説明

Fターム[4G030AA34]の内容

酸化物セラミックスの組成 (35,018) | 成分 (15,407) | 第3b〜6b族元素酸化物 (4,166)

Fターム[4G030AA34]の下位に属するFターム

Fターム[4G030AA34]に分類される特許

121 - 140 / 405


【課題】鉄ヒ素系超電導材料において、従来はフッ素置換型や酸素欠損型により超伝導転移温度Tcを向上させていたが、Tcがより高い50Kを超えるような超電導材料及び超電導薄膜を提供することが望まれている。
【解決手段】ZrCuSiAs型の結晶構造を有する鉄ヒ素系超電導材料において、水素を含有させることにより、化学式LnFeAsO1−y(ただし、LnはY及びランタノイド元素からなる群から選択される少なくとも1種の元素、yは0以上0.5以下、xは0.01以上0.5以下)で表される鉄ヒ素系超電導材料を提供する。 (もっと読む)


【課題】スパッタリング法により透明導電性酸化物を成膜する際のノジュールの発生を抑制し、安定にスパッタリングを行うことのできるターゲット、このようなターゲットからなる透明導電性酸化物、およびこのようなターゲットの製造方法を提供する。
【解決手段】In/(In+Zn)で表わされる原子比が、0.75〜0.97の範囲であるとともに、In23 (ZnO)(ただし、mは2〜20の整数である。)で表される六方晶層状化合物を含有し、かつ、該六方晶層状化合物の結晶粒径が5μm以下の値であるスパッタリングターゲットから成膜してなる透明導電性酸化物。 (もっと読む)


【課題】ノジュールの発生を抑制できる導電性酸化物を提供する。
【解決手段】導電性酸化物は、結晶質の導電性酸化物であって、インジウム、ガリウム、亜鉛、酸素および窒素を含み、窒素の濃度が7×1019(atom/cc)以上であることを特徴とする。インジウムの濃度とガリウムの濃度と亜鉛の濃度との合計の濃度に対するインジウムの濃度の比が0.3以上0.6以下であることが好ましい。導電性酸化物は、スパッタリング法のターゲットに用いることが好ましい。 (もっと読む)


【課題】ガスタービンエンジンに存在する高温水蒸気環境からCMCを保護するための耐環境コーティングを提供する。
【解決手段】耐環境コーティング12を製造するため、約1wt%〜約99.9wt%の水、約0.1wt%〜約72wt%の主要遷移材料、約0.1wt%〜約59.3wt%のLnb希土類金属スラリー焼結助剤、及び約0.1wt%〜約20.6wt%のSiO2スラリー焼結助剤からなる遷移層スラリーから製造される少なくとも1つの遷移層16と、選択的に、約1wt%〜約99.9wt%の水及び約0.1wt%〜約72wt%の主要外部材料からなる外層スラリーから製造される外層20と、約1wt%〜約99.9wt%の水及び約0.1wt%〜約72wt%の主要柔軟材料からなる柔軟層スラリーから製造される柔軟層18のいずれか1つ以上とからなる構成とする。 (もっと読む)


【課題】粒径(一次粒子径)を所定範囲に調製でき、言い換えればBET法比表面積を所定範囲に調製でき、それでいて高温でない温度で焼成可能な新たな酸化インジウム粉末を提供する。
【解決手段】Fe元素を3ppm〜100ppm含有する酸化インジウム粉末を提案する。焼成前にFeを添加すると、酸化インジウム粉末の一次粒子径を大きくすることができる。この際、Fe含有量3ppm〜100ppmの範囲で有意な効果を得ることができる。 (もっと読む)


【課題】インジウムの含有量を低減させているにも拘らず、十分に高い光透過性及び十分に低い抵抗率を有する導電性酸化物を提供すること。
【解決手段】酸化インジウム及び酸化スズからなるインジウムスズ複合酸化物と、前記インジウムスズ複合酸化物にドープされたアンチモンとを含有する導電性酸化物であって、前記インジウムスズ複合酸化物中のインジウム及びスズの合計量に対するスズの含有量の原子比率が2.6〜47.2at%であり、且つ、前記導電性酸化物中のインジウム、スズ及びアンチモンの合計量に対するアンチモンの含有量の原子比率が2.7〜14.5at%であることを特徴とする導電性酸化物。 (もっと読む)


【課題】抵抗率が低く、光透過性に優れる複合酸化物結晶質膜を提供すること。
【解決手段】主として、インジウム、ストロンチウム及び酸素から構成される複合酸化物焼結体であって、上記複合酸化物焼結体中のインジウム、ストロンチウム及び錫の総原子数に対する、錫及びストロンチウムの原子数の比が、それぞれ0〜0.3及び0.0001〜0.05であり、相対密度が97%以上であり、平均粒径が7μm以下である、複合酸化物焼結体。 (もっと読む)


【課題】真空蒸着法に用いられる酸化物焼結体タブレットを歩留まりよく安定して量産できる製造方法を提供すること。
【解決手段】原料粉を湿式混合しかつ噴霧乾燥して造粒粉を製造する第一工程と、造粒粉を加圧して圧粉体を製造する第二工程と、圧粉体を破砕して成形体用粉末を製造する第三工程と、成形体用粉末を金型中で加圧成形して成形体を製造する第四工程と、成形体を焼成して酸化物焼結体タブレットを製造する方法であって、第二工程の造粒粉に対する加圧条件を50MPa以上200MPa以下に設定して第三工程で得られる成形体用粉末のタップ密度が理論密度の25%以上45%以下となるように調整し、かつ第四工程において上記タップ密度に調整された金型中の成形体用粉末に対する加圧条件を50MPa以上200MPa以下に設定して所定形状の成形体を製造することを特徴とする。 (もっと読む)


【課題】極めて大きい性能指数の値を示すことのできる熱電変換材料を提供する。
【解決手段】Zn、GaおよびInを含有する複合酸化物からなることを特徴とする熱電変換材料。Alをさらに含有する複合酸化物からなることを特徴とする前記の熱電変換材料。相対密度が80%以上である前記の熱電変換材料。表面の少なくとも一部が、皮膜でコーティングされている前記熱電変換材料。複数のn型熱電変換材料および複数のp型熱電変換材料と、前記複数のp型熱電変換材料及び複数のn型熱電変換材料をp型n型交互に電気的に直列に接続させる複数の電極とを備える熱電変換モジュールであって、前記n型熱電変換材料が、前記熱電変換材料であることを特徴とする熱電変換モジュール。 (もっと読む)


【課題】成膜時にスプラッシュ現象などが発生せず、放電を安定させることができ、しかも機械的強度が高く、自動搬送時などに破損しにくい酸化亜鉛系焼結体タブレットを提供する。
【解決手段】常圧焼結体タブレットを、圧力1×10-3Pa以下の真空中にて、900℃〜1300℃の温度で還元処理することにより、その相対密度が50〜70%でありながら、圧縮強さが150MPa以上であり、かつ、表面と内部における比抵抗がそれぞれ1×102Ω・cm以下、特にガリウムを含む酸化亜鉛系焼結体タブレットにおいては1×10-2Ω・cm以下であって、表面と内部の酸化亜鉛濃度差が0.5質量%以下である構造を実現する。 (もっと読む)


【課題】低抵抗かつ高屈折率の透明導電酸化物膜を直流スパッタリング法により工業的に生産可能な酸化インジウムスパッタリングターゲットを提供する。
【解決手段】酸化インジウムを主原料とし、酸化タンタルおよび酸化チタンを合計量で5.2〜9.2質量%含有し、酸化チタン/酸化タンタルの質量比が0.022〜0.160である酸化物からなる成形体を、酸素含有雰囲気下、1530〜1630℃で焼結することにより、相対密度が97%以上で、比抵抗が5×10-4Ω・cm以下であり、成膜により比抵抗が5×10-4Ω・cm以下、可視光領域における光の屈折率が2.0以上、透過率が96%以上の透明導電酸化物膜を得られる、スパッタリングターゲットを得る。 (もっと読む)


【課題】大規模なターゲットを製造するため、相対密度が大きい圧粉体を生じるスリップキャスト成形のための型を提供する。
【解決手段】スリップキャスト成形のための型は、底面板10、不透水性の側壁20、および、成型スペース30を有する。底面板10は、水を吸収する多孔性材料でできている。不透水性の側壁20は、底面板10に取り付けられる。成型スペースは、底面板10および不透水性の側壁20によって定められる。型は、底面板10によって水を吸収するのみである。すべてのスラリーは、乾燥の間型に連続的に注入されるよりはむしろ型に注入される大きさである。したがって、型において形成される圧粉体は均一であり、高い相対密度を有する。圧粉体は、亀裂または変形を引き起こさずに焼結されることができるので、大きいサイズのスパッタリングターゲットの製造に適している。 (もっと読む)


所定のアルカリ金属イオンおよび一価の金属イオンに対する低温での高いイオン伝導度、金属イオンの高い選択性、良好な電流効率、並びに静的及び電気機械的条件下における水及び腐食性媒体中での安定性の特徴を有する金属イオン伝導性セラミック材料が開示される。金属イオン伝導性セラミック材料は、金属イオンが欠損するように製造される。金属イオン伝導性セラミック材料の1つの一般式は、Me1+x+y−zIIIIV2−ySi3−x12−z/2であり、ここで、MeはNa、Li、K、Rb、Cs、Ag、あるいはそれらの混合物であり、2.0≦x≦2.4、0.0≦y≦1.0および0.05≦z≦0.9であって、ここで、MIIIはAl3+、Ga3+、Cr3+、Sc3+、Fe3+、In3+、Yb3+、Y3+またはそれらの混合物であり、MIVはTi4+、Zr4+、Hf4+、あるいはそれらの混合物である。
(もっと読む)


15%を超え、55%未満のAl23、20%を超え、45%未満のTiO2、3%を超え、30%未満のSiO2、全体が20%未満の、ZrO2、Ce23およびHfO2から選択される少なくとも1種の酸化物、1%未満のMgO、および全体の合計量が1%を超えるが15%未満の酸化物CaO、Na2O、K2O、SrO、B23およびBaOの化学組成を、酸化物に基づく重量パーセントとして有する溶融粒子。上記粒子を焼結することによって得られるセラミック製品または材料。 (もっと読む)


【課題】割れや反りを発生させることなく、高密度かつ低抵抗の大型の酸化亜鉛系焼結体を提供する。
【解決手段】D50が1μm以下、D90が1.5μm以下である酸化亜鉛粉末と、D50が1μm以下、D90が1μm〜10μmである酸化ガリウム粉末とを、質量比で(90〜99.9):(0.1〜10)の割合で混合し、冷間成形し、得られた成形体を、焼結炉内容積1m3当たり10〜200L/分の割合で空気または酸素を導入しながら800℃まで加熱し、800℃から焼結温度まで0.3〜3℃/分で昇温し、1200〜1400℃の焼結温度に10〜20時間保持して焼結させ、主平面の面積が45000mm2以上である場合に、該主平面を面積7500mm2ごとに分割したときの焼結体密度のばらつきが±0.04g/cm3の範囲内となる高密度かつ低抵抗の焼結体。 (もっと読む)


【課題】表面抵抗の値が小さく、また加工時の表面抵抗の高抵抗化も抑制でき、しかも、出力因子の値が大きい熱電変換材料を提供する。
【解決手段】Zn、Al、GaおよびBを含有する複合酸化物からなることを特徴とする熱電変換材料。Zn、Al、GaおよびBの総モル量を1としたときの、Bのモル量が0.0001以上0.01以下である前記熱電変換材料。相対密度が95%以上である前記熱電変換材料。表面の少なくとも一部が、皮膜でコーティングされている前記熱電変換材料。複数のn型熱電変換材料および複数のp型熱電変換材料と、前記複数のp型熱電変換材料及び複数のn型熱電変換材料をp型n型交互に電気的に直列に接続させる複数の電極とを備える熱電変換モジュールであって、前記n型熱電変換材料が、前記熱電変換材料であることを特徴とする熱電変換モジュール。 (もっと読む)


【課題】磁気損失が小さく、磁気損失が小さく、磁性体材料と安価なCuを主成分とする導電性材料とを同時焼成しても構造破壊の生じることのない高周波用のセラミック電子部品、及び該セラミック電子部品の製造方法を実現する。
【解決手段】磁性体セラミックが、主成分はビスマスを含まないガーネット型フェライト系材料で形成されると共に、Cu酸化物が0.25〜2.50重量%の範囲で含有され、Cuを主成分とした導体部と前記磁性体セラミックとは、酸素分圧が1.0×10〜1.0×10-3Paの雰囲気で同時焼成されてなり、前記導体部は、焼成前の脱バインダ処理前後の重量増加率が15%以下の導電性粉末を焼結してなる。導電性粉末は、例えば、Cu−Niの表面がガラス材で被覆されている。 (もっと読む)


【課題】 特定の金属を含有する透明導電材料を画素電極、透明電極に使用することにより、バリヤーメタル等を堆積するための工程が不要な簡略化されたTFT(薄膜トランジスタ)基板の製造方法を提供することである。
【解決手段】 酸化インジウムを主成分とし、W、Mo、Nb、Ni、Pt、Pdからなる第1金属群M1から選ばれた1種又は2種以上の金属又はその金属の酸化物と、ランタノイド系金属からなる第2金属群M2から選ばれた1種又は2種以上の金属の酸化物と、を含むスパッタリングターゲットを利用して、透明導電膜を作製する。この透明導電膜を画素電極として利用することによって、ソース電極7等との接触抵抗を小さく抑えることができる。更に、バリヤーメタル等を用いる必要がなくなったため、バリヤーメタル等を堆積する工程をなくすことができ、TFT基板の製造工程が簡略化される。 (もっと読む)


【課題】酸化錫の含有量が3.5質量%以下と低濃度であるにも拘わらず割れによる収率の低下が起こり難いITOスパッタリングターゲットとその製造方法を提供すること。
【解決手段】このITOスパッタリングターゲット(焼結体)は、酸化インジウムに対する酸化錫の含有量が質量比で0%以上1%以下である第一造粒粉と、酸化錫の含有量が質量比で3%以上6%以下である第二造粒粉を用いて製造され、酸化インジウムに対する酸化錫の含有量が質量比で1.5%以上3.5%以下、焼結体の相対密度が98%以上、焼結体の結晶相が単相で、平均結晶粒径が10μm以下であり、焼結体の表面部における最大結晶粒径に対する焼結体の厚み方向における中心部の最大結晶粒径の比が0.5〜1かつ焼結体の曲げ強度が70MPa以上であることを特徴とする。 (もっと読む)


【課題】水分または有機成分を含有した大型の成形体を電磁波加熱による透明導電膜用焼結体の製造方法において焼成割れを防止し、高密度な品質の安定した製品を容易に製造可能な方法を提供する。
【解決手段】水分と有機成分を総量で0.3〜2.0重量%含有した最小厚みが5mm以上でかつ、体積が50cm以上である成形体と、この成形体に接触しないよう、上下及び/又は側面にSiC質材料を設置し、当該SiC質材料の温度によりマイクロ波加熱炉内の温度制御を行う、電磁波加熱によって当該成形体を焼結する方法であって、室温から400℃までの温度域を100〜300℃/時間の昇温速度で加熱することで、焼成割れが低減され、円筒形状であれば真円度が高い焼結体、平板形状であれば反りの少ない焼結体を歩留まり良く製造することができる。 (もっと読む)


121 - 140 / 405