説明

Fターム[4K013EA28]の内容

溶融状態での鋼の処理 (7,585) | 処理剤、添加剤それ自体 (1,656) | 半金属を含むもの (116) | 半金属がSiであるもの (113)

Fターム[4K013EA28]に分類される特許

1 - 20 / 113



【課題】転炉吹錬、2次精錬、鋳込み工程を有する製鋼プロセスにおける、適正な転炉吹錬終点温度を設定する方法を提供する。
【解決手段】転炉吹錬終了以降の溶鋼温度降下量を、転炉出鋼時の脱酸形態に応じて、脱酸形態ごとに予め設定された溶鋼温度降下量の予測式を用いて予測し、予測された溶鋼温度降下量と要求溶鋼温度から、転炉吹錬の吹錬終点温度を設定する。溶鋼温度降下量の予測は、選定した操業因子について、予め、脱酸形態ごとに、重回帰分析により回帰係数を求め、その回帰係数を用いて予測式を設定し、その予測式を用いて算出する。これにより、予測式の適用範囲が拡大し、予測精度が向上し、製造コストの低減が可能となる。 (もっと読む)


【課題】真空精錬方法における排ガス中の酸素濃度などの情報をより適確に利用することで、溶鋼の精錬方法を合理化する。
【解決手段】ある時点(ti)での排ガス流量測定値(Vi)を計測し、この時点(ti)において排ガス流量測定器を通過していた排ガス中の酸素質量濃度(Oi)の値を、時点(ti)において該排ガス流量測定器を通過していた排ガスが、酸素質量濃度分析計に到達するまでに要した時間(Δti)を加算した時点(ti+Δti)における酸素質量濃度分析値とする。このことで、排ガス流量測定値(Vi)を計測した時点(ti)における排ガス中酸素質量濃度の計算精度を高める。 (もっと読む)


【課題】REMの歩留を確保しつつ、ノズル閉塞性の向上やノズル溶損性の向上を図ることによって安定的に操業することができるようにする。
【解決手段】REM添加鋼の製造方法は、まず、REM=20〜40質量%、Ca=1〜5質量%、残部にSiを含み且つ5×Ca濃度(質量%)+5≦REM濃度(質量%)≦5×Ca濃度(質量%)+25を満たす組成で、さらに、1mm以下の粒度のものが25%未満、100μm以下の粒度のものが15%未満、平均粒度が500μm〜700μm、最大粒度が5mmとなるREM添加用ワイヤーを用意する。二次精錬処理にて、S≦0.0020質量%、O≦0.0030質量%、0.01≦Al≦0.07質量%になるよう溶鋼の成分調整を行った後、前記REM添加用ワイヤーを、0.05〜1kg/min/tonの添加速度で溶鋼に添加すると共に、REM添加時の攪拌動力密度を1〜20W/tonとして精錬を行う。 (もっと読む)


【課題】REMの歩留を確保しつつ、ノズル閉塞性の向上やノズル溶損性の向上を図ることによって安定的に操業することができるREM添加用ワイヤーを提供する。
【解決手段】REM添加用ワイヤー5は、REM=20〜40質量%、Ca=1〜5質量%、残部にSiを含み、且つ、5×Ca濃度(質量%)+5≦REM濃度(質量%)≦5×Ca濃度(質量%)+25となり、さらに、1mm以下の粒度のものが25%未満、100μm以下の粒度のものが15%未満、平均粒度が500μm〜700μm、最大粒度が5mmとなっている。 (もっと読む)


【課題】耐衝撃性及び表面性状に優れ、かつニッケル製錬プラント及び海洋構造物等への使用に耐えるFe−Ni−Cr−Mo合金を提供する。
【解決手段】質量%で、C:0.001〜0.015%、Si:0.01〜0.30%、Mn:0.01〜0.50%、P:0.020%以下、S:0.0015%以下、Ni:30.00〜32.00%、Cr:26.00%を超え28.00%以下、Mo:6.00〜7.00%、Cu:1.00%を超え1.40%以下、Al:0.001〜0.10%、N:0.15〜0.25%、B:0.0005〜0.0030%、Ca:0.0001〜0.0020%、Mg:0.0001〜0.0050%、O:0.0001〜0.0050%、残部:Feおよび不可避不純物からなる。 (もっと読む)


【課題】発銹起点となるCaSなど水溶性の硫化物系非金属介在物の生成を抑制し、発銹の少ないフェライト系ステンレス鋼板を製造する。
【解決手段】CaO,Al23を主に含有する酸化物系介在物に関して、直径2μm以上の介在物平均組成が[(CaO)+(MgO)]/[(Al23)+(SiO2)+(TiO2)]≦0.50,(FeO)≦1.5%を満足し、かつ鋼中の[S]濃度が0.002%以下であることを特徴とする発銹の少ないフェライト系ステンレス鋼である。 (もっと読む)


【課題】真空脱ガス装置の耐火物の溶損を抑制する。
【解決手段】真空脱ガス装置の脱ガス槽の内部に配置される吹錬上吹きランスの先端に装着されるノズルを介して酸素ガスを溶鋼に吹き付けて酸素吹錬する際に、第1の開口部2aおよび第2の開口部2bを有する管状の本体2と、本体2の内部で第1の開口部2aと第2の開口部2bとの間に本体2の内壁2cから離間して配置される流動制御体3とを備えるノズル1を用いて真空脱ガス装置の耐火物の溶損を抑制する。本体2は、第1の開口部2aと第2の開口部2bとの間の内壁2cに環状に形成される突出部4を有する。流動制御体3は、第1の尖端部3a及び第2の尖端部3bとを有するとともに、その一部が軸方向に関して突出部4の形成位置に存在するように、配置される。流動制御体3の最大径を有する部分は、突出部5が形成される位置よりも第1の開口部2aの側に、配置される。さらに、突出部4は、第2の開口部2bに一致する位置に形成される。 (もっと読む)


【課題】入熱量が50kJ/mm以上の大入熱溶接を行なった場合であってもHAZ靱性に優れた鋼材およびその製造方法を提供する。
【解決手段】(a)全酸化物系介在物の組成を測定して単独酸化物に質量換算したとき、ZrO2:5〜50%、REMの酸化物:5〜50%、CaO:50%以下(0%を含まない)を満足し、且つ、(b)全介在物のうち、円相当直径が0.1〜2μmの介在物が120個/mm2以上、3μm超の酸化物が5.0個/mm2以下、5μm超の酸化物が5.0個/mm2以下であり、全介在物の組成を測定したとき、全介在物の個数に対して、(c−1)REMとZrのモル比が0.6〜1.4を満足するREMおよびZr含有介在物Iの個数割合が30%以上であるか、および/または(c−2)REMとZrの合計モル数と、AlとCaとTiの合計モル数との比が0.5〜1.2を満足するREM、Zr、Al、Ca、およびTi含有介在物IIの個数割合が40%以上を満足する鋼材。 (もっと読む)


【課題】ラバールノズルより反応効率を向上させることができる溶融金属減圧精錬用ノズルを提供する。
【解決手段】溶鋼精錬用ランスの先端に配置されて溶鋼の表面に減圧下で気体を吹き付ける溶融金属減圧精錬用ノズル1である。第1の開口部2aおよび第2の開口部2bを有するとともに軸方向へ向けて酸化性ガスを流す管状の本体2と、本体2の内部であって第1の開口部2aと第2の開口部2bとの間に内壁2cから離間して配置される流動制御体3とを備える。本体2は、第1の開口部2aと第2の開口部2bとの間の内壁2cに環状に形成される突出部4を有する。流動制御体3は、横断面積が軸方向へ対称に増加する第1の尖端部3aと、軸方向へ第1の尖端部3aに並設されて、横断面積が軸方向へ対称に減少する第2の尖端部3bとを有し、かつ第2の尖端部3bの最先端部5は、軸方向について第2の開口部2bと所定距離L離れて配置される。 (もっと読む)


【課題】大入熱溶接を施した際のHAZ靭性が優れると共に、低降伏比を実現でき、更には、良好な母材靭性も確保することができる溶接熱影響部の靭性に優れた厚鋼板を提供することを課題とする。
【解決手段】所定の化学成分組成を満足し、酸素を除く構成元素が、10%<Ti、Al<20%、5%<Ca<40%、5%<REM<50%および/または5%<Zr<40%を満足する酸化物を含有し、円相当径が2μm未満の酸化物が200個/mm以上、円相当径が2μm以上5μm未満の酸化物が30〜70個/mm、円相当径が5μm以上の酸化物が30個/mm未満存在すると共に、円相当径が100nm以下のTi含有窒化物を5×10個/mm以上含有する。 (もっと読む)


【課題】シリコン塩化物の製造に用いられ、塩化物が含まれるシリコン含有粉末を、腐食性ガスを発生させることなく、処理することができるシリコン含有ペレットの製造方法を提供する。
【解決手段】金属シリコン粉末を、塩化水素を含有するガスまたは水素と塩化珪素を含有するガスと流動層内で反応させて目的のシリコン塩化物を得て、流動層から排出されるシリコン塩化物含有ガスからシリコン含有粉末を分離工程で分離してシリコン塩化物を製造する際に、分離されたシリコン含有粉末の少なくとも一部を系外へ取り出し、成型工程で取り出されたシリコン含有粉末と非含水性バインダーを混合した後に圧縮成型することを特徴とするシリコン含有ペレットの製造方法である。 (もっと読む)


【課題】
HDD部材や、薄膜シリコン型太陽電池基板をはじめとする半導体層形成基板などの、精緻な表面が要求される部材に適したステンレス鋼板であって、無電解Niめっき等の表面処理を施さなくても、ステンレス鋼板の裸の表面のままで、クリーン環境下で行われる洗浄工程で優れた洗浄性を呈する表面キズが少ないステンレス鋼板を大量生産に適した手法にて提供する。
【解決手段】
C:0.15重畳%以下、Si:0.1〜2.0質量%、Mn:0.1〜付質量%、S:0.007質量%以下、Ni:2〜15質量%、Cr:15〜19質量%、N:0.2質量%以下、Al:0.01質量%以下、残部がFe及び不可避的不純物からなり、Si/Alの質量比が100以上になる組成を有するとともに、分放している非金属介在物が、MgO:7質量%以下、AlO:35質量%以下、Cr:10質量%以下を含み、残部がMn(O,S)とSiOから構成されたステンレス鋼から製造される鋼板であり、鋼板表面において、深さ0.5μm以上且つ開口面積10μm以上であるマイクロピットの存在密度が0.01m当たり10.0個以下であり、且つ前記ピットの開口部面積率が1.0%以下で分布していることを特徴とする、洗浄性に優れたオーステナイト系ステンレス鋼。 (もっと読む)


【課題】 S濃度が0.0020質量%以下、Ti濃度が0.0020質量%以下、Al濃度が0.0220〜0.0270質量%の範囲である高Si鋼の溶製方法を提供する。
【解決手段】 Si:3.0〜3.5質量%、S:0.0020質量%以下、Ti:0.0020質量%以下、Al:0.0220〜0.0270質量%である高Si鋼の溶製方法であって、転炉で脱炭精錬された後の溶鋼の転炉から取鍋への出鋼時に、取鍋内の溶鋼にSi源を添加するとともにCaO源及びAl23源を添加し、その後の真空脱ガス設備での二次精錬後の取鍋内スラグの組成が、(1)式、(2)式及び(3)式を満足する範囲内になるように制御する。
1.0 ≦(スラグ塩基度)≦2.0 …(1) (質量%TiO2)≦0.2/(スラグ塩基度) …(2) 65×(スラグ塩基度)-2.9≦(質量%Al2O3)≦180×(スラグ塩基度)-3.4 …(3) (もっと読む)


無方向性電気鋼板を提供する。本発明は、重量%で、Al:1.0〜3.0%、Si:0.5〜2.5%、Mn:0.5〜2.0%、N:0.001〜0.004%、S:0.0005〜0.004%を含有し、残部がFe及びその他の不可避的不純物からなり、Al、Mn、N及びSは{[Al]+[Mn]}≦3.5、0.002≦{[N]+[S]}≦0.006、300≦{([Al]+[Mn])/([N]+[S])}≦1400の組成式を満足するように含有される、磁性に優れた無方向性電気鋼板及びその製造方法を提供する。これにより、Al、Si、Mn、N及びSの添加成分を最適化して粗大な介在物の分布密度を高めることにより結晶の成長性及び磁壁の移動性を向上させて磁性に優れたうえ、硬度が低くて客先の加工性及び生産性にも優れた最高級無方向性電気鋼板を製造することができる。
(もっと読む)


【課題】比較的高炭素のシリコクロムから炭素を除去することによって低炭素のシリコクロムを得ることができるシリコクロムの脱炭素方法を提供する。
【解決手段】シリコクロム及びスラグを電気炉に入れ、シリコクロム及びスラグを電気炉で溶解する(S21)ことによって、シリコクロム中の炭化珪素を比重差により浮上させるとともにスラグ中に懸濁させ、その後、シリコクロムからスラグを分離する(S23,S24)ことによって、シリコクロムから炭化珪素を分離する。 (もっと読む)


【課題】塩基度(C/S)が2以下となるような低塩基度スラグに対して優れた耐用性を示す炭素含有マグネシア質耐火物を提供する。
【解決手段】マグネシア、黒鉛、及びAl−Mg合金を含んだ炭素含有マグネシア質耐火物であり、Al−Mg合金を3.5質量%〜14質量%含有し、かつ、Al−Mg合金と黒鉛の質量比(Al-Mg合金/黒鉛)が0.5以上であることを特徴とする低塩基度スラグ耐用性を備えた炭素含有マグネシア質耐火物である。 (もっと読む)


【課題】ランタノイド濃度の上限規制がなく、かつノズル閉塞が発生しにくい連続鋳造用鋼およびその製造方法を提供する。
【解決手段】S:0.005質量%以下、O:0.005質量%以下、ランタノイド:0.01質量%以上0.3質量%以下、およびCa:0.0012質量%以上0.0055質量%以下を含有する連続鋳造用鋼において、鋼中の酸硫化物系非金属介在物が、ランタノイド、Ca、SおよびOを合計30mol%以上含有し、同時にP、Al、Mg、SiおよびTiのうち1種類以上を含有し、かつ前記非金属介在物中のランタノイド、CaおよびSの合計モル数に対するCaのモル数の割合が30mol%以上、Sのモル数の割合が30mol%以下であることを特徴とする連続鋳造用鋼。この連続鋳造用鋼の製造工程のうち、溶鋼にランタノイドとCaを添加する溶鋼処理工程において、Caとランタノイドを同時に添加する。 (もっと読む)


【課題】入熱量が50kJ/mm以上の大入熱溶接を行なった場合であってもHAZ靱性に優れた鋼材およびその製造方法を提供する。
【解決手段】C、Si、Mn、P、S、Al、Ti、REM、Ca、Zr、N、Oを含有し、残部が鉄および不可避不純物からなる鋼材であって、(a)前記鋼材は、Zr、REM、およびCaを含有する酸化物を含み、(b)前記鋼材に含まれる全酸化物の組成を測定して単独酸化物に換算したとき、ZrO2:5〜50%、REMの酸化物:5〜50%、CaO:50%以下(0%を含まない)を満足し、且つ、(c)前記鋼材に含まれる全介在物のうち、円相当直径が0.1〜2μmの介在物が観察視野面積1mm2あたり120個以上、3μm超の酸化物が観察視野面積1mm2あたり5.0個以下、5μm超の酸化物が観察視野面積1mm2あたり5.0個以下を満足する鋼材である。 (もっと読む)


【課題】介在物組成が高度に制御された耐HIC鋼製造方法を提供する。
【解決手段】溶鋼を精錬して該溶鋼のRH処理を終了する以前に、該溶鋼に含まれるSの質量濃度を10ppm以下,T.[O]の質量濃度を40ppm以下とし、かつ、該RH処理を終了した後の溶鋼のT.[O]分析値に基づいて、該溶鋼へ添加するCa質量を(1)式および(2)式を満たすように調整する。
A(kg/t)=B×T.[O]+0.02・・・・(1)
0.003≦B≦0.006・・・・・(2)
A:Ca添加質量(kg/t)
B:係数
T.[O]:RH処理終了後のCa添加前の溶鋼の酸素濃度分析値(ppm)
溶鋼を精錬してRH処理を終了する以前に、該溶鋼に含まれる成分を質量濃度でC:0.03%以上0.07%以下,Mn:1.1%以上1.5%以下としてもよい。 (もっと読む)


1 - 20 / 113