説明

Fターム[4K001DB36]の内容

金属の製造又は精製 (22,607) | 湿式製錬 (3,083) | 溶液の処理 (1,653) | 固体吸着 (249) | 樹脂 (103)

Fターム[4K001DB36]に分類される特許

1 - 20 / 103


【課題】本発明は、高精度な64Cuの分離精製を行うことができる64Cuの分離精製方法及び64Cuの分離精製装置を提供する。
【解決手段】本発明は、混在するNi及び64Cuの中から64Cuを分離精製する64Cuの分離精製方法であって、Ni及び64Cuを溶液で溶解する溶解工程と、溶解したNi及び64Cuを通すことで、64Cuを第1の陰イオン交換手段に吸着させる第1の吸着工程と、第1の陰イオン交換手段に吸着した64Cuを当該溶液に溶出させ、64Cuを含む溶液を回収する第1の回収工程と、64Cuを含む溶液の濃度をニッケル溶出用濃度に調整する濃度調整工程と、調整した溶液を通すことで第2の陰イオン交換手段に64Cuを吸着させる第2の吸着工程と、第2の陰イオン交換手段から64Cuを含む溶液を回収する第2の回収工程と、を有する。 (もっと読む)


【課題】ポリアミン型アニオン交換樹脂にアンチモンが蓄積することを抑制して、白金族元素を効率よく回収することを可能にする白金族元素の分離回収方法を提供する。
【解決手段】白金族元素と、アンチモンを含む不純物元素を含有する塩化物溶液をポリアミン型アニオン交換樹脂と接触させて白金族元素を選択的に吸着させる吸着工程と、吸着処理後の樹脂を洗浄処理する洗浄工程と、洗浄処理後の樹脂から白金族元素を溶離させる溶離工程とを有する白金族元素の分離回収方法であって、吸着工程に際して、塩化物溶液の酸濃度を3.0規定以上4.0規定以下に調整した後、その塩化物溶液をポリアミン型アニオン交換樹脂と接触させる。 (もっと読む)


【課題】大量の金属溶解液からレアメタルを回収する場合でも、回収処理に用いる薬液の使用量を低減することができ、廃棄物の発生量が少なく、経済性に優れた金属回収方法を提供する。
【解決手段】実施形態の金属回収方法は、金属イオン吸着体2に金属溶解液1中の金属イオンを吸着させて回収する金属イオン吸着工程3と、金属イオン吸着体2に吸着させた前記金属イオンを溶離剤5によって溶離させる金属イオン溶離工程6と、前記金属イオンを含む溶離剤5を電気分解して金属成分を回収する電気分解工程8と、金属成分が回収された溶離剤5を回収する溶離剤回収工程10と、を有する。 (もっと読む)


【課題】廃棄されたリチウムイオン二次電池の正極などに用いられているリチウム含有金属酸化物より、効率よくリチウムが回収できるようにする。
【解決手段】第1工程S101で、遷移金属の酸化物とリチウムとが化合しているリチウム含有金属酸化物を、希硫酸および希硝酸より選択した酸水溶液に混合して選択的にリチウムが浸出した混合液を作製する。次に、第2工程S102で、上述した混合液を濾過して濾液を得る。次いで、第3工程S103で、濾液のpHを4.5以上に調整して調整濾液を作製する。次に、第4工程S104で、キレート吸着樹脂を用いて調整濾液より遷移金属を除去して除去濾液を作製する。次に第5工程S105で、除去濾液に炭酸イオンを供給して除去濾液より炭酸リチウムを沈殿させて回収する。 (もっと読む)


【課題】
原発1基で100万kWの電力を得るためには1日東京ドーム5杯分の海水を7℃上昇させて海洋放棄する。この大量の高温水が魚貝類や気象に与える影響は計り知れないし、豊富な蓄熱された媒体を利用しないのも非経済的である。そこで、冷却効果は維持しながら、廃水海水に蓄熱されたエネルギーを利用して、化石燃料の代替エネルギーと成る金属ナトリウムの製造を行うことが、本発明が解決しようとする課題である。
【解決手段】
冷却海水が貫流する復水器の中の細管を上部と下部の2系統に分け、上部細管中を流れる塩水の速度を遅くして海水への蓄熱量を多くして高温海水を作り蒸留水と濃縮塩水とを効率良く回収する。他方、下部細管では流れる海水の速度を早くして循環排水量を多くして効率の良い冷却を行い海洋放棄する。これにより復水器の役目と資源回収の役目を同時に満たすことができる。
(もっと読む)


【課題】水系正極材ペーストから効率よく有価金属を回収できる水系正極材ペースト中の有価金属回収方法を提供する。
【解決手段】水系正極材ペーストに凝集剤を混合して、活物質、導電材およびバインダーを凝集し、凝集体と非凝集体とを分離する。凝集剤は、イオン価数が2以上の無機凝集剤である。イオン価数の高い凝集剤は凝集効果が高いため、活物質、バインダーおよび導電材と、増粘剤および分散剤とを効率よく分離できる。無機凝集剤であるので、凝集体中に有機物が取り込まれることがなく、再利用工程において有機物起因の不具合が生じることを防止できる。 (もっと読む)


【課題】
溶液中に溶存する金属を捕集可能な金属吸着材を提供する。
【解決手段】
高分子基材に、下記一般式(1)で表わされるグリシジルアルキル(メタ)アクリレートのグラフト鎖が形成され、前記グラフト鎖はアミノ基又はスルホン酸基を有する金属吸着材。
【化1】


(一般式(1)中、Rは水素原子又はメチル基を表わし、Rは炭素数4〜10の直鎖状又は分枝鎖状のアルキレン基を表わす。) (もっと読む)


【課題】原料溶液中から不純物を除去する工程を設け、溶液組成に対するロバスト性の高いレアメタルの製造方法を提供することを目的とする。
【解決手段】レアメタルの製造方法において、第1残渣液を回収する工程(S11〜S14)と、ReO4-を抽出する工程(S15,S16)と、第1溶離液に逆抽出する工程(S17)と、電解して陰電極にReを採取する工程(S18,S19)と、第2残渣液を回収する工程(S20)と、水素イオン指数をpH3以上pH5未満に調整する工程(S21,S22)と、希土類金属イオン(RE3+)を抽出する工程(S23,S24)と、第2溶離液に逆抽出する工程(S25)と、(COOH)2を添加してRE2(C24)3を沈殿させる工程(S26)と、希土類金属酸化物(RE23)に転換させる工程(S27,S28)と、溶融塩電解して陰電極に希土類金属(RE)を採取する工程(S29,S30)と、を経る。 (もっと読む)


【課題】パラジウム(Pd)を効率よく安価に取り出すPdイオンコレクターを提供する。
【解決手段】有機シリコン化合物および界面活性剤から作製した高秩序化メソポーラスシリカ(HOMS)に、目標金属であるPdを選択的に吸着するDDHMP等のPdイオン吸着性化合物を担持させる。Pdイオン吸着性化合物を担持したHOMSを目標金属であるPdが溶解された溶液と接触させ、目標金属であるPdイオンを選択的にHOMSに担持されたPdイオン吸着性化合物に吸着させる。目標金属であるPdイオンを吸着したPdイオン吸着性化合物を担持したHOMSを化学的処理し、目標金属であるPdイオンをHOMSに担持されたPdイオン吸着性化合物から遊離させ、目標金属であるPdを回収する。Pdイオンが遊離されたPdイオン吸着性化合物を担持したHOMSは、再使用できる。このPdイオン吸着性化合物を担持したHOMSはPdコレクター・濃度検出センサーとしても使用できる。 (もっと読む)


【課題】
煩雑な工程を使用せず、かつ、比較的簡便な設備によって、リチウムイオン電池から有価金属を回収する方法を提供する。
【解決手段】
リチウム及び遷移金属元素とを含むリチウムイオン電池の正極材を酸性溶液に溶解させてリチウムイオンと遷移金属イオンとを酸性溶液内に生成させ、その酸性溶液と回収液とを陰イオン透過膜を挟んで流してリチウムイオンを酸性溶液から回収溶液へ透析させ、透析でリチウムイオンが溶解した回収液から、リチウムイオンを回収する。このときに、リチウムイオンの水和構造の水和構造を破壊する添加剤を添加することにより、リチウムイオンの透過膜透過速度が向上し、リチウム選択透過率及び回収率が向上する。 (もっと読む)


【課題】 電解液中に含まれるビスマスを効率的に高い回収率で回収することができるビスマスの回収方法及び回収装置を提供する。
【解決手段】 ビスマスを含有する電解液を樹脂を充填したカラム11に給液させることによって樹脂に吸着させたビスマスを、溶離液を給液して溶離させ、カラム11から排液された溶離液をビスマス回収部18へと送液してビスマスを回収するビスマスの回収方法において、カラム11に給液する給液配管12の内部圧力及びカラム11から排液する排液配管13の内部圧力を測定し、その測定された給液配管12と排液配管13の内部圧力差の発生に応じて、溶離液をビスマス回収部18に送液する。 (もっと読む)


【課題】リチウム含有固体からリチウムのみを選択的に高収率で、更に廃棄物を最小限に抑えることにより、高い経済性で回収する方法を提供する。
【解決手段】酸に2価以上の金属の塩が溶解している酸性浸出液でリチウム含有固体からリチウムを浸出して、リチウム回収溶液を得る工程を含む、リチウムイオン電池に由来するリチウム含有固体からリチウムを回収する方法。 (もっと読む)


【課題】インジウム酸化物を含有する物質、例えば、ITOスクラップに含有される不純物を除去して高純度の水酸化インジウムを製造する方法を提供する
【解決手段】インジウム酸化物を含有する物質を酸で溶解してインジウム溶液とする工程(A)、該インジウム溶液に酸化剤を添加してORP(銀/塩化銀電位基準)を600〜900mVとする工程(B)、該酸化剤を添加したインジウム溶液を強酸性陽イオン交換樹脂に通して不純物陽イオンを除去する工程(C)、強酸性陽イオン交換樹脂に通した後のインジウム溶液のpHを1.5〜3.0に調整して不純物陰イオンの沈殿物を生成し、これを固液分離によりを除去する工程(D)、工程(D)後のろ液のpHをアルカリ添加により8以上として水酸化インジウムの沈殿物を生成し、固液分離することによって、水酸化インジウムの濾物を得る工程(E)、を含む水酸化インジウムの製造方法。 (もっと読む)


【課題】ITOをエッチングしたシュウ酸廃液からのインジウムを回収する方法、および同時に純度の高いシュウ酸も回収する方法を提供する。
【解決手段】インジウムを含んだシュウ酸廃液(ITOのシュウ酸エッチング液)または液晶パネルを1−10%シュウ酸でインジウムを溶出させた溶出液を、まず、アシッドリターデション機能を有するアニオン交換樹脂を使用することにより、まずオキサラトインジウムを樹脂に吸着させる。次に0.5から5モルの塩酸を樹脂に通し、樹脂に吸着されているシュウ酸は塩酸と置換されて脱離し回収再利用されオキサラトインジウムはインジウムアコ錯体としてアニオン樹脂にとどまる。その後、水を通液することにより、インジウムアコ錯体はインジウムカチオンとして脱離させ、インジウムを分離・濃縮回収する。 (もっと読む)


【課題】溶液から金属、特にパラジウムを除去するスカベンジャー担体を提供する。
【解決手段】スカベンジャー担体を、リンカーを介して担体に結合した、ヒドロカルビル基、過ハロゲン化ヒドロカルビル基又はヘテロシクリル基を有する1,3-ケトエステル類又は1,3-ケトアミド類又はこれらの混合物から選択されるペンダント基を含む官能性化担体と、置換されているヒドラジン又はそれらの塩又は特定の化学構造を有するアミンとの反応により得る。 (もっと読む)


【課題】少なくともインジウムと第二鉄イオンを含有する溶液から、効率良く高純度のインジウムを回収する方法を提供することにある。
【解決手段】第二鉄イオンを第一鉄イオンに還元する工程と、得られた溶液をインジウムに対するキレート基を有する磁気ビーズに接触させる工程と、インジウムを吸着した磁気ビーズを磁気分離する工程と、脱着液を用いて磁気ビーズからインジウムを脱着する工程を含むことを特徴とするインジウム回収方法を用いる。 (もっと読む)


【課題】精製工程での不純物除去の負荷を良好に低減することができる廃酸からのレニウム回収方法及びシステムを提供する。
【解決手段】少なくともレニウム及びビスマスを含む廃酸からレニウムを回収する方法であって、廃酸を陰イオン交換樹脂に通液して、レニウム及びビスマスを前記樹脂に吸着させる吸着工程と、レニウム及びビスマスが吸着した前記樹脂に溶離液を通液してレニウム及びビスマスを樹脂から溶離させる溶離工程と、溶離後液中に含まれるレニウム及びビスマスを疑似移動床式クロマトグラフィーで分離・回収する分離・回収工程とを含む方法。 (もっと読む)


【課題】高純度のビスマスを回収する。
【解決手段】ビスマス及び塩化物イオンを含む酸性溶液にアルカリを添加して、pHを2.5以上4.0未満の範囲で維持することによりビスマスを含有する中和澱物を含むスラリーを得て、スラリーから中和澱物を回収する中和澱物回収工程(S1、S2)と、中和澱物回収工程(S1、S2)で回収した中和澱物に、4mol/l以上のアルカリ溶液を添加し、攪拌して、中和澱物から塩素を分離して、ビスマス澱物を回収するビスマス澱物回収工程(S3、S4)とを有する。 (もっと読む)


【課題】金属捕集材を海中に係留して海水に含まれる金属を捕集する際に、常に高い金属捕集効率を維持する金属捕集システム及び方法を提供する。
【解決手段】海水及び金属捕集材maを流動床3に収容し、海水中で金属捕集材を流動させることにより、海水に含まれる金属を前記金属捕集材に吸着させる。海水を濃縮し、金属濃度の高い海水を前記流動床へ供給する海水濃縮装置を具備し、さらに流動床内での微生物の増殖を抑制可能なように、流動床の内部へ光が入射しないように配置された遮光板を具備する。 (もっと読む)


【課題】 ヒ素濃度の高い銅電解スライムを塩素浸出した浸出液から有価金属を回収する場合に、金を抽出分離した後の抽出残液を陰イオン交換樹脂で処理した後、その吸着後残液から高純度のセレンを回収する方法を提供する。
【解決手段】 銅電解スライムの浸出液から金を抽出し、陰イオン交換樹脂で白金族元素を吸着させた後、その吸着後残液に亜硫酸水素ナトリウムを添加してパラジウムを含む沈殿物を濾過して分離し、得られた濾液に二酸化硫黄を吹き込んでセレンを還元して回収する。吸着後残液の塩化物濃度を2.0〜2.5モル/lに及び温度を30〜50℃に調整することが好ましい。 (もっと読む)


1 - 20 / 103