説明

Fターム[4K001BA14]の内容

金属の製造又は精製 (22,607) | 原料 (3,914) | ダスト (450)

Fターム[4K001BA14]に分類される特許

181 - 200 / 450


【課題】竪型溶解炉を用いて鉄系スクラップを溶解し、溶銑を製造する方法において、安定した操業を行いつつ、溶銑を高い生産性で製造する。
【解決手段】竪型溶解炉において、炉頂部から鉄系スクラップとコークスを装入し、炉下部に設けられた複数の羽口から熱風を吹き込み、コークスの燃焼熱で鉄系スクラップを溶解することにより溶銑を製造する方法であって、少なくとも一部の羽口内に、酸素を噴射する酸素噴射ノズルを配置し、A/B≦9(但し、A:酸素噴射ノズル出口での酸素流速、B:羽口先での熱風流速)を満足するように、羽口から熱風を吹き込みつつ、前記酸素噴射ノズルから酸素を吹き込む。 (もっと読む)


【課題】堅型溶解炉を用いて鉄系スクラップを溶解し、溶銑を製造する方法において、安定した操業を行いつつ、溶銑を高い生産性で製造する。
【解決手段】堅型溶解炉において、炉頂部から鉄系スクラップとコークスを装入し、炉下部に設けられた複数の羽口から熱風を吹き込み、コークスの燃焼熱で鉄系スクラップを溶解することにより溶銑を製造する方法であって、少なくとも一部の羽口内に、酸素を超音速で噴射する酸素噴射ノズルを配置して、該酸素噴射ノズルから酸素(a)を吹き込むとともに、酸素(b)を予め熱風と混合して、熱風とともに羽口から吹き込み、且つ酸素(a)と酸素(b)の流量が−2.5×A+92.5≦X≦−1.2×A+100(但し、A(vol%)=([酸素(a)と酸素(b)の合計流量]/[熱風流量])×100、X(vol%)=([酸素(a)の流量]/[酸素(a)と酸素(b)の合計流量])×100)を満足する。 (もっと読む)


【課題】移動型炉床炉を用いて鉄鉱石から還元鉄を製造する際に、鉄鉱石中の亜鉛分を亜鉛精錬原料として使用可能な濃度で含有するダストである、高亜鉛含有ダストとして回収可能な、還元鉄製造方法を提供すること。
【解決手段】鉄鉱石11と炭素系固体還元材12とを混合した混合原料を移動型炉床炉15の炉床上に積載し、炉床上部から熱供給して混合原料を還元し、混合原料を溶融しないかまたは一部のみ溶融させて還元鉄を製造する際に、移動型炉床炉15で発生するダストの一部を21aで混合原料に混合して循環使用し、ダストの残部を高亜鉛含有ダストとして21bで分離することを特徴とする還元鉄製造方法を用いる。混合原料中の亜鉛濃度に基づいて、高亜鉛含有ダストとして分離するダストの量を決定すること、または移動型炉床炉15で発生するダストの亜鉛濃度の分析濃度に基づいて高亜鉛含有ダストとして分離するダストの量を決定することが好ましい。 (もっと読む)


【課題】 本発明の目的は、磁気分離法を用いて、工程が効率的で、かつ経済的に優れた製鉄ダストの低亜鉛化方法を提供することにある。
【解決手段】 本発明の製鉄ダストの低亜鉛化方法は、鉄および亜鉛を含む製鉄ダストに浸出液を加えて1次スラリーとし、前記製鉄ダスト中に含まれる亜鉛を溶解させる亜鉛溶出工程と、前記1次スラリーを、磁気分離法を用いて、低亜鉛化磁着物と、高亜鉛化非磁着物を含む2次スラリーとに分離する磁気分離工程と、前記分離された低亜鉛化磁着物を、脱水・洗浄することにより、製鉄原料として回収する製鉄原料回収工程とを具えることを特徴とする。 (もっと読む)


【課題】低コストでタリウムを回収することができるとともに、セメントキルン燃焼ガスの保有する熱を有効利用することなども可能なセメント製造工程からのタリウム回収方法を提供する。
【解決手段】セメント焼成工程のプレヒータ12の最上段サイクロン12aから排出された燃焼排ガスGを第1のバグフィルター2で集塵し、第1のバグフィルターを通過した燃焼排ガスを廃熱ボイラー3に導入し、廃熱ボイラーを通過した燃焼排ガスに含まれるタリウムが凝固した状態で含まれるダストD2を第2のバグフィルター4で回収し、このダストからタリウムを回収する。第1のバグフィルター2を設けずに、最上段サイクロンから排出された燃焼排ガスGに含まれるタリウムが凝固した状態で存在し、廃熱ボイラーの蒸発管等の表面に付着したダストを回収し、このダストからタリウムを回収することもできる。 (もっと読む)


【課題】空間閉塞や鉛スプラッシュの系外持ち去りロスを抑制しつつ、亜鉛回収効率であるコンデンサ効率を向上させることのできる鉛スプラッシュコンデンサ設備を提供する。
【解決手段】複列で、かつ、複数段のダブルスロータイプのロータ(9a〜9d)を有し、熔体鉛粒が飛散するガス空間内に少なくとも二段のバッフルプレート(11、12)が設けられ、コンデンサ本体(3)の他端側に設けられた最終段の鉛スプラッシュロータ(9d)よりも上流側に、側壁との間にガスが流れるように、第1のバッフルプレート(11)が配置され、最終段の鉛スプラッシュロータ(9d)の下流側に、2つの部材が側壁から垂直に伸長し、コンデンサ本体(3)の幅方向中央部に開口部を形成する第2のバッフルプレート(12)が配置される。 (もっと読む)


【課題】亜鉛含有の灰から亜鉛を効率よく回収できる亜鉛回収装置を提供することを目的とする。
【解決手段】亜鉛含有の飛灰から亜鉛を回収する亜鉛回収装置5Aにおいて、飛灰を収容して加熱し、飛灰に含まれる金属のうち、少なくとも亜鉛を還元雰囲気の中で気化させる溶融還元槽19と、溶融還元槽19で気化された亜鉛を回収するスプラッシュコンデンサー23や亜鉛冷却ユニット25とを備える。この亜鉛回収装置5Aでは、飛灰に含まれる金属のうち、少なくとも亜鉛を気化させ、気化した亜鉛をスプラッシュコンデンサー23や亜鉛冷却ユニット25で回収するため、不純物の混入は少なく、亜鉛を再利用に適した状態で効率よく回収できる。 (もっと読む)


【課題】焼却灰からバナジウムを効率的に回収し、資源の有効利用を可能にするバナジウム回収装置を提供することを目的とする。
【解決手段】石油系燃料の燃焼によって生じるバナジウムV含有の焼却灰Asを受け入れる回転炉3と、回転炉3内の焼却灰Asを加熱する気化手段17と、回転炉3内の気体状のバナジウムVを排出するバナジウム排出部19と、バナジウム排出部19から流出したバナジウムVを回収する沈殿槽5と、を備える。本構成では、PH調整を伴う湿式処理によりバナジウムVを回収する従来装置に比べて構造が単純になり、設備もコンパクト化できてバナジウムVの効率的な回収が可能になる。 (もっと読む)


【課題】焼却灰からバナジウムを効率的に回収するバナジウム回収装置を提供する。
【解決手段】焼却灰Asと鉄化合物Feとをキルン回転炉3で加熱し、キルン回転炉3から排出された焙焼鉱Rsのうち、バナジウムフェライトVfを含む磁性物を磁力選別によって非磁性物Nmから分離するバナジウム回収装置2とした。焼却灰As中のバナジウムVは、例えば600℃〜800℃程度にまで加熱された鉄化合物Feの表面に接触することでバナジウムフェライトVfに変換される。バナジウムフェライトVfは磁性を帯びており、キルン回転炉3から排出された焙焼鉱Rsのうち、バナジウムフェライトVfを含む磁性物を磁力選別によって非磁性物Nmから分離することで、焼却灰As中のバナジウムVを、バナジウムフェライトVfとして効率よく回収できる。 (もっと読む)


【課題】排ガス流速を従来に比べて増加させ、増加しても緻密な固着物のダクトへの付着は抑えることができる、回転炉床炉の排ガス処理方法を提供する。
【解決手段】加熱還元により還元鉄を製造する回転炉床炉1の排ガス排出口に直結された第1の排ガスダクト2を介して排ガスを冷却する冷却装置5が連結され、冷却装置5の後段に第2の排ガスダクト7を介して2次集じん器8が連結された回転炉床炉の排ガス処理方法において、第1の排ガスダクト2の上流側は回転炉床炉1に対して水平配置した水平ダクト3とし、下流側を垂直配置した垂直ダクト4として冷却装置5に連結し、かつ第1の排ガスダクト内の排ガス流速を9m/秒〜17m/秒とし、第2の排ガスダクト7の上流側を上昇傾斜とし下流側を下降傾斜として2次集じん器8に接続し、かつ、第2の排ガスダクト内の排ガス流速を15m/秒〜23m/秒とする。 (もっと読む)


【課題】熱処理炉や金属溶解炉等の加熱炉から排出される排気ガスを減圧下で処理するために有価金属を酸化させることがなく、以て、二次的処理を要することなく直接有価金属を回収することができる、有価物を含む加熱炉の排気ガスからの有価物回収方法及び回収装置を提供することを課題とする。
【解決手段】処理品を加熱溶解する密閉可能な加熱炉1と、加熱炉1に連結されていて、処理品を加熱炉1に供給する前に導入し、処理品を加熱炉1に供給する際に室内の空気置換を行う空気置換室2と、空気置換室2と加熱炉1とを気密に連結する通路3と、通路3を開閉して処理品の通過を許容する導入手段4と、加熱炉1に接続されていて加熱炉1内において発生する排気ガスを吸引排出する手段5と、吸引排出された排気ガスから有価物を回収する回収手段6〜8とから成る。 (もっと読む)


【課題】設備コストおよびエネルギ原単位を従来プロセスよりも大幅に低減しうる、炭材内装酸化金属塊成化物を用いた溶融金属の製造方法を提供する。
【解決手段】原料装入シュート4,4を炉幅両端部2,2に、電極5を炉中央部に、炉上部に二次燃焼バーナ6をそれぞれ設置した定置式非傾動型電気炉を用い、予めシュート4,4から炭材Aを装入して電極5下方に向かう下り斜面を有する炭材充填層12を形成しておき、次いで炭材内装酸化金属塊成化物Bを装入して炭材充填層12斜面上に塊成化物層13を形成し、その後電極5にてアーク加熱を行い塊成化物層13下端部を順次溶融して、炉内に溶融金属層14と溶融スラグ層15を形成するとともに、塊成化物層13を炭材充填層12斜面に沿って降下させつつ、二次燃焼バーナ6から吹込んだ酸素含有ガスCで、塊成化物層12から発生するCO含有ガスを燃焼させ、その放射熱により塊成化物層13を加熱する。 (もっと読む)


周期表中の第4〜6族、第8〜12族および第14族からの回収可能な金属を含有する鉱石、スラグ、ミルスケール、スクラップ、粉塵および他の資源を塩素化する方法。その方法は、a)塩化アルミニウムと、アルカリ金属塩化物およびアルカリ土類金属塩化物のうちから選択される少なくとも1種の他の金属塩化物とから本質的に成る液体溶融塩溶融物を形成する工程と、前記液体塩溶融物中の塩化アルミニウム含有量は10重量%を超過することと、b)前記液体塩溶融物中に前記回収可能な金属資源を導入する工程と、c)前記塩化アルミニウムを塩素供与体として前記回収可能な金属資源と反応させて金属塩化物を形成する工程と、前記金属塩化物は前記塩溶融物中に溶解されることと、d)生成した金属塩化物を前記塩溶融物から回収する工程とを含む。 (もっと読む)


【課題】処理品の種類に対応して、乾留、水性ガス反応処理、真空還元処理等を施し、有価金属の高純度での回収、並びに、ハロゲン化物からの公害物質の除去、排ガス中のCOガスの除去等の処理をなし得る還元処理方法及び装置を提供する。
【解決手段】公害物、有価物等を含む廃棄物、酸化物、再利用品等の処理品を処理して無害化すると共に、高純度に有価物を回収するための装置であって、処理品のライン内搬入段4、処理品を乾留する乾留室9、処理品に対し水性ガス反応を起こさせて還元ガスを発生させる反応室16、処理品を、所定温度及び所定真空度にて、乾留室9及び反応室16で発生させた還元ガスや炭素質固体を用いて真空下で還元して還元分離と還元蒸発分離を行うための真空還元室23、真空還元処理した未蒸発還元処理品を冷却するための冷却室27、及び、冷却処理した処理品を搬出する手段32をこの順に配設して成る。 (もっと読む)


【課題】インジウム、ガリウムおよび亜鉛の相互分離、ニッケルとコバルトとの分離が可能であり、カドミウム共存下で亜鉛に対して高い選択性を有する抽出剤を提供する。
【解決手段】下記化学式1で表される化合物:


式中、Xは水素、置換基を有してもよい直鎖もしくは分岐のC1〜C18のアルキル基または置換基を有してもよいC6〜C18のアリール基であり、RおよびRは独立して、置換基を有してもよい直鎖または分岐のC1〜C18のアルキル基、置換基を有してもよいC2〜C18のアルケニル基、または置換基を有してもよいC7〜C18のアリールアルキル基であり、Rは水素または置換基を有してもよい直鎖もしくは分岐のC1〜C18のアルキル基である。 (もっと読む)


【課題】乾式法によって、廃電池から各種の有価金属を効率よく多量に回収するための技術を提案する。
【解決手段】移動型炉床炉内を移動する移動床上に、金属含有物等を装入積載して加熱、還元することにより、特定の金属を分離回収する方法において、前記移動床上に、廃電池を積載し、その移動床が炉内を移動する間の加熱過程で、高揮発性金属を揮発させ、このとき発生した炉内ガスから高揮発金属の粉末を回収する一方、低揮発性金属については、前記移動床上において回収する。 (もっと読む)


【課題】微粉を主体とする焼結原料の造粒に適しており、目標とする粒度分布を備えた造粒物を製造でき、しかもその収率を従来よりも向上でき、かつ混練と造粒を1つの装置で実施可能な焼結原料の造粒方法を提供する。
【解決手段】粒径が500μmアンダーの粒子を60質量%以上含む焼結原料を造粒装置10に供給して造粒物を製造する焼結原料の造粒方法であって、円筒状の横型容器11と、その軸心に配置された回転軸12を中心として回転する複数の板状の撹拌羽根13とを有し、しかも横型容器11の内径Dを150mm以上1000mm以下、横型容器11の内面と回転する撹拌羽根13との隙間Sを2mm以上15mm以下、及び撹拌羽根13の厚みTを3mm以上30mm以下とした造粒装置10の横型容器11内に、焼結原料を、積み付け高さH50mm以上、かつ占積率30%以下の範囲内で供給する。 (もっと読む)


【課題】 環境改善、省力化、歩留改善が可能となるヤード養生によらないセメントボンド塊成鉱の製造方法を提供する。
【解決手段】 製鉄所発生ダスト類、および/または微粉鉱石にバインダーとしてポルトランド系セメントを加え、混合、調湿、混練工程を経た後、パンペレタイザーで造粒し、しかる後に養生することで所要の圧潰強度を持った高炉向けコールドペレット、または焼結向けミニペレットを製造する方法において、竪型容器の上部から生ペレットを装入し下端から排出することで移動層を形成せしめ、生ペレットの装入から排出までの期間で養生することを特徴とする、セメントボンド塊成鉱の製造方法 (もっと読む)


【課題】全てを湿式法により行う鉛の処理ができる方法が要望されている。
【解決手段】非鉄製錬の製錬中間物である鉛滓中の、銅・亜鉛を少なくとも除去する方法において、
鉛滓をスラリー化した液中に、酸素含有カ゛スを吹き込み、銅メタルを酸化しCuOとし、
硫酸第2鉄の酸化作用によりCu2Oを酸化し、
硫酸を添加することにより、前記鉛滓中の亜鉛と銅を少なくとも浸出処理する鉛滓の浸出方法。 (もっと読む)


【課題】亜鉛精錬のための亜鉛総量の低減を防止できる還元処理装置及び還元処理方法を提供する。
【解決手段】亜鉛含有酸化鉄及び還元材を加熱処理することで亜鉛含有酸化鉄を還元して亜鉛濃縮物を含む排ガスを排出するロータリーキルン2と、ロータリーキルン2から排出される排ガスに対して所定の処理を施す排ガス処理装置3とを備えた還元処理装置1において、ロータリーキルン2及び排ガス処理装置3に、水酸化ナトリウム水溶液を噴霧する噴霧部を兼ねる水噴霧部2g,4a,6aと廃液注入部4bとを設け、これらの噴霧部から亜鉛濃縮物を含む排ガスに対して、水酸化ナトリウム水溶液を所定量噴霧する。これにより、塩素分が低減された高濃度の酸化亜鉛を含有する亜鉛濃縮物を得ることができる。 (もっと読む)


181 - 200 / 450