説明

Fターム[4G146CB22]の内容

炭素・炭素化合物 (72,636) | 処理、後処理−その他 (8,009) | 特定部分の処理(層間等) (648) | 表面処理(表面官能基含む) (513)

Fターム[4G146CB22]の下位に属するFターム

被覆 (213)

Fターム[4G146CB22]に分類される特許

221 - 240 / 300


【課題】カーボンナノチューブを含む大規模なナノ構造材料を製造するための方法を提供する。
【解決手段】堆積ステーションを介してカーボンナノチューブを少なくとも1つの基材に堆積させる工程を含むナノ構造材料製造方法が開示され、堆積する工程は、分子を液体または気体などの堆積流体から基材へと移送する工程を含む。キャリア流体を透過できる基材を使用し、差圧濾過によってキャリア流体が基材を通って流れられるようにすることにより、除去されるか、または最終構成材料の一部として作用することができる基材上に、ナノ構造材料を形成することができる。 (もっと読む)


【課題】デザインや形態の制約を必要とせず、加工コストの低減やエネルギー生産システムの提供が可能なP・N型半導体・アルミン酸ストロンチウム内包フラーレンの製造方法を提供する。
【解決手段】P型半導体内包フラーレンの外殻の一部分を炭素還元状に酸素を融合し、酸化させてフラーレン外殻に開口部を形成する開口部形成工程と、このP型半導体内包フラーレンを高温高圧状態にして、アルミン酸ストロンチウムを開口部より内部へ収納するアルミン酸ストロンチウム収納工程と、このアルミン酸ストロンチウムが収納されたP型半導体内包フラーレンの外殻開口部を光反応させ、四塩化チタンと亜鉛を用いて外殻開口部の環の縮小閉口を行なう外殻開口部の環の縮小閉口工程と、このP型半導体内包フラーレンを加熱して開口部を閉鎖する開口部の閉鎖工程とでP型半導体・アルミン酸ストロンチウム内包フラーレンの製造方法を構成している。 (もっと読む)


電解槽(125)は電解液(123)を保持するための容器を備える。導電的にドーピングした単結晶ダイヤモンド陽極電極(110)は電解液(123)内に位置するように配置されている。導電性陰極電極(120)も同様に配置されている。電源(130)に接続するために、導体は電極に連結されている。電解液(123)が電極を通過して流れるように、容器に電解液入口(150)と電解液出口(155)が取り付けられている。一実施形態では、陽極電極(110)を陰極(120)電極の下流に配置し、酸素および/またはオゾンの生成によって水を含む電解液(123)が精製されるようになっている。
(もっと読む)


【課題】高温高圧法のように比較的平均粒径が大きいナノダイヤモンドにおいても、水に対する分散度が高いナノダイヤモンドを提供する。また、分散を経ることにより、より小さな粒径であり、かつ、表面の化学構造が制御されたナノダイヤモンドを提供する。
【解決手段】平均粒径が6〜200nmのナノダイヤモンドであって、ナノダイヤモンド120mgに対して超純水8ml加えて得た懸濁液を遠心分離し、上澄み液5ml中の20℃におけるナノダイヤモンドの分散度が0.35mg/ml以上であるナノダイヤモンドである。 (もっと読む)


【課題】カーボンナノチューブに担持された白金ナノ触媒の製造方法を提供する。
【解決手段】カーボンナノチューブを熱処理した後、塩酸溶液と硫酸−硝酸の混合溶液で処理して不純物を除去し、カーボンナノチューブ表面に酸化基を置換する前処理段階と、白金前駆体としてメチルトリメチルシクロペンタジエニル白金を使用し、これを気化器に入れ60〜80Cで加熱して気化させる気化段階と、反応器の内部にはカーボンナノチューブを設置し、気化器を通した60〜80Cで予熱された窒素と、追加の酸素を同時に流しながら反応器の温度を上昇させてカーボンナノチューブの表面に白金粒子が担持される担持段階とを含む。 (もっと読む)


【課題】 触媒、吸着材、電極材料、電子材料等の広範囲な分野での応用展開を可能とするため機能性の付与、向上が可能とされる、新しいフラーレン構造とその形成のための手段を提供する。
【解決手段】 フラーレン分子またはフラーレン誘導体分子から形成されるチューブ状のフラーレンチューブに金属元素もしくは化合物物質が内包または付着されていることを特徴とする物質担持フラーレンチューブとする。 (もっと読む)


本発明は、炭素繊維、特にカーボンナノファイバーをエッチングするための方法、並びに、この方法により得ることができるカーボンナノファイバーおよびそれらの使用に関する。 (もっと読む)


カーボンナノチューブの少なくとも0.5原子%の量で、カルボン酸、硝酸塩、ヒドロキシル、硫黄含有基、カルボン酸塩、及びリン酸塩から成る群から選択された、共有結合された親水性種を有する単層カーボンナノチューブの水性分散体を含む塗布用組成物であって、前記カーボンナノチューブが、前記分散体の少なくとも0.05重量%の量で存在する塗布用組成物に関する。
(もっと読む)


【課題】本発明は、CNT表面への付着物の除去方法およびCNT表面に吸着したガス分子を精確に制御する方法、更にはそれを利用した好適な計測装置を提供することを課題とする。
【解決手段】カーボンナノチューブ(CNT)先端部の付着物にパルスレーザーを照射することにより、付着物を脱離させる除去方法を提供する。又、CNTを陰極とし、該先端部と対向する位置に陽極を配置して電子回路を構成し、電界の印加によりCNTの先端部に吸着するガス分子にパルスレーザーを照射することにより吸着ガスを脱離させることにより、課題が達成される。 (もっと読む)


【課題】 カーボンナノチューブと共有結合している有機化合物を有する官能基化されたカーボンナノチューブを使用して、基板表面にカーボンナノチューブを選択的に配置するための方法を提供する。
【解決手段】 有機化合物は、少なくとも2つの官能基を含み、第1の官能基は、カーボンナノチューブと共有結合を形成することができ、第2の官能基は、金属酸化物と選択的に結合することができる。このような官能基化されたカーボンナノチューブは、金属酸化物を含む少なくとも一部を有する基板表面と接触している。有機化合物の第2の官能基は、金属酸化物を含む基板表面の少なくとも一部上に官能基化されたカーボンナノチューブを選択的に配置するために、金属酸化物と選択的に結合している。 (もっと読む)


【課題】非水電解液二次電池の極板用の高充填性炭素粉末を得るための製造方法を提供すること
【解決手段】炭素質粉末に力学的エネルギーを加えることで球形化し、処理前後の見かけ密度比を1.1以上、処理前後のメジアン径比が1以下とする炭素質粉末を高充填化処理する工程から製造される、非水電解液二次電池の極板用の高充填性炭素粉末。本発明においては、処理後の高充填性炭素質粉末の15μm制限平均円形度が0.850以上であること、また、処理前の炭素質粉末の層間距離(d002)が0.345nm以下、結晶子サイズ(Lc)が10nm以上であること、また、高充填性炭素粉末のメジアン径が、5〜50μmであり、BET法比表面積が、25m2/g以下であることが好ましい。更に、本発明の高充填性炭素粉末を有機化合物と混合した後に、該有機化合物を炭素化した複層構造炭素材料を含む高充填性炭素粉末とすることができる。 (もっと読む)


【課題】有機溶剤への分散性が高いだけではなく、水への分散性も高い炭素材料及びその製造方法を提供すること。
【解決手段】カルボキシル基を含有するアゾ系ラジカル重合開始剤をラジカル分解して得られたフラグメントを、炭素材料のグラフェンシート構造に付加させた。 (もっと読む)


【課題】スルホン酸基で表面修飾された親水性に優れた表面修飾炭素材料、および、その製造方法を提供すること。
【解決手段】炭素材料表面のヒドロキシル基および/またはカルボキシル基と結合したメチルジフェニルジイソシアネートが反応性アルキルスルホン酸と反応してイソシアネート基と反応性基が結合した、スルホン酸基により修飾されたことを特徴とする表面修飾炭素材料。その製造方法は、炭素材料をエステルまたはケトン系溶媒中でメチルジフェニルジイソシアネートを加えて炭素材料表面のヒドロキシル基および/またはカルボキシル基とイソシアネート基を結合させた後、反応性アルキルスルホン酸を加えてイソシアネート基と反応性基を反応させて、反応性基を介してスルホン酸基を炭素材料の表面に結合させることを特徴とする。 (もっと読む)


本発明はカーボンナノチューブを備え、それぞれの表面上に実質的に連続なナノスケールのシリコン粒子のフィルムが堆積され、リチウム電池用の陰極に利用することが出来る材料に関する。 (もっと読む)


【課題】本発明の目的は高度に分散されて単離された単層カーボンナノチューブ−卵白タンパク質複合体を提供する。
【解決手段】EW−SWNTは、ナノチューブの長さが500nm〜2μm範囲のSWNTsとEWタンパク質水溶液との混合物であって、ナノチューブの使用量はEWタンパク質に対して3〜10重量%の範囲で用いられ、例えば30分間超音波処理することによって均質化が行われる段階と、均質化物から固形分を除去する段階は、濾過、超遠心分離によって行うことが出来て、超遠心分離は10,000g〜200,000gの範囲で低速から高速に変化させる、2段階、即ち18,000gで3時間、12,000gで4時間行う。 (もっと読む)


【課題】本発明は、カーボンナノチューブ素子の製造方法に関する。
【解決手段】本発明に係るカーボンナノチューブ素子の製造方法は、カーボンナノチューブ糸を準備する段階と、前記カーボンナノチューブ糸を揮発性有機溶剤に浸入して表面処理を行う段階と、加工装置を利用して前記カーボンナノチューブ糸を所定の形状によって加工して、カーボンナノチューブ素子の予備成形物を形成する段階と、前記カーボンナノチューブ素子の予備成形物を所定の温度まで加熱して所定の形状に固定させて、カーボンナノチューブ素子を形成する段階と、を含む。 (もっと読む)


【課題】 空間部の数や大きさを制御することにより、軽量化を行なって重量当たりの強度を制御することができる繊維状炭素構造体を提供する。
【解決手段】 炭素壁2で包囲された空間部3を複数有する、短径が5nm以上5μm以下の繊維状炭素構造体1において、空間部3同士の間に存在する炭素壁2aの厚さを5nm以上とする。 (もっと読む)


【課題】有毒ガスを使用することなく、また煩雑な操作を施すことなく、安全、かつ簡便にダイヤモンド材料表面上にチオアルキルチオールを導入したダイヤモンド材料及びその製造方法を提供する。
【解決手段】チオアルキルチオール基がダイヤモンド材料表面に結合していることを特徴とするダイヤモンド材料。チオアルキルチオール基を介して金属微粒子が結合した金属微粒子修飾ダイヤモンド材料。紫外線照射下、ダイヤモンド材料と一般式(1)で表される環状ジスルフィドを反応させチオアルキルチオールをダイヤモンド材料の表面に結合させることを特徴とするチオアルキルチオール基が表面に結合したダイヤモンド材料の製造方法。
【化5】
(もっと読む)


本発明によると、炭素を含んだ多孔質材料、特には複合材料C/Cからなる部品が、酸素と炭素の酸化触媒である少なくとも1つのアルカリ又はアルカリ土類元素Mとの存在下で、酸化硼素B23によって結合し且つ元素Mを捕捉した少なくとも1つのP−O−Ti−M型会合を形成するべく、少なくとも1つの燐化合物と、元素チタンと、硼素又は二硼化チタン以外の硼素化合物とを含有した水溶液中の組成物を含浸させることによって耐酸化保護される。 (もっと読む)


【課題】面抵抗特性が向上したメソ細孔性炭素、その製造方法及びそれを利用した燃料電池を提供する。
【解決手段】メソ相ピッチ、炭素前駆体、酸及び溶媒を混合して炭素前駆体混合物を得る工程と、メソ細孔性シリカに炭素前駆体混合物を含浸し、これを熱処理及び炭化を実施してメソ細孔性シリカ−炭素複合体を形成する工程と、メソ細孔性シリカ−炭素複合体からメソ細孔性シリカを除去する工程と、を含むことを特徴とするメソ細孔性炭素の製造方法である。これにより、得られたメソ細孔性炭素は、メソ相ピッチと炭素前駆体とを共に使用して面抵抗特性が向上して電気エネルギーを効率的に伝達でき、このようなメソ細孔性炭素は、燃料電池用電極の導電材料として利用でき、特に、電極の触媒担体として使用する場合、このような触媒担体を含有した担持触媒を利用すれば、効率などの性能が改善した燃料電池を製作できる。 (もっと読む)


221 - 240 / 300