説明

Fターム[4G075FA12]の内容

物理的、化学的プロセス及び装置 (50,066) | 装置6(細部の構造) (2,444) | 複合構造体、複合材 (848) | 多層構造体、積層体 (780)

Fターム[4G075FA12]に分類される特許

201 - 220 / 780


流体中の同様の、または異なるサイズの不連続区画を集束および/または形成するためのマイクロ流体方法およびデバイスの併用を説明する。いくつかの側面では、本発明は、概して、流動集束型技術に関し、マイクロ流体工学にも関し、より具体的には、分散剤の中の分散相ならびに多相流体系の中の分散相のサイズおよびサイズ分布を制御するように配列されるマイクロ流体システムと、複数のかかるデバイスへの流体成分の送達のためのシステムとの併用に関する。
(もっと読む)


【課題】発熱反応及び吸熱反応が良好に行われる統合反応器を提供する。
【解決手段】少なくとも一つの吸熱反応チャンバに隣接する少なくとも一つの発熱反応チャンバ壁があり、少なくとも一つの吸熱反応チャンバは少なくとも一つの発熱反応チャンバに隣接する少なくとも一つの吸熱反応チャンバ壁に接触した吸熱反応触媒を備え、一つの自由端及び一つの非自由端を備え、非自由端は、燃料及び酸化剤の入口、及び、排ガスの出口のための連結部を含有する統合反応器。 (もっと読む)


【課題】電子加速層の劣化を抑制でき、真空中だけでなく大気圧中でも効率よく安定した電子放出を可能とし、さらに機械的強度を高めて形成される、電子放出素子を提供する。
【解決手段】電子放出素子1は、電極基板2と薄膜電極3との間に電子加速層4を備え、電子加速層4は、絶縁体微粒子5と導電微粒子6とが分散されたバインダー樹脂15を含んでいる。 (もっと読む)


【課題】サンプル間のクロスコンタミネーションやサンプルの汚染、使用者へのバイオハザード、高価なフローセルとオリフィス部品、フローセルとオリフィスの微調整作業を排除して、高速な解析、安全で高速で安価な分取を行うことができる微小粒子分取装置の提供。
【解決手段】微小粒子を含む液体が通流される流路11と、流路11を通流する液体をチップ外の空間に排出するオリフィス12と、が配設されたマイクロチップ1と、オリフィス12において液体を液滴化して吐出するための振動素子2と、吐出される液滴Dに電荷を付与するための荷電手段と、流路11を通流する微小粒子の光学特性を検出する光学検出手段3と、吐出された液滴Dの移動方向に沿って、移動する液滴Dを挟んで対向して配設された対電極4,4と、対電極間4,4を通過した液滴Dを回収する2以上の容器と、を備える微小粒子分取装置Aを提供する。 (もっと読む)


【課題】光触媒素子を用いて効率よく二酸化炭素を一酸化炭素に還元することができる二酸化炭素還元装置を提供する。
【解決手段】二酸化炭素還元装置1a,1bは、二酸化炭素を含む溶液Sを流通させる流路2と、流路2に臨んで設けられた光触媒素子3a,3bとを備える。光触媒素子3aは、青色発光ダイオード4からの光が入射せしめられる基材としてのプリズム5と、銀からなる金属被覆層6と、色素失活防止層7と、fac−[Re(bpy)(CO)(NCS)]からなる光触媒薄膜層8とを備える。溶液Sは、トリエタノールアミン等の電子供与体を含む。光触媒素子3bは、プリズム5の表面と金属被覆層6との間に、色素失活防止層7と同一の屈折率を備える層9を備える。 (もっと読む)


成形可能な平板の平面状表面において形成された多数のマイクロウェルを含み、各マイクロウェルが少なくとも単一の細胞を含有する大きさである多数のマイクロウェルセット、および、マイクロアレイの第1の領域からマイクロアレイの第2の領域へ液体が移行することを可能にするように構成された、成形可能な平板の平面状表面において形成された多数のマイクロチャンネルを含む、成形可能な平板の平面状表面において形成されたマイクロアレイに関する。

(もっと読む)


【課題】海洋表面環境の悪化を抑止しつつ、平均比重が1以下の海洋プランクトン増殖用鉄含有部材を安価に提供する。
【解決手段】フロートとしての球状部材12のほぼ全外表面を包む外殻層13を形成する。この外殻層13は、鉄又は鉄化合物(たとえばFeO)を含有しており、鉄イオンを海水に放出する。外殻層13は、フロートとしての球状部材12を波浪や紫外線から保護するとともに鉄供給源として機能する。 (もっと読む)


【課題】混合物試料中の微量物質の抽出・精製操作等に広く使用できるマクロチップデバイスの提供。
【解決手段】微細流路内で多相層流を実現し、流れ方向の下流で各層を分離するマイクロチップデバイスであって、流路内が流れ方向に直交する流路断面方向に異なる温度分布を形成するように、温度制御機構を配してなることを特徴とするマイクロチップデバイス。 (もっと読む)


【課題】微少量の液体を正確に搬送することが出来るマイクロポンプを備えたマイクロ化学チップを提供する。
【解決手段】少なくとも1個以上の流路とマイクロポンプ2と試料注入部3と反応部4が形成されたマイクロ化学チップを、前記流路が前記マイクロポンプ2の内部に形成され、前記マイクロポンプ2が、第1、第2の屈曲型導電性高分子アクチュエータの両端部を接合することにより、中央部が開閉する構造とした開閉型アクチュエータを用いており、前記試料注入部3と前記反応部4が導電性高分子膜を用いて形成され、かつ前記試料注入部3と前記反応部4が前記マイクロポンプ2によりつながれた構成とする。 (もっと読む)


【課題】プレート積層型マイクロリアクタモジュールにおいて、流体の流路となるチャネル面積を大きくした場合でも、拡散接合によってプレート同士を強度良く接合できるものを提供する。
【解決手段】熱媒体循環ユニット100は、下部プレート10と、上部プレート20とが接合されて構成されている。下部プレート10の上面には、外周部12よりも内側の領域に、凹部13が形成されており、当該凹部13の底面から複数のリブ11が立設されている。上部プレート20の下面にも、外周部22よりも内側の領域に凹部23が形成されており、当該凹部23の底面から複数のリブ21が立設されている。下部プレート10と上部プレート20とは、外周部12と外周部22とが接触し、複数のリブ11の天面と複数のリブ21の天面とが接触した状態で積層され、接触した箇所で拡散接合されている。 (もっと読む)


【課題】高分子マイクロ構造を封止するための、簡単で、再現可能で、歩留まりが高い方法を提供する。
【解決手段】マイクロ流体構造の2つ以上の構成要素が固く結合されるか、又は弱溶剤結合剤特にアセトニトリルやアセトニトリルとアルコールとの混合物により成層された、高分子マイクロ流体構造の製造方法。ある態様では、アセトニトリルは、ポリスチレン、ポリカーボネート、アクリル、又は三次元マイクロ流体ネットワークを形成する他の線状高分子などの非エラストマー重合体内のマイクロ構造を封止するための、弱溶剤結合剤として使用可能である。本方法は、所与の、より低い温度範囲の、対向する表面へ隣接接触し、所与の時間の間に低い温度範囲よりも高い温度で結合剤を活性化する弱溶剤結合剤により、高分子基板構成要素の対向する表面の少なくとも1つを濡らす過程を有している。 (もっと読む)


【課題】反応装置における反応剤の混合の均一性を高めつつ、反応装置の製造工程が煩雑になるのを防ぐ。
【解決手段】反応装置の第1流路構造体1aは、基板4と、基板4の一方の面を覆った状態でその面に接合されている第1封止部材6と、基板4の他方の面を覆った状態でその面に接合されている第2封止部材6とを有し、基板4の一方の面には、第1導入路10を構成する第1導入溝18が形成されているとともに、反応路16を構成する反応溝24が形成されている一方、基板4の他方の面には、第2導入路12を構成する第2導入溝20が形成されており、合流路14を構成する合流孔22が第1導入溝18及び第2導入溝20と反応溝24との間で基板4の一方の面から他方の面へ貫通してそれら導入溝18,20の下流側端部と反応溝24の上流側端部とを繋ぐように設けられ、反応溝接続部24aの深さは、第1導入溝接続部18aの深さよりも大きい。 (もっと読む)


【課題】反応装置における反応剤の混合の均一性を高める。
【解決手段】反応装置の第1流路構造体1aは、基板4と、その基板4の一方の面を覆った状態でその面に接合されている第1封止部材6と、基板4の他方の面を覆った状態でその面に接合されている第2封止部材8とを有し、基板4の一方の面には、第1導入路10を構成する第1導入溝18と第2導入路12を構成する第2導入溝20とが形成されている一方、基板4の他方の面には、反応路16を構成する反応溝24が形成されており、さらに、合流路14を構成する合流孔22が基板4の一方の面から他方の面へ貫通しており、合流孔22は、第1導入溝18と第2導入溝20の共通の終点でかつ反応溝24の始点であり、第1導入溝18の下流側端部と第2導入溝20の下流側端部とは、基板4の一方の面において互いに異なる方向から合流孔22に合流している。 (もっと読む)


【課題】 (1)高い耐久性を有し、長期間にわたってメインテナンスフリーで、かつ低いランニングコストで稼動することができ、(2)小型の装置で、大きな処理能力と高い分解速度を有する、アンモニア分解素子を提供する。
【解決手段】 アンモニア分解素子10は、カソード3に接するカソード集電体7を備え、カソード集電体7が、連続気孔を持つ金属多孔体でなり、該金属多孔体が、ニッケルもしくはニッケル合金でなるか、またはニッケルもしくはニッケル合金の金属多孔体の表層が、(クロム(Cr)、アルミニウム(Al)銀(Ag)、金(Au)および白金(Pt))の少なくとも1種に富化されてなる、ことを特徴とする。 (もっと読む)


【課題】 反応や分析のステップ数や量の制限が緩く、製造が容易であるマイクロ流体システム用支持ユニット、さらに、複雑な流体回路を高密度に実装できるマイクロ流体システム用支持ユニットを提供する。
【解決手段】 第一の支持体と、マイクロ流体システムの流路を構成する少なくとも一本の中空フィラメントとを備え、該中空フィラメントが前記第一の支持体に任意の形状に敷設され、かつ前記少なくとも一本の中空フィラメントの内側の所定箇所に充填剤を固定することにより機能性を付与し、前記機能性は、吸・脱着、イオン交換、分離、除去、分配及び酸化・還元からなる群から選ばれる少なくとも一つであるマイクロ流体システム用支持ユニットに関する。 (もっと読む)


【課題】装置に設置すべき反応容器プレートとは異なる反応容器プレートが設置された状態で反応処理が進行されないようにする。
【解決手段】反応処理装置は、プレート設置部に設置される前の反応容器プレートの識別情報とその反応容器プレートに収容されるサンプルの識別情報とを読み取るための第1識別情報読取り部を備えている。第1識別情報読取り部で読み取ったプレート識別情報とサンプル識別情報は互いに結び付けられた状態で識別情報登録部に登録される。本体ユニットにはプレート設置部に設置された反応容器プレートの識別情報を読み取る第2識別情報読取り部が設けられている。設置後プレート識別情報は識別情報照合部によって識別情報登録部に登録されているプレート識別情報と照合される。設置後プレート識別情報と識別情報登録部に登録されているプレート識別情報とが一致しない場合に以降の処理の進行の停止を促す進行制御手段を備えている。 (もっと読む)


【課題】
簡易な構成で、非接触で反応液に影響を与えずに反応液の温度を直接、精度良く測定し、反応の目的に応じて高速で高精度な温度制御を行なうことができる反応液温度の測定方法及びその装置の提供。
【解決手段】
本発明は、前記反応液の体積の変化と温度の変化との対応データを記憶する記憶工程と、前記マイクロ流路における前記反応液の界面を検知し、前記反応液の移動した位置を検出する検出工程と、前記検出工程で検出された前記反応液の移動した位置から前記反応液の体積の変化を算出する算出工程と、前記算出工程で算出された前記反応液の体積の変化に、前記記憶工程で記憶された前記反応液の体積の変化と温度の変化との前記対応データを照らして前記反応液の温度を測定する測定工程と、を有することを特徴とする。 (もっと読む)


【課題】本発明は、送液チューブと基板との間に液密性の高い接続を達成し、且つ、送液チューブと基板とを簡単に着脱できるコネクタを提供することを目的とする。
【解決手段】本発明は、端部(103)に末端から始まる少なくとも一つのスリット(104)が設けられているフェラル(10A、10B)と、長手方向中央に送液チューブ(20)が挿通される貫通孔を有し、基板側端面には、フェラルの第二の端部が嵌合するすり鉢状の凹部(121)が形成されたスリーブ(12)と、フェラル及びスリーブを中空部(161)に格納して基板方向に押し付けながら、基板(40)が固定された基板ホルダー(30)に係止されるキャップ体(16)と、を備えるコネクタ(1)を提供するものである。 (もっと読む)


【課題】熱的化学反応に対し大きい反応速度を提供することができる方法および装置を提供する。
【解決手段】触媒を含む少なくとも一つの反応チャンバーと、熱的に接している少なくとも一つの熱交換器を含む、酸化が深く進行するのを排除しながら、熱的化学反応で少なくとも一つの反応物を触媒転化するための反応器であって、該熱交換器は100μm〜10mmの範囲の最小寸法を有しており、該反応チャンバーの高さは5cm(2インチ)またはそれより低く、そして、熱伝達工程は定常状態での運転中に、総反応器容積(cc)当たり少なくとも0.6Wの熱が、伝達され得るような構造をしている反応器。 (もっと読む)


1つ又は2つ以上の化学反応器(12)の動作方法であって、各化学反応器が化学反応プロセス用の第1のフローチャネル(15)を熱伝達のための第2のフローチャネルに近接して備え、各化学反応器が第1のフローチャネル及び第2のフローチャネルを通るそれぞれの流体の流れを生じさせる流体結合部を備える、方法が、第1のフローチャネル及び第2のフローチャネルのうちの少なくとも一方を通る流体の流れを止めるステップと、次に流体結合部を変更するステップと、次に流体結合部を再び開くステップとを有する。反応器によって実施される化学反応プロセスには変化が生じない。流体結合部の変更は、好ましくは、流れの逆転を達成するようなものである。このためには、反応器(12)自体の向きを変え又は反応器に連結されているダクトの構成を変更するのが良い。この変更により、反応器内における熱応力の分布状態が変化し、その結果、反応器の動作寿命を延ばすことができる。 (もっと読む)


201 - 220 / 780