライトの平均結晶粒径が4.0〜18.0μmとする組織とし、表層部の平均硬さが225HV以下で、表層部と板厚中央部との硬度差を60HV以下とする。 (もっと読む)


高ケイ素の帯状鋼の破損を防ぐための冷間圧延方法であって、上記高ケイ素の帯状鋼は2.3重量%以上のケイ素含有量を有しており、冷間圧延の開始において、挿入する帯状鋼の温度は45℃以上であり;上記冷間圧延の処理の間において、乳化液は上記帯状鋼に散布され、上記乳化液の流量は挿入口における圧延方向において3500L/分であり、上記乳化液の流量は排出口における圧延方向において1500〜4000L/分であり、上記帯状鋼の温度は、技術的な減摩を保証するための前提条件のもとに45℃以上であることを確保されていることを特徴とする、高ケイ素の帯状鋼の破損を防ぐための冷間圧延方法。本発明の冷間圧延方法は、帯状鋼の頭部および尾部の破損を防ぎ得、完成品の割合および生産効率を上昇させ得る。 (もっと読む)


【課題】リチウムイオン二次電池ケース用のラミネートシートに用いるフェライト系ステンレス鋼箔であって、それを用いたラミネートシートにおいて良好なプレス成形性および熱融着部での優れた耐剥離性が発揮されるステンレス鋼箔を提供する。
【解決手段】質量%で、C:0.050%以下、Si:0.10〜1.00%、Mn:1.00%以下、Cr:11.0〜14.0%、Al:0〜0.003%、N:0.050%以下、残部Feおよび不可避的不純物からなる組成を有する厚さ40〜150μmのステンレス鋼箔であって、箔厚をt、箔中に存在する非金属介在物の箔厚方向粒子径をkとするとき、個々の非金属介在物がk/t≦0.02の関係を満たし、非金属介在物の面積割合が0.1%以下に調整された表面を箔の少なくとも片面に有するリチウムイオン二次電池ラミネートケース用フェライト系ステンレス鋼箔。 (もっと読む)


【課題】丸ビレットへの分塊圧延時に、捩れや倒れが発生せず、かつ、シワ疵が発生しないようにする。
【解決手段】質量%で、C≦0.01%、N≦0.01%、Cr:17〜20%、Ni≦0.5%の高純度フェライト系ステンレス鋼製の横断面が円形でない鋳片を、孔型圧延により熱間加工し、横断面が円形の丸ビレットに分塊圧延する方法である。圧下前の鋳片の横断面の高さh0と幅b0の比h0/b0を2.0以下、鋳片の加熱温度を1000℃〜1200℃とする。下記式を満たす圧下率((圧下前の鋳片の高さh0−圧下後の鋳片の高さh1)/圧下前の鋳片の高さh0)(%)で分塊圧延する。
圧下率≦−10.619×(圧下前の鋳片の横断面の高さh0と幅b0の比h0/b0)+23.298。
【効果】捩れや倒れが発生せず、かつ、シワ疵が発生しないように高純度フェライト系ステンレス鋼を丸ビレットに分塊圧延できる。 (もっと読む)


【課題】鋼板の板厚方向および板幅方向の硬さのばらつきを効果的に軽減して、鋼板内の材質均一性を向上させた高強度鋼板を提供する。
【解決手段】質量%で、C:0.02〜0.15%、Si:0.01〜1.0%及びMn:0.5〜2.0%を含有し、残部がFeおよび不可避的不純物の組成とし、鋼組織をフェライトとベイナイト組織とし、さらに板厚方向の硬さのばらつきをビッカース硬さΔHVで50以下、かつ板幅方向の硬さのばらつきをビッカース硬さΔHVで50以下とする。 (もっと読む)


【課題】冷間鍛造を行っても良好な鍛造性を示すだけでなく、浸炭処理のための加熱によ
る結晶粒の粗大化を効果的に抑制することができ、疲労特性にも優れた肌焼鋼を提供する

【解決手段】質量%で、C:0.05%以上0.40%以下、Si:1.0%以下、Mn:1.0%以下、P
:0.03%以下、S:0.03%以下、Cr:2.0%以下、Al:0.1%以下、Ti:0.05%以上0.30%
以下、Cu:0.1%以上0.5%以下、Sb:0.002%以上0.02%以下、N:0.0060%以下およびO:0.0020%以下を含み、残部はFeおよび不可避的不純物の組成とし、かつTiを含む析出物で直径:30nm以下のものが30個/μm2以上存在し、直径:5nm以上50nm以下のTi析出物の全Ti析出物に対する個数比率が50%以上とする。 (もっと読む)


【課題】長期にわたる循環使用時の乳化安定性及び潤滑性に優れ、かつ圧延材の表面品質および作業環境の向上に寄与できる冷間圧延油を得るための冷間圧延油用添加剤を提供すること。
【解決手段】動植物油脂、鉱油及び合成エステルからなる群から選ばれる少なくとも1種類以上の基油と、窒素含有水溶性環状化合物と、油溶性脂肪族ジカルボン酸又は油溶性脂肪族ジカルボン酸誘導体と、式(a)で示される非イオン性界面活性剤を含有する鋼板用冷間圧延油。
R1−O−[(PO)x (EO)z(PO)y]−R2 - - - - - - (a)
(式中、R1及びR2は、脂肪酸残基を示し、POはオキシプロピレン基、EOはオキシエチレン基、x、yおよびzは平均付加モル数を示し、x+yは3〜30、zは10〜200、POとEOはそれぞれブロック状に付加しており、分子量が2000以上10000未満である) (もっと読む)


【課題】スケール層を有する熱延鋼板に電着焼付塗装を施した場合であっても、スケールと地鉄との密着性を損なうことが無く、且つ、良好な化成処理皮膜を形成することが可能な、塗装耐食性と疲労特性に優れた熱延鋼板およびその製造方法を提供する。
【解決手段】スケール層中のマグネタイトの体積分率を60%以上、かつ、前記マグネタイトの平均結晶粒径を3μm以下とし、スケール/地鉄界面の粗さを平均粗さRaで1.5μm以下とする。 (もっと読む)


【課題】本発明は熱間圧延の仕上圧延工程前に意図的にレール頭部のコーナー部を冷却してから圧延を施すことで、頭頂部よりもオーステナイトを微細化することで、熱間圧延後の加速冷却にて冷却速度が速くなるコーナー部でのパーライト変態を促進させる。
【解決手段】質量%で、C:0.65〜1.40%、Si:0.10〜2.00%、Mn:0.10〜2.00%を含有し、残部がFeおよび不可避的不純物からなる組成を有するレール圧延用鋼片を再加熱後、粗圧延、中間圧延、仕上圧延を行いレールとする工程において、中間圧延後にレール頭部のコーナー部を850℃以上かつ、レール頭頂部と比較して30〜80℃低い温度に冷却し、しかる後に圧延パス数が2パス以上かつ圧延パス間を10秒以下とする連続仕上圧延を施す際に、レール頭部のコーナー部の各パスの圧下量の合計値(R)が頭頂部の各パスの圧下量の合計値(R)の比(R/R)が1.2以上となるように圧延を行うパーライト系レールの圧延方法。 (もっと読む)


【課題】低温環境下でも9%Ni鋼並みの耐破壊安全性に優れたNi低減型の低温用厚鋼板を低コストで提供する。
【解決手段】質量%で、C:0.01〜0.12%、Si:0.01〜0.3%、Mn:0.4〜2.0%、P:0.05%以下、S:0.008%以下、Ni:5.0%を超え8.0%未満、Al:0.002〜0.08%、N:0.0050%以下を含有し、残部はFeおよび不純物からなり、常温での降伏強度が590MPa以上である厚鋼板であって、板厚(1/4)t位置での残留γ量が3.0体積%以上であり、かつ平均有効結晶粒径が5.5μm以下であり、次の(1)式で示される値が1.3以上であることを特徴とする耐破壊安全性に優れた低温用厚鋼板およびその製造方法。。
σy,−165℃/σy,RT ・・・・・・(1)式
ここで、σy,−165℃は−165℃における降伏強度[MPa]を、そして、σy,RTは常温における降伏強度[MPa]を、それぞれ表す。 (もっと読む)


【課題】制振部材に用いられる加工性に優れた鉄合金、および、この鉄合金からなり優れた制振性を示す鉄合金部材を提供する。
【解決手段】本発明の鉄合金は、全体を100%としたときに、3〜8%のCrと、3〜8%のGaと、0.3〜2.1%のMnと、残部がFeと不可避不純物および/または改質元素とからなることを特徴とする。 (もっと読む)


【課題】熱間圧延で鋼板表面に酸化スケール(黒皮スケール)の生成を抑制できる熱延鋼板の製造方法を提供する。また、Si含有熱延鋼板に対して、赤スケールに起因する表面欠陥の発生を防止して、良好な外観を有する熱延鋼板の製造方法を提供する。また、不めっきや赤スケールに起因する外観不良の発生を防止して美麗な外観を有する溶融亜鉛めっき鋼板の製造に適した熱延鋼板の製造方法を提供する。また、CGLの加熱炉の形式に係わらず、不めっきや赤スケールに起因する外観不良が発生せず、美麗な外観を有する溶融亜鉛めっき鋼板の製造方法を提供する。
【解決手段】鋼スラブをスラブ加熱炉にて加熱するスラブ加熱工程、加熱した鋼スラブを粗圧延機及び仕上圧延機で熱間圧延してストリップとする工程、ストリップを巻取り機で巻き取る巻取り工程を行なう熱延鋼板の製造方法において、スラブ加熱工程〜巻取り工程までの工程の雰囲気を非酸化性雰囲気にする。 (もっと読む)


【課題】耐食性に優れた高強度複相組織ステンレス鋼を提供する。
【解決手段】質量%で、C:0.02〜0.20%,Si:0.10〜2.0%,Mn:0.20〜2.0%,P:0.040%以下,S:0.010%以下,Cr:15.0〜18.0%,Ni:0.5〜4.0%,Sn:0.05〜0.50、N:0.010〜0.10%を含み、下記(a)式で定義される値γp が60〜95の範囲にあり、残部が実質的にFeの組成をもち、フェライトおよびオーステナイト二相域に加熱された後の冷却過程でオーステナイト相がマルテンサイト変態することによって生成したフェライトおよびマルテンサイトの複相組織を有することを特徴とするビッカース硬さが200HV以上の複相組織ステンレス鋼鋼板および鋼帯、その製造方法。
γp =420C+470N+23Ni+7Mn+9Cu−11.5Cr−11.5Si−12Mo−7Sn−49Ti−47Nb−52Al+189・・・式(a) (もっと読む)


【課題】 量産性に優れた高Siの珪素鋼板の製造方法を提供する。
【解決手段】 質量%でSi:4〜7%を含有する珪素鋼を熱間成形し、断面が矩形の鋼片とし、該鋼片を芯材として少なくとも上下面及び左右面を炭素鋼で覆い被覆材を作製する工程と、得られた被覆材に対して前記上下面からの圧下により熱間圧延を行ない熱間圧延被覆材を作製する工程と、得られた熱間圧延被覆材を、被覆された炭素鋼を保持した状態で冷間圧延を行う冷間圧延材を得る工程と、被覆された炭素鋼を除去する工程と、を具備する珪素鋼板の製造方法である。 (もっと読む)


【課題】板厚50mm以上、降伏強度355〜460MPa、Kca=6000N/mm1.5となる温度TKca=6000が−10℃以下の、脆性き裂伝播停止特性に優れた鋼板及び該鋼板の、安定的かつ効率的な製造方法を提供する。
【解決手段】質有効結晶粒の平均円相当径が、表層部では25μm以下、板厚中心部では35μm以下であり、圧延面、圧延方向に対する集合組織強度比が、表層部では、I{001}<110>+I{112}<110>+I{332}<113>≧5、I{110}<001>+I{110}<110>+I{001}<010>≦3を満足し、かつ板厚中心部では、I{001}<110>+I{112}<110>+I{332}<113>≧3.5を満足する脆性き裂伝播停止特性に優れた厚手高強度鋼板。粗圧延後に加速冷却を行い、鋼板の表裏面がAr3−50℃以上Ar3+50℃以下、板厚中心部がAr3+80℃以上900℃以下となる温度で仕上圧延を行い、加速冷却する製造方法。 (もっと読む)


【課題】成膜性が良好な太陽電池基板材用ステンレス鋼板を提供する。
【解決手段】鋼板表面は、表面粗さパラメータの十点平均粗さRzが0.3μm以下であり、かつ、高さ方向の特徴平均パラメータRskが0.7未満である。RzおよびRskを規定することにより、成膜性を悪化させる鋼板表面の凹凸を制御できるので、成膜性を向上できる。また、このような太陽電池基板材用ステンレス鋼板を製造する際には、調質圧延までに行う冷間圧延の総圧延率が70%以上となるように圧延する。また、仕上焼鈍前に行う冷間圧延において、圧延率が30%以上であり、かつ、最終パスにて粗さRaが0.4μm以下の圧延ロールを用いて圧延する。このように製造することにより、マイクロクラックの発生を抑制でき、Rzが0.3μm以下でRskが0.7未満の平滑な鋼板表面である太陽電池基板材用ステンレス鋼板を容易に製造できる。 (もっと読む)


【課題】熱延鋼板を製造する際に、赤スケールの発生やスケールの噛込み疵を防止して表面疵が少ない表面性状に優れた熱延鋼板を製造する。
【解決手段】C:0.001〜0.30%、Si:0.10%以下、Mn:1.0%以下、P:0.04%以下、S:0.02%以下、酸可溶性Al:0.005〜0.10%を含有し、残部Feおよび不可避的不純物の組成を持つ鋼を連続鋳造した後に熱間圧延する際に、熱延仕上げ圧延機入側で鋼板表面に高圧水デスケーリングを行う際の鋼板温度を下記(1)式で示すT1(℃)以上、高圧水の衝突圧を15.7MPa以下とし、しかも熱間仕上げ圧延機の第2列および第3列スタンド間の鋼板表面温度を下記(2)式で示すT2(℃)以下とする。
T1≧998×Si(%)‐1283×P(%)+1010 ・・・・(1)
T2≦599×Si(%)‐770×P(%)+976 ・・・・(2) (もっと読む)


【課題】板厚4mmにおける−50℃のシャルピー衝撃値が100J/cm以上であることを特徴とする靱性に優れた高耐食性フェライト系ステンレス冷延鋼板およびその製造方法を提供する。
【解決手段】質量%で、C:0.020%以下、Si:1.0%以下、Mn:1.0%以下、P:0.06%以下、S:0.01%以下、Cr:18.0〜24.0%、Mo:0.3%以下、Ti:0.015%以下、Al:0.20〜0.40%、N:0.020%以下、さらに10×(C+N)≦Nb≦0.40%、かつ、成分含有量が下記式(A)を満足し、残部がFeおよび不可避的不純物からなることを特徴とする靱性に優れた高耐食性フェライト系ステンレス冷延鋼板。Ti×N≦8.0×10−5 ・・・・(A) (もっと読む)


41 - 60 / 492