説明

Fターム[4G030AA02]の内容

酸化物セラミックスの組成 (35,018) | 成分 (15,407) | アルカリ金属酸化物 (1,091) | 酸化リチウム (311)

Fターム[4G030AA02]に分類される特許

1 - 20 / 311


【課題】圧電体膜等に応用することができるように、高い電気抵抗率を維持しつつ極性分布割合を容易に制御可能であって、低コストで大面積の基材上に成膜されたウルツ鉱型結晶膜、およびその製造方法を提供する。
【解決手段】基材面に対して垂直方向に二つ以上の粒子が充填および堆積し、上記粒子が互いに結合してなる結合層を含む膜構造を有するウルツ鉱型結晶膜であって、上記粒子は、アルカリ金属元素およびアルカリ土類金属元素からなる元素群のうちの少なくとも一つの元素がドープされているウルツ鉱型結晶構造を有する化合物を含んでいる。ウルツ鉱型結晶膜の製造方法は、ウルツ鉱型結晶を構成する元素種およびドープする金属種を含有する化学溶液を基材上に塗布する工程を含む方法である。 (もっと読む)


【課題】各種圧電特性がバランス良く優れたニオブ酸アルカリ系圧電材料を製造するための方法を提供する。
【解決手段】ニオブ酸アルカリ系圧電材料の製造方法であって、前記圧電材料となる化合物の原料と溶媒とを混合する混合ステップs11と、前記化合物と前記溶媒との混合物を、焼結温度より低い所定の温度で焼成する仮焼成ステップs13と、前記仮焼成ステップ後の前記混合物にバインダーを添加したものを所定の形状に成形する成形ステップs15と、前記成形ステップにて得た成形物を酸素雰囲気中で焼結させる焼成ステップs17と、を含んでいる。 (もっと読む)


【課題】セラミック粒子(単結晶粒子)よりも磁気異方性が大きい圧電体セラミックデバイス用のセラミック粒子集合体を製造する方法を提供する。
【解決手段】この製造方法は、(1)セラミック粒子CPを多数含むスラリーSL1を用意する準備ステップ、(2)スラリーSL1中のセラミック粒子CPに分散力を付与することによって各セラミック粒子CPをばらばらに散らばらせる分散ステップ、(3)分散ステップ後のスラリーSL1中のセラミック粒子CPに磁場を印加することによって各セラミック粒子CPの結晶方位を揃える配向ステップ、(4)配向ステップ後のスラリーSL1中のセラミック粒子CPに凝集力を付与することによって結晶方位が揃っている複数のセラミック粒子CPが凝集したセラミック粒子集合体AScpを作製する凝集ステップ、(5)凝集ステップ後のスラリーSL1からセラミック粒子集合体AScpを取り出す取出ステップ、を備える。 (もっと読む)


【課題】比較的に高い比誘電率を有し、しかも高温領域を含む広い温度範囲(−55〜400℃)において容量温度特性が良好である誘電体磁器組成物を提供する。
【解決手段】一般式KNbOで表される第一の相と、一般式(Ba1−x)(Ti1−y)O(ただし、MはCa、SrおよびMgから選択される少なくとも1種類)、(ただし、LはZr、Hf、Co、V、Ta、Cr、Mo、W、Mgの中から選択される少なくとも1種類)で表される第二の相との混合相から成る。 (もっと読む)


【課題】比較的に高い比誘電率を有し、しかも高温領域を含む広い温度範囲(−55〜400℃)において容量温度特性が良好である誘電体磁器組成物を提供する。
【解決手段】一般式KNbで表される第一の相と、一般式BaαTiβで表される第二の相との混晶体から成る主成分を有し、前記m、n、α、βが0.990≦m/n≦1.005、0.995≦α/β≦1.010、且つ、m/nとα/βとが同時に1を取らないことを特徴とする。 (もっと読む)


【課題】ホウケイ酸ガラス粉末を原料とするガラスセラミック誘電体用材料であって、グリーンシート成形時において、スラリーの粘度変化が生じにくく、かつ、流動性が高くレベリング性に優れたガラスセラミック誘電体用材料を提供する。
【解決手段】ホウケイ酸ガラス粉末を49.9〜89.9質量%、アルミナ粉末および/または石英粉末を10〜50質量%、ならびに、ホウ酸アルミニウム粉末および/またはホウ酸シリカ系化合物粉末を0.1〜4質量%含有することを特徴とするガラスセラミック誘電体用材料。 (もっと読む)


【課題】所望とする化合物相で構成されたスパッタリング用ターゲットを安定して製造することができるホウ酸リチウム系スパッタリング用ターゲットの製造方法を提供する。
【解決手段】本発明の一実施形態に係るホウ酸リチウム系スパッタリング用ターゲットの製造方法は、酸化リチウム系粉末と酸化ホウ素系粉末との混合粉末を溶解する工程と、前記混合粉末の溶解物を凝固させ、粉砕した凝固粉末を作製する工程と、前記凝固粉末を仮焼する工程と、仮焼した前記混合粉末を焼結する工程とを有する。上記製造方法においては、酸化リチウム系粉末と酸化ホウ素系粉末との混合粉末を一旦溶解し、その後冷却することで原料粉末の化合物化を促進し、所望とする化合物相を有するホウ酸リチウム粉末及びその焼結体を安定に製造することができる。 (もっと読む)


【課題】外部の機械的影響から保護する硬質材料層を少なくとも部分的に備えている改善されたガラスセラミックを提供する。
【解決手段】外部の機械的影響に対して保護する硬質材料層を少なくとも部分的に備えているガラスセラミックであって、その際、− 硬質材料層が、並んで存在しており、かつ互いに混合されている少なくとも2つの相を含有し、− 少なくとも1つのナノ結晶相及び1つの非晶相が存在し、− 硬質材料層が、少なくとも26GPaの強度及び少なくとも0.5μmの層厚を有し、− 硬質材料層が、200℃〜1000℃の温度範囲内で耐化学薬品性であり、かつ− ガラスセラミックの熱膨張係数αが、硬質材料層の熱膨張係数αから20%を超えて相違しないガラスセラミックによって解決される。 (もっと読む)


【課題】 直流電界の印加による比誘電率の低下が抑制されるとともに,高い比誘電率を有するセラミック組成物を提供する。
【解決手段】 本発明の一実施形態に係るセラミック組成物は、コアシェル構造を有するセラミック粒子を含む。一実施形態において,当該セラミック組成物は,反強誘電体から成るコアと、強誘電体又は常誘電体から成り前記コアを取り囲むシェルと、を備える。 (もっと読む)


【課題】高温域での安定性に優れ、優れた誘電体特性有する誘電体磁器組成物および、この誘電体磁器組成物を用いたコンデンサ及び、その誘電体磁器組成物を製造するのに好適な製造方法を提供すること
【解決手段】組成式(KNaLiDO (元素Cはアルカリ土類金属であるCa,Sr,Baのうちの少なくとも1種、元素DはNbとTaのうちの少なくとも1種、a,b,c,dはa+b+c+d=1を満たし、0.97≦e≦1.10,fは任意)で表されるニオブ/タンタル酸アルカリ系ペロブスカイト酸化物からなる第1結晶相と、 A−Ti−B−O系複合酸化物(元素Aはアルカリ金属、元素BはNbとTaのうちの少なくとも1種、元素Aと元素BとTiの含有量はいずれもゼロで無い)で構成される第2結晶相と、を含むコンデンサ用の誘電体磁器組成物 (もっと読む)


【課題】低熱膨張で耐熱衝撃性に優れたコーディエライト質の磁器焼結体、特に磁器食器を提供すると共に、Li系の低膨張釉薬を施釉しても、亀裂の発生のない磁器焼結体を提供する。
【解決手段】素地層の原料に、リチウム元素と、1.1重量%〜2.8重量%のNa2O+K2Oが含まれるよう、タルク、カオリン、アルミナ、長石、リチウム含有原料を秤量・混合し微粉砕する。釉薬層はリチウム元素を含む低熱膨張結晶を生成する釉薬を用いる。素地成形体を素焼き後、施釉し1200℃〜1300℃で本焼成を行う。 (もっと読む)


【課題】アルカリ含有ニオブ酸系ペロブスカイト構造を有し、950〜1050℃程度で緻密に焼結させることができ、且つ、その内部に存在する複数の電極と圧電セラミックスとを同時に焼成して多積層圧電セラミックス部品とした場合においても、良好な電気機械結合定数と、高い圧電特性を保持することが可能な、低鉛の圧電セラミックスを提供する。
【解決手段】主成分として組成式(LiNa1−x−y(Nb1−zTa)O(但し、0.04<x≦0.1、0≦y≦1、0≦z≦0.4、0.95≦a≦1.005)で表されるアルカリ含有ニオブ酸系ペロブスカイト構造を有した結晶によって構成される圧電セラミックスであり、該圧電セラミックスの素体を構成する複数の結晶粒子201の粒界又は粒界三重点において、Si及びKを含有する結晶相202又は非結晶相202を存在させる。 (もっと読む)


【課題】高い機械的負荷容量および良好な視覚的特性(すなわち、できるだけ自然な外観)を有する歯科修復物の調製を可能にするプロセスを提供すること。
【解決手段】本発明は、成形本体の生産力のある調製のためのプロセスであって、ここで(a)セラミックスリップは、層をなして支持体に付与されて、硬化され、(b)さらなる層は、工程(a)からの硬化された層に付与されて、硬化され、(c)工程(b)は所望される幾何学的形を有する本体が得られるまで反復され、(d)上記本体は次に、化学処理または熱処理に供されて、結合剤を除去(脱脂)され、そして(e)工程(d)からの上記本体が焼結され、ここで少なくとも2つの異なって構成されたセラミックスリップが層の調製のために工程(a)および(b)において使用される、プロセスを提供する。 (もっと読む)


【課題】圧粉焼結体の製造工程における変形を抑制し、材料歩留まりの向上や製造工程の簡略を可能とする、圧粉焼結体の作製方法及び圧粉成形体を提供する。
【解決手段】粉体材を加圧して成形した圧粉成形体を、焼結して圧粉焼結体を作製する方法であって、前記圧粉成形体が、プレス成形処理後、さらに100MPaより低い圧力で等方圧プレス処理を行ったものである圧粉焼結体の作製方法、粉体材を加圧して成形され、焼結によって圧粉焼結体を成す、圧粉成形体であって、焼結前の密度が1.46g/cmより大きく且つ1.67g/cmより小さい圧粉成形体、並びに、粉体材を加圧して成形され、焼結によって圧粉焼結体を成す、圧粉成形体であって、焼結前において、理論密度に対する密度の割合(密度/理論密度×100%)が48.5%より大きく且つ55.7%より小さい圧粉成形体。 (もっと読む)


【課題】焼成によって正極活物質を製造する間に原料から拡散するリチウム成分に対する耐食性が高い窯道具を提供すること。
【解決手段】本発明のリチウム二次電池の正極活物質製造用の窯道具は、βスポジュメンを含むセラミック素材からなる。窯道具におけるLi2Oの含有割合は1〜12質量%であり、Al23の含有割合は15〜40質量%であり、SiO2の含有割合は55〜75質量%であることが好適である。窯道具におけるNa2Oの含有割合が1質量%以下であり、K2Oの含有割合が2質量%以下であり、かつ両者の総和が3質量%以下であることも好適である。 (もっと読む)


【課題】高精度に加工された複合セラミックス部材に生じる精度変化を抑制できる複合セラミックス部材の保管方法を提供する。
【解決手段】正膨張の材料および負膨張の材料から成り、高精度に加工された複合セラミックス部材の保管方法であって、複合セラミックス部材を真空パックし、真空パックされた複合セラミックス部材が置かれる環境の温度を18℃以上28℃以下、かつ、湿度を70%RH以下に管理する。これにより、温度変化や湿度変化に対して、複合セラミックス部材に精度変化が生じるのを抑制できる。正膨張の材料とは、少なくとも室温近傍の所定の温度範囲で熱膨張係数が正となる材料をいい、負膨張の材料とは、少なくとも室温近傍の所定の温度範囲で熱膨張係数が負となる材料をいう。 (もっと読む)


【課題】分極方向と分極方向に直交する方向との応力状態の違いを測定することができる圧電/電歪セラミックス焼結体の応力状態測定方法を提供する。
【解決手段】母相と前記母相中に分散された添加材相との複合構造を有する圧電/電歪セラミックス焼結体について、分極していない状態で、予定分極方向及び予定分極方向に直交する方向の2方向からラマン分光分析を行い、予定分極方向を分極方向として分極された圧電/電歪セラミックス焼結体について、分極方向及び分極方向に直交する方向の2方向からラマン分光分析を行い、分極していない圧電/電歪セラミックス焼結体についての2方向からのラマン分光分析の結果と、分極された圧電/電歪セラミックス焼結体についての2方向からのラマン分光分析の結果とから、圧電/電歪セラミックス焼結体の応力状態を得る圧電/電歪セラミックス焼結体の応力状態測定方法。 (もっと読む)


【課題】新規なセラミックスおよびその製造方法を提供することを目的とする。
【解決手段】セラミックスの製造方法は、圧粉体を水熱処理し、前記水熱処理後の圧粉体を焼結する方法である。ここで、水熱処理温度が100〜370℃の範囲内にあることが好ましい。また、焼結温度が700〜1600℃の範囲内にあることが好ましい。生成したセラミックスは、密度が70〜100%の範囲内にあり、グレインサイズが0.01〜100μmの範囲内にある。また、配向セラミックスである場合は、配高度が50〜100%の範囲内にあり、圧電定数が10〜5000pC/Nの範囲内にある。 (もっと読む)


【課題】調湿性能や強度を改善することができ、製造も容易な調湿建材及びその製造方法を提供する。
【解決手段】水酸化アルミニウムとベントナイト及び/又はモンモリロナイトとを含む原料を成形し、700〜1100℃で焼成してなる調湿建材。該原料は、水酸化アルミニウムを30〜97重量%、ベントナイト及び/又はモンモリロナイトを3〜70重量%含むか、又は水酸化アルミニウムを30〜90重量%、ベントナイト及び/又はモンモリロナイトを1〜30重量%、粘土を5〜69重量%含む。 (もっと読む)


【課題】低温焼結が可能で、高周波領域での誘電損失が低く、メッキ耐食性に優れたセラミックス焼結体を得ることが可能なセラミックス組成物、該組成物から得られるセラミックス焼結体、及び該焼結体を用いた電子部品を提供する。
【解決手段】固相反応法により合成されたディオプサイド結晶粉末100質量部に対し、SrTiO粉末を6〜19質量部、Al成分を酸化物換算で1.4〜6質量部、Li成分を酸化物換算で0.3〜0.9質量部、B成分を酸化物換算で1.6〜3.2質量部、Zn成分を酸化物換算で3.2〜5.1質量部、Cu成分を酸化物換算で0.5〜0.9質量部、Ag成分を酸化物換算で0〜3質量部、Co成分を酸化物換算で0〜4.5質量部含有するセラミックス組成物。該組成物を用いて、セラミックス焼結体及び電子部品を得る。 (もっと読む)


1 - 20 / 311