説明

Fターム[4G069BC13]の内容

触媒 (14,770) | 金属元素 (3,630) | 2(2A)族、アルカリ土類金属 (288) | Ba (65)

Fターム[4G069BC13]に分類される特許

21 - 40 / 65


【課題】高温で及び酸素濃度が高い雰囲気中で使用した場合であっても活性低下が生じ難い排ガス浄化用触媒を提供すること。
【解決手段】本発明の排ガス浄化用触媒1は、希土類元素とアルカリ土類元素と貴金属とを含み、前記希土類元素の一部と前記アルカリ土類元素の一部とは複合酸化物を形成し、この複合酸化物と前記貴金属の一部とは固溶体を形成していることを特徴とする。 (もっと読む)


【課題】 一般的な壁面用化粧ブロックの製造工程に組み込んでも、製造コストを増大させることの少ない、光触媒として機能する酸化チタン膜が付与された壁面用化粧ブロックの製造方法を提供すること。
【解決手段】セメントC、骨材S及び水W、及び必要により顔料P及び/又は混和剤Aが混和された混合物を成型機に充填して該成型機により成型した後、養生を行うことにより製造される壁面用化粧ブロックの製造方法である。成型後の任意の段階において、(1)アルカリの存在下でペルオクソチタン酸イオン水溶液を表面の少なくとも一部に作用させて光触媒として機能する酸化チタン膜を成膜する成膜工程を付加するか、又は、(2)アルカリの存在下でチタン塩水溶液を前記ブロックの表面の少なくとも一部に付与させた後、過酸化水素水を作用させて光触媒として機能する酸化チタン膜を成膜する成膜工程を付加している。 (もっと読む)


【課題】 本発明は、自動車エンジンのフューエルカットによる排気ガス雰囲気の変動による排気ガス浄化用の触媒の耐リーン化と、この触媒はさらにエンジン近傍の高温度領域に装着されるために触媒自体の耐熱化と、を備えた自動車排気ガス用の白金−ロジウム触媒を提供することを目的とする。
【解決手段】 本発明の自動車排気ガス用の白金−ロジウム触媒は、ジルコニウムで安定化した95〜99.9wt%の第1のセリウム酸化物或いは活性アルミナのいずれか一方に0.1〜5wt%の白金を担持した白金触媒担持粉末と、希土類金属元素で安定化したジルコニウム酸化物に0.1〜5wt%のロジウムを担持したロジウム触媒担持粉末と、ジルコニウムで安定化した第2のセリウム酸化物と、耐熱性無機酸化物とを含む混合物とバインダーとから触媒層が形成され、且つ触媒層と触媒層を表面に担持した触媒担体基材とから成る。 (もっと読む)


【課題】 本発明は、低温度域での高い触媒活性、と温度変化に対する高い安定性を併せ持つ触媒を一酸化炭素シフト反応触媒として提供する。
【解決手段】 化学式La2−xCu1−y4−δ(式中のAはアルカリ土類金属元素、アルカリ金属元素よりなる群から選ばれた、少なくとも1種類以上の元素を示し、BはLi、Mgより選ばれた少なくとも1種類以上の元素を示しており、xは0≦x≦0.2であり、yは0≦y≦0.2であり、δは酸素欠損量または酸素過剰量を表す。)で表され、層状ペロブスカイト構造を有する複合酸化物を用いてなることを特徴とする、炭化水素、酸素および水蒸気を含むガスを改質して得られた水素燃料を中に残存する一酸化炭素を、少なくともシフト反応を用いて改質する、一酸化炭素シフト反応触媒。 (もっと読む)


【課題】S再生制御を行わなくとも排気浄化能力が大きく低下しない排気浄化触媒を提供する。
【解決手段】 内燃機関の排気浄化に用いられ、排気中のSOxをその内部に保持するSOx保持能を有する触媒担体が、ハニカム基材2dにコートされてなる排気浄化触媒であって、ハニカム基材2dのセル壁はその内部に気孔2bを有し、該気孔2bの内部には触媒担体が充填されることで該気孔2bはコートされ、更にセル壁の表面2cも触媒担体によってコートされ、且つセル壁内部の気孔2bにコートされた触媒担体の質量に対するセル壁の表面2cにコートされた触媒担体の質量の比である触媒担体コート比が、0.25から1.25の間の何れかの値である。 (もっと読む)


【目的】 本発明は、長期間に亘る安定した消臭・吸着能力を発現し得るのであり、又、観賞魚用水槽などの水槽、水族館、料理店や魚介類販売店などの生簀、堀、観賞池などの池又は金魚鉢における淡水中或いは海水中に投入するだけで、アオコなどの微細な藍藻(ランソウ)類や緑藻類更に珪藻や苔類又は細菌更に微生物に対する対策が極めて簡単に行えるのであり、従って、水を浄化して透明度を向上させることができる水質浄化剤を提供することを目的とする。
【構成】 多孔質担体の表面部に、特定且つ特異な手段により、光触媒の被膜を形成・担持させてなることを特徴とする水質浄化剤。
(もっと読む)


【課題】 タイトコンタクトTCはもとより、ルーズコンタクトLCでも高い浄化作用を発揮させることができる触媒を提供することを課題とする。
【解決手段】 実施例4の触媒はLaMnO/K(共沈法)であり、共沈法で触媒を調製するとともに、アルカリ金属の一種であるカリウム(K)を核とした触媒である。そして、実施例5の触媒はLaMnO/Cs(共沈法)であり、共沈法で触媒を調製するとともに、アルカリ金属の一種であるセシウム(Cs)を核とした触媒である。実施例4の燃焼ピーク温度は413℃、実施例5の燃焼ピーク温度は407℃であった。実施例4、5共にLCである。
【効果】 比較例中、最も低温であった比較例3は、TCであって、燃焼ピーク温度は428℃であった。実施例4及び実施例5はLCであるにも拘わらず、TCである比較例3よりも低温化が達成できた。 (もっと読む)


【課題】パティキュレートフィルタ5の上流側にHCを酸化する触媒を配置した排気ガス浄化装置1において、触媒でのHCの酸化反応効率を高めてフィルタ5に流入する排気ガス温度を高くする。
【解決手段】フィルタ5の上流側に上流側触媒3と下流側触媒4とを配置し、下流側触媒4の触媒金属のサポート材量を上流側触媒3のサポート材量よりも多くする。 (もっと読む)


【課題】アンモニアの製造に用いる新規な触媒を提供することを目的とする。
【解決手段】触媒担体は、6アルミン酸バリウムを含有する。触媒担体の製造方法においては、まず、有機溶媒に界面活性剤を溶解し、この溶液に水を滴下し、エマルジョンを作製する。つぎに、アルミニウムアルコキシド、バリウムアルコキシド、およびキレート剤を有機溶媒に溶解し、この有機溶媒溶液を、上述のエマルジョンに加え、アルミニウムアルコキシドおよびバリウムアルコキシドを加水分解する。つぎに、所定温度で所定時間かけて、水酸化物の結晶を熟成する。つぎに、液相を除去して、水酸化物粒子を分離し、界面活性剤を加熱分解した後に、所定温度で所定時間かけて焼成する。触媒は、担体にルテニウムを担持する。また、アルカリ金属化合物、アルカリ土類金属化合物、または希土類化合物を助触媒として担持することができる。この触媒は、アンモニア合成反応に用いられる。 (もっと読む)


【課題】建材などから放出された有害物質、とりわけトルエンを効率よく分解することのできる光触媒組成物、内装用建材及び有害物質の分解方法を提供する。
【解決手段】光触媒性半導体材料に担持された金属陽イオンを含む物質により、分離した電子e−を金属陽イオンへ移動させ、正孔h+との再結合を防止して励起可能な光の照射による光触媒性半導体材料の励起状態を維持して光触媒としての活性を高め、有害物質、とりわけ分解に高い活性エネルギーが必要なトルエンを効率よく分解することができる。
【参照図】 なし (もっと読む)


鉄と少なくとも1種の促進剤とからなるフィッシャ・トロプシュ触媒は、高純度の鉄先駆体の作成からなり且つ触媒製造に際し名目量の水を使用する方法を介して作成される。高純度の鉄先駆体により作成される触媒粒子は、実質的に球状の粒子形状と比較的狭い粒子寸法分布範囲と大きい表面積とを有する。
(もっと読む)


【課題】メタクロレインを分子状酸素により気相接触酸化してメタクリル酸を製造する際に用いられるメタクリル酸製造用触媒の製造方法において、メタクリル酸選択率の高い条件でもメタクロレイン転化率が高い触媒が得られる方法を提供すること。
【解決手段】下記式(1)で表される組成を有するメタクリル酸製造用触媒の製造方法において、少なくとも触媒原料を溶媒中で混合して触媒原料混合液を得る工程と、前記触媒原料混合液に含まれる固形分をろ別する工程と、ろ別した前記固形分を減圧乾燥する工程と、得られた乾燥物を焼成する工程と、を含むことを特徴とするメタクリル酸製造用触媒の製造方法。
aMobcCudefgh (1) (もっと読む)


【課題】 励起光を効率よく利用でき、分解力が高い光触媒担持シリカスート体とその製造方法、及び光触媒担持シリカスート体を用いた高性能な空気清浄装置、排ガス処理装置、排水処理装置及び浄水装置の提供。
【解決手段】 シリカガラス微粒子を堆積させて形成されたシリカスート体に光触媒が担持されてなることを特徴とする光触媒担持シリカスート体。シリカガラス微粒子を堆積させて形成されたシリカスート体を、光触媒粒子および/または光触媒前駆体を含む溶液に浸漬し、該溶液を含浸させた後、乾燥することで光触媒を担持させることを特徴とする光触媒担持シリカスート体の製造方法。 (もっと読む)


開示されているのは、水素ガスと被水素化物質を含む液相とを上方から並流で流下させる固体触媒充填式反応塔を用い、灌液流条件下で、該反応塔に充填されている触媒の単位触媒外形表面積当たりの動的液相保持量を0.005×10−3〜0.14×10−3/mとし、式A−2σ[Aは上記触媒100個について、JIS Z8841−1993に記載の「圧壊強度試験方法」に記載の方法に従って測定された最小圧壊強度の平均値を示し、σは標準偏差値を示す。]により求められる触媒強度が1.0kg以上である不均一系触媒水素化反応方法である。 (もっと読む)


【課題】 触媒内での電荷移動により酸化・還元反応を促進する電荷移動型触媒の抗菌、防汚、防臭機能等をより向上させ、即効性、耐久性を付与した複合触媒を提供する。
【解決手段】 複合触媒は、電荷移動型触媒と多孔質からなる触媒とを含む。多孔質は、炭素材または金属酸化物からなることが好ましく、活性炭,ゼオライト,シリカゲルからなる群より選ばれる少なくとも一種であること、電荷移動型触媒の配合比が、1〜50重量%であることがさらに好ましい。 (もっと読む)


相当量のオレフィンおよび有機結合した硫黄を含むナフサ・ストリームの選択的水素化脱硫方法。ナフサ・ストリームを、第1の水素化脱硫触媒の床を含む第1の反応域を経由して通過させ、次に、得られた生成物ストリームを、第2の水素化脱硫触媒の床を含む第2の反応域を経由して通過させることにより、ナフサ・ストリームが選択的に水素化脱硫される。その第2の水素化脱硫触媒は、第1の水素化脱硫触媒に比べて、低レベルの触媒金属を含む。 (もっと読む)


【課題】 プロピレン、プロパン、イソブテン、イソブタンまたは3級ブタノールをアンモ酸化してアクリロニトリルまたはメタクリロニトリルを高収率で製造するための耐摩耗強度が維持され、精製系の詰まりの原因となるアクロレインやメタクロレインの生成量が少ないアンモ触媒を提供すること。
【解決手段】 金属酸化物とそれを担持するシリカ担体を包含し、該シリカ担体の量が該金属酸化物と該シリカ担体の合計重量に対して20〜80重量%であり、該金属酸化物が、モリブデン、ビスマス、鉄、バナジウム、テルルおよびニオブよりなる群から選ばれる少なくとも2種の元素を含み、且つ、該触媒のシリカ担体の製造に用いるシリカ原料が、シリカ1次粒子の平均直径が5〜55nm未満、好ましくは5〜50nmであるものを少なくとも1種用いて、且つ、シリカ1次粒子の粒径分布において、平均直径に対する標準偏差が30%以上であることを特徴とする粒状多孔性アンモ酸化触媒。 (もっと読む)


【課題】 本発明は、メタンを主成分とする低級炭化水素と水蒸気を混合して反応させるスチーム改質において、優れた耐酸化性を有するとともに、低温における反応においても優れた触媒活性を有し、低スチーム下においても耐コーキング性に優れる炭化水素分解用触媒の提供を目的とする。
【解決手段】 マグネシウム、アルミニウム、ニッケルを構成元素とし、且つ、アルカリ金属(Naを除く)、アルカリ土類金属(Mgを除く)、Zn、Co、Ce、Cr、Fe、Laから選ばれる一種又は二種以上の元素を含有する炭化水素分解用触媒であって、金属ニッケル微粒子の平均粒子径が1〜10nmであって金属ニッケルの含有量が炭化水素分解用触媒に対して0.1〜40wt%であって金属ニッケルの含有量が炭化水素分解用触媒を構成する全金属イオンの合計モル数に対して0.0007〜0.342である炭化水素分解用触媒である。 (もっと読む)


【課題】炭素数1〜5の炭化水素と酸素を含む原料ガスから、一酸化炭素と水素を主成分とする合成ガスを製造する際に使用される合成ガス製造用触媒の調製方法を提供する。
【解決手段】Mg、Ca、SrおよびBaより選択された少なくとも1種の酸化物である第1の成分と、Sc、Yおよびランタノイドより選択された少なくとも1種の元素の酸化物である第2の成分と、ジルコニアまたはジルコニアを主成分とする固体電解質性を有する物質である第3の成分とを、第1の成分に対する第2の成分のモル比が0.02〜0.4、第1の成分に対する第3の成分のモル比が0.04〜1.5となるように混合、圧縮成形し、空気雰囲気中、950〜1300℃で2〜10時間焼成して触媒担体を得、該触媒担体にVIII族金属を含有させ空気雰囲気中、600〜1000℃で2〜10時間焼成して、VIII族金属を300〜10000ppm担持した触媒を得る。 (もっと読む)


【課題】目的物の選択率が高い、不飽和酸または不飽和ニトリルの製造に用いる複合酸化物触媒の提供。
【解決手段】少なくともMo、Vおよび成分X(成分Xはアルカリ土類金属元素および希土類元素から選ばれる少なくとも1種以上の元素)を含み、シリカを含む担体に担持され、成分Xが該触媒粒子内で均一に分布していることを特徴とする複合酸化物触媒。分布の均一性の程度は、該複合酸化物触媒において、該複合酸化物触媒粒子の断面を組成分析した時の成分XとSiの信号強度比の分散値Dが、0<D<0.5の範囲にあるようにする。 (もっと読む)


21 - 40 / 65