説明

真空脱ガス装置の耐火物の溶損抑制方法

【課題】真空脱ガス装置の耐火物の溶損を抑制する。
【解決手段】真空脱ガス装置の脱ガス槽の内部に配置される吹錬上吹きランスの先端に装着されるノズルを介して酸素ガスを溶鋼に吹き付けて酸素吹錬する際に、第1の開口部2aおよび第2の開口部2bを有する管状の本体2と、本体2の内部で第1の開口部2aと第2の開口部2bとの間に本体2の内壁2cから離間して配置される流動制御体3とを備えるノズル1を用いて真空脱ガス装置の耐火物の溶損を抑制する。本体2は、第1の開口部2aと第2の開口部2bとの間の内壁2cに環状に形成される突出部4を有する。流動制御体3は、第1の尖端部3a及び第2の尖端部3bとを有するとともに、その一部が軸方向に関して突出部4の形成位置に存在するように、配置される。流動制御体3の最大径を有する部分は、突出部5が形成される位置よりも第1の開口部2aの側に、配置される。さらに、突出部4は、第2の開口部2bに一致する位置に形成される。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、真空脱ガス装置の耐火物の溶損抑制方法に関する。
【背景技術】
【0002】
鉄鋼製品のハイエンド化や高純度化が求められる昨今の鉄鋼精錬においては、真空脱ガス装置は必要不可欠な装置となっている。真空脱ガス装置の内部には、通常、耐火物が用いられているため、耐火物の寿命向上により運用コストを改善することが可能になる。
【0003】
真空脱ガス装置の内部の耐火物の損傷原因は、真空脱ガス処理中および非真空脱ガス処理時のヒートショックによる損傷と、真空脱ガス処理中の上吹きランスからの酸素ジェットにより生じた溶鋼飛散(スピッチング)による損傷とに大別される。
【0004】
ヒートショックによる損傷に関しては、従来から様々な提案がなされている。例えば、特許文献1には、酸素吹込み羽口から容器内部に可燃性ガスを導入して燃焼させ、槽内の内張り耐火物の予熱あるいは保熱を行って、処理時および非処理時のヒートショックを低減することによって、槽寿命を平均で38%延長できることが開示されている。
【0005】
また、特許文献2には、非真空脱ガス処理中に、浸漬管の開口部の下方に溶鋼の入った鍋を配置することにより、真空脱ガス槽が鋼の脱ガス処理する際のオンライン位置にて連続稼働中に、真空脱ガス槽内のレンガ使用部位の最低温度を800〜1400℃の範囲に調整することによって耐火物の損傷速度を脱ガス処理1回当たり0.6mm/chまで低減できることが開示されている。
【0006】
これに対し、酸素ジェットにより生じた溶鋼飛散による損傷に関しては、ノズル形状による影響が大きい。現在、真空脱ガス装置のノズルとしてラバールノズルを用いる技術が多数開発され、例えば特許文献3により開示された方法などが知られている。しかしながら、ラバールノズルには多くの制約がある。例えば、ラバールノズルのスロート部断面積や出口断面積などの形状は、ガス流量と供給側ガス圧力、出口側雰囲気圧力によって規定される。すなわち、ラバールノズルには使用条件に応じた適正なノズル形状が存在する。使用条件が一定であれば問題ないが、使用条件を変更する場合や使用条件が変化する場合には、別の形状を有するラバールノズルに交換する必要がある。そのため、操業条件の自由度がないことから、これまで酸素ジェットにより生じる溶鋼飛散による損傷に関する対策は、殆ど行われていない。この点に関する対策としては、操業条件に自由度のあるランスを用いることが不可欠になる。
【0007】
ラバールノズルのこのような制約を解消する新たなノズルが特許文献4により開示されている。特許文献4により開示されたノズルは、ノズルの先端部内に、長手方向の中央部からノズルの先端部の端部及びその反対側の端部に向かって横断面積が小さくなる形状を有する気体流路形成体を配置することにより環状スリットの空間部を形成し、この気体流路形成体が特定の形状を有することによって、操業条件の自由度を高められるとしている。
【先行技術文献】
【特許文献】
【0008】
【特許文献1】特開平8−283830号公報
【特許文献2】特許第4216745号明細書
【特許文献3】特開平2−54714号公報
【特許文献4】特開2002−226907号公報
【発明の概要】
【発明が解決しようとする課題】
【0009】
本発明は、上記課題に鑑み、真空脱ガス装置の耐火物の溶損抑制方法を提供することを目的とする。
【課題を解決するための手段】
【0010】
本発明は、真空脱ガス装置の脱ガス槽の内部に配置される吹錬上吹きランスの先端に装着されるノズルを介して酸素ガスを溶鋼に吹き付けて酸素吹錬する際における真空脱ガス装置の耐火物の溶損抑制方法であって、(a)ノズルが、第1の開口部および第2の開口部を有するとともに第1の開口部から第2の開口部へ向かう軸方向へ向けて酸素ガスを流す管状の本体と、第1の開口部と第2の開口部との間に本体の内壁から離間して配置される流動制御体とを備えること、(b)本体が、第1の開口部と第2の開口部との間の内壁に環状に形成される突出部を有すること、(c)流動制御体が、横断面積が軸方向へ対称に増加する第1の尖端部と、軸方向へ第1の尖端部に並設されて横断面積が軸方向へ対称に減少する第2の尖端部とを有すること、(d)流動制御体が、その一部が軸方向に関して突出部の形成位置に存在するように、配置されること、(e)流動制御体の最大径を有する部分が、突出部が形成される位置よりも第1の開口部の側に、配置されること、および(f)突出部が、第2の開口部に一致する位置に形成されることを特徴とする真空脱ガス装置の耐火物の溶損抑制方法である。以下、この発明を「第1発明」という。
【0011】
また、本発明は、第1発明における(f)項に替えて、(g)突出部が、(1)式:0<L/A≦0.23(ただし、(1)式において、Lは突出部から第2の開口部までの長さ(mm)であり、Aは突出部と流動制御体との間に環状に形成されるスリットの断面積(mm)である。)を満足する位置に形成されることを特徴とする真空脱ガス装置の耐火物の溶損抑制方法である。以下、この発明を「第2発明」という。
【発明の効果】
【0012】
本発明により、真空脱ガス装置の脱ガス槽の内部に配置される吹錬上吹きランスの先端に装着されるノズルを介して酸素ガスを溶鋼に吹き付けて酸素吹錬する際に、真空脱ガス装置の耐火物の溶損速度を大幅に低減できる。
【図面の簡単な説明】
【0013】
【図1】図1は、本発明で用いるノズルの断面形状を示す説明図である。
【図2】図2は、最狭部断面積と地金差し込み頻度との関係を示すグラフである。
【図3】図3は、ラバールノズルまたは本発明で用いるノズルの溶損速度の関係の一例を示すグラフである。
【図4】図4は、L/Aと溶損速度との関係を示すグラフである。
【図5】図5は、L/Aと湯面位置での噴流中心動圧との関係を示すグラフである。
【図6】図6は、本発明で用いるノズルの断面形状の変更例を示す説明図である。
【発明を実施するための形態】
【0014】
1.本発明の概要
特許文献4の図3により示されるように、内部に気体流路形成体を配置されたノズルでは、気体は、雰囲気圧力やガス流量に応じて気体流路形成体に沿って膨張および加速される。この原理によって雰囲気圧力やガス流量によらず安定した酸化性ガス噴流が得られる。
【0015】
酸化性ガスを溶鋼に吹き付ける場合、真空槽内の溶鋼表面に上吹きランスを介して酸素ガスを上吹きする方法が用いられる。ランスの先端に装着されたノズルから吐出された酸化性ガスは、噴流となって溶鋼表面に到達し、溶鋼と反応する。酸化性ガス噴流が強いほど溶鋼飛散量が増加する。そのため、耐火物の溶損抑制を推進するためには、酸素流量を低下せずに酸化性ガス噴流を低下することが重要になる。
【0016】
酸素流量を低下せずに酸化性ガス噴流を低下する方法として、ノズルの内部の最狭部の断面積を拡大することが考えられるが、従来のラバールノズルの最狭部の断面積を広げると、ノズルの内部へ地金の侵入が顕著になって操業が困難となるため、ノズルの内部の最狭部の断面積を広げることはできない。
【0017】
図1は、本発明で用いるノズル1の断面形状を示す説明図である。
本発明者らは、鋭意検討を重ねた結果、図1に示す形状のノズル1を想到した。このノズル1は、図示しない溶融金属精錬用ランスの先端に装着されて、溶融金属の表面に気体を吹き付けるものである。
【0018】
ノズル1は、管状の本体2と流動制御体3とを備える。本体2は、第1の開口部2aおよび第2の開口部2bを有するとともに、第1の開口部2aから第2の開口部2bへ向かう軸方向へ向けて気体を流す。本体2は突出部4を有する。突出部4は、第1の開口部2aと第2の開口部2bとの間の内壁2cに環状に形成される。
【0019】
流動制御体3は、第1の開口部2aと第2の開口部2bとの間に本体2の内壁2cから離間して配置される。流動制御体3は、第1の尖端部3aおよび第2の尖端部3bを有する。第1の尖端部3aは横断面積が軸方向へ対称に増加する。第2の尖端部3bは軸方向へ第1の尖端部3aに連続するとともに、横断面積が軸方向へ対称に減少する。
【0020】
本体2と流動制御体3との間の最狭部5の形状はスリット状となる。最狭部5の断面積を広げた場合においても、ラバールノズルと比較して、隙間が狭いことから、ノズル1の内部へ地金の侵入を抑制でき、これにより、酸素流量を低下せずに酸化性ガス噴流を低下することが可能になる。
【0021】
本発明者らは、酸素流量を低下せずに酸化性ガス噴流をさらに低下するには、流動制御体3に沿って進行するガス噴流を抑制もしくは緩和すればよいと考え、その具体的な手段として、内部に環状のスリットの区間部を形成するための流動制御体3が本体2のノズル絞り部に配置されたノズル1において、ノズル絞り部の先端にノズル径と同一の内径の直管部6を設置すればよいと考えた。
【0022】
本発明者らは、まず、このようなノズル1を用いた時の、真空脱ガス装置の耐火物の溶損速度に及ぼす影響を調査し、直管部6の長さL、および最狭部5のスリット状面積Aと溶損速度との間に以下の相関関係が存在することを知見した。
【0023】
この調査では、図1に示す断面形状を有し、直管部6の長さLを変化させた各種のノズル1を用い、溶鋼量は250〜300トンとし、酸化性ガスには酸素ガスを用い、さらに、ガス流量は2500Nm/hrとした。L=0の場合が第1発明で用いるノズルである。また、最狭部断面積に関しては、図2のグラフに示す各ノズルの最狭部断面積と、100ヒートあたりの地金差し込み頻度の関係を参考に、同一地金差し込み頻度を前提として連続操業可能な値とした。図2の前提条件はL=0である。
【0024】
1処理当たりの酸素ガス量は、溶鋼温度上昇量に応じて50〜250Nmの範囲で調整した。処理温度は1580〜1630℃とし、真空脱ガス処理時間は15〜20分間となるように調整した。酸素上吹き時の真空槽内の雰囲気圧力は4000〜10000Paとした。
【0025】
調査は、まず、ラバールノズルと、L=0mmのノズル1とを用いて、それぞれ処理を20ヒート実施し、その前後で下部槽の煉瓦残厚を測定し、溶損速度を比較した。耐火物の溶損速度は、(2)式により求めた。
溶損速度(mm/ch)=(20ヒート処理前後の煉瓦残厚差)/20ヒート×100 ・・・・・(2)
ノズル1では、図1において、制約条件である冷却構造や地金差し込み防止を考慮してノズル1の管径D=70mmとし、最狭部Wのスリット断面積A=800mmとした。その他の形状の規定理由は後述する。比較したラバールノズルは、スロート部断面積=700mmとした。
【0026】
図3は、ラバールノズルまたは本発明で用いるノズル1の溶損速度の関係の一例を示すグラフである。
図3にグラフで示すように、ラバールノズルと比較して、ノズル1では溶損速度を大幅に低減できることがわかる。これは、ノズル1を用いることによって、地金差し込みを抑制しながら中心動圧をラバールノズルと比較して低下することができるため、地金飛散量が低減するためと考えられる。
【0027】
次に本発明のノズル1を用いて、任意の直管部6の長さLで20ヒート処理を行い、その前後で下部槽の煉瓦残厚を測定し、直管部6の長さLが、溶損速度へ及ぼす影響を調査した。ただし、ガス噴流とノズル形状の観点から、指標としてスリット断面積Aとの比(L/A)を用いた。比(L/A)=0は突出部4が第2の開口部2bと同じ平面上に存在することを示し、比(L/A)>0は突出部4が第2の開口部2bよりも、本体2の内側に存在することを示す。L/Aが大きくなる場合は、Lが大きくなっても、Aが小さくなっても構わない。
【0028】
図4は、比(L/A)と溶損速度との関係を示すグラフである。図4に示すグラフから、直管部6を設置しない比(L/A)=0のノズルに比べ、直管部6を設置すると溶損速度が低下するが、比(L/A)が0.23を超えて大きくなると溶損速度が急激に増加することがわかる。
【0029】
図5は、比(L/A)と湯面位置での噴流中心動圧との関係を示すグラフである。図5のグラフでは、試験設備を用いて溶鋼の湯面位置での動圧を測定し、比較が容易なように比(L/A)=0.0での動圧を1として規格化した結果を示す。
【0030】
特許文献4に記載されているように、突出部4が第2の開口部2bと同じ平面上に存在する場合、高い動圧が得られているが、本発明者らの予測通りに、ノズル1の直管部6の長さが長くなるに伴い動圧が低下することがわかる。これは、流動制御体3をノズル1の内部に収容すると、ガス膨張が適正に進行しなくなることに起因する。また、ノズル1は、例えば特開平2−115315号公報に記載されるようなノズル出口の末広がり部を有さないため、適正膨張とならずに動圧が低下するものと考えられる。ガス流量は同一であるため、中心動圧が低い条件では噴流は水平方向へ広がると考えられる。このため、スピッチング量が低下し、溶損速度が低減すると考えられる。比(L/A)が0.23を超えると溶損速度が急激に悪化する理由は、噴流の水平方向への広がりが大きくなり過ぎたため、炉壁に酸素ジェットが直接衝突し、溶損速度が著しく悪化すると考えられる。
【0031】
また、第1発明および第2発明で用いるノズルを有するランスにおいて、Alとの反応効率はラバールノズルと比較して低減することはなかった。これは、従来技術のような適正膨張による噴流を得られないが、噴流の広がりによって反応効率を高めることができたためと考えられる。
【0032】
以上から、内部に流動制御体3が配置された本体2を有するノズル1を用いることによって、ラバールノズルと比較して、真空脱ガス装置の耐火物の溶損速度を低減できることがわかる。また、このノズル1の先端にノズル径と同一内径の直管部6を設置すれば溶損速度をさらに低減できることがわかる。また、直管部6には適正な長さが存在し、過剰に長いと却って溶損速度を増加させる。
【0033】
2.ノズル設計方法
ノズル1の具体的仕様の決定方法を説明する。ノズル1の設計には供給ガス圧力や必要流量、設備大きさや処理溶鋼量などさまざまな前提条件や制約条件が存在し、その有無や優先順位は、ノズル使用者によって異なる。このため、全ての条件でノズル1の設計を説明することはできないため、ノズルの具体的仕様の決定方法の一例を説明する。ここでは、工場の酸素ガス供給圧力とランス外径に制約がある条件で、Al添加した溶鋼にRH真空槽内にて酸素ガスを上吹きして溶鋼を加熱する例として、第1発明および第2発明を満足する最適なノズル仕様の決定を説明する。
【0034】
はじめに、ランス外径を制約条件に沿って決定すると、冷却構造や耐火構造を考慮してノズル管径Dが決定される。このノズル管径Dと、流動制御体3の最大径dおよび突出部4の高さhとの関係は、(3)式を満足する関係であることが望ましい。この関係を満足することで流動制御体3を交換する必要が生じた場合に、第2の開口部2b側から流動制御体3を容易に取り出すことができるためである。
【0035】
d≦(D−2h)・・・・・・・(3)
ここで、最大径dまたは高さhのいずれか一方を任意に決め、(3)式を満足するように他方を決定すればよい。なお、比(h/d)は0.027以上0.14以下であることが望ましい。比(h/d)が0.027未満であると小径化の効果が小さくなり、一方比(h/d)0.14を超えて大きくなると急激な小径化により圧損が大きくなる。
【0036】
また、突出部4の形状は階段状に急激に小径化する構造でもよいが、45°程度の直線勾配あるいは放物線をなすことなどが望ましい。これは、管径が急激に変化すると思わぬ圧力損失を招くためである。また、突出部4のガス流れ方向(図1における左右方向)への形成幅は、図1に示すように幅を持たせない点状の構造でもよいし、あるいは、強度確保やノズル製造容易性から、幅を持たせた線状の構造でもよい。本発明では、小径部4の高さhが小さいため、突出部4が第2の開口部2bの側へ全面的または部分的に延びて形成されても、殆ど影響を生じない。
【0037】
図6は、本発明で用いるノズル1−1の断面形状の変更例を示す説明図である。
図6に示すように、小径部4は、簡便のため第2の開口部2bまで延びて形成されていてもよい。
【0038】
小径部4が決定したら流動制御体3の仕様を以下の手順で決定する。
まず、第2の尖端部3bの形状を検討する。第2の先端部3bの形状を与える指標を定義するために、流動制御体3の最も太い部分(外径がdである部分)の外縁と、第2の尖端部3bの先端部7とを結ぶ線分をPとする。そして、Pと最も太い部分の外縁とがなす角度θを用いて適正形状を動圧測定により検討した。その結果、角度θが65°未満であるか、または80°を超えると、いずれの場合にも動圧が低下した。これは、第2の尖端部3bの傾斜が過剰であれば不足膨張が発生し、過小ではガス膨張がノズル1内で進行しないためと考えられる。よって、角度θは65°以上80°以下であることが有効である。
【0039】
そして、第2の尖端部3bの外周面8の形状は、線分Pによって与えられる円錐形でよい。また、公知技術のように第2の尖端部3bの外周面8の形状は曲面でもよいが、線分Pで構成される円錐より外側に出ない曲面であることが望ましい。この曲面はθが65°で構成される円錐の外側にあり、かつ、θが80°で構成される円錐の内側にあることが最も望ましい。もちろん、第2の先端部3bの外周面8を円錐ではなく放物線上の曲面により構成する場合、この曲面は特許文献4に記載された流体力学的手法を用いて求めてもよい。
【0040】
これに対し、流動制御体3の第1の尖端部3aの形状が性能に与える影響は小さい。このため、第1の尖端部3aは、先端断面の広がり角θ2が30〜60°の円錐形などとすればよい。その他に紡錘形なども選択可能である。
【0041】
なお、第1の尖端部3aと第2の尖端部3bとは、図1や図6に示す直結した構造でもよいし、これとは異なり、第1の尖端部3aと第2の尖端部3bとの間に適当な長さの円筒部を介して接続する構造としてもよい。これらの構造は、本体2への流動制御体3の固定方法に応じて適宜選択すればよい。
【0042】
次に、突出部4から第2の開口部2bまでの長さLについて検討する。
図4のグラフを参照しながら上述したように、比(L/A)が大きくなるに伴って、溶損速度は低減することがわかる。これは、比(L/A)が大きくなるに伴い、中心動圧が低減するためと考えられる。このため、スピッチング量が低下し、溶損速度が低減したと考えられる。比(L/A)が0.23を超えると溶損速度が急激に増加するのは、噴流の水平方向への広がりが大きくなり過ぎたため、炉壁に酸素ジェットが直接衝突することにより、溶損速度が著しく悪化したためと考えられる。よって、Lは0≦(L/A)≦0.23の範囲である。
【0043】
なお、ノズル管は直管でよく、特開平2−115315公報により開示されたラバールノズルのような末広がり部を有する必要はない。ただし、第2の開口部2b側へ向かって先細りノズル管を用いてもよい。例えば、粉体を上吹きする場合は先細り形状とするなどの選択が可能である。また、ラバールノズルのように出口径がスロート径の1.5倍〜2.5倍となる大きな末広がり部ではなく、保守作業などのため出口径がDの1.3倍以下の小さな範囲で出口径が大きくなっていてもよい。なお、本体2の形状を直管としない場合あるいは突出部4が図6の様な形態を選択し、本体2の内径が一様でない場合には、ノズル管径Dは流動制御体3の最も太い部分の位置で定義する。
【0044】
このようにして流動制御体3の形状が決定される。次に本体2への流動制御体3の設置位置を決定する。
前提条件としての単位時間当たりの溶鋼加熱温度量の要求値が設定されると、必要な酸素ガス流量が決定される。酸素ガス供給圧力が決まっているので、ラバールノズルで用いられるスロート断面積が算出される。この計算は一般的な教科書に記載されており、特許文献4にも記載されている。
【0045】
本発明で用いるノズル1でもこの供給圧力とガス流量の関係は成立するので、ノズル1の最も狭い部分の面積、すなわち流動制御体3と縮径部4との間に形成されるランス軸方向に垂直な断面積Aが算出される。図1ではW部分に相当する。流量確保に必要な面積を得るに必要な部分Wを満足するように流動制御体3を設置する。その際、流動制御体3の径がdである最も太い部分が突出部4より第1の開口部2a側に存在することが望ましい。この部分が突出部4よりも第2の開口部2bの側に存在すると、流動制御体3の第1の尖端部3aの途中が最狭部となるため、流動制御体3の第1の尖端部3aからガス膨張が進行してしまい、噴流の直進性が損なわれることがある。
【0046】
以上の手順により、ノズル1の最適仕様が決定される。また、上記説明では第1発明および第2発明を満足させる例を用いたが、第1発明だけを満足するようにしてノズル1の仕様を決定してもよいことはいうまでもない。
【0047】
3.使用方法
本発明を、転炉とRHを用いて実施する場合を例にとって、説明する。
【0048】
転炉処理終了後に溶鋼を取鍋へ出鋼する。出鋼時にSi、Mn等の合金を加えてもよいし、CaO等の造滓剤を添加してもよい。また、出鋼時にスラグ中の低級酸化物を低減することを目的にスラグ改質剤やAlを用いてもよい。
【0049】
本発明は、溶鋼中Alと酸素ガスとの反応効率を高めることでFeOやMnOの生成を抑止することができるため、清浄性の点から出鋼完了時点でスラグ中のFeO+MnOの合計濃度を3%以下(本明細書では、特に断りがない限り濃度または化学組成に関する「%」
は「質量%」を意味する。)とすることが望ましい。
【0050】
取鍋をRHへ移送し、処理を開始する。RH真空槽にノズル1を配したランスを設置する。RHでは処理は脱水素などの脱ガス処理、成分調整、溶鋼温度調整などを行うが、溶鋼温度調整において本発明を適用する。
【0051】
目標溶鋼温度と測定溶鋼温度との差から供給酸素ガス流量とAl添加量を決定する。Al添加後、もしくはAl添加と同時に、ノズル1を配したランスを用いて酸化性ガスを真空槽内の溶鋼表面に吹き付ける。
【0052】
酸化性ガスは純酸素ガスが望ましいが、Arなどの不活性ガスを混合したガスを用いてもよい。また、ガス流量は0.05Nm/(min・溶鋼ton)以上0.2Nm/(min・溶鋼ton)以下が望ましい。0.05Nm/(min・溶鋼ton)未満では酸素供給速度が遅く、十分な溶鋼温度上昇速度が得られない。一方、0.2Nm/(min・溶鋼ton)を超えて大きいと溶鋼−噴流界面への溶鋼中Al供給が間に合わず、過酸化となり耐火物損耗やスラグ汚染を誘発しやすくなる。
【0053】
ノズル1は幅広い雰囲気圧力に対応できるので、ラバールノズルのように雰囲気圧力を厳格に管理する必要はないが、雰囲気圧力は700Pa以上12000Pa以下が望ましい。700Pa未満では噴流が強くなると同時に静圧が低下するため、溶鋼飛散量が増加する。一方、12000Paを超えて高いとRH環流速度が遅くなるため、真空槽内へのAl供給が間に合わなくなることでFeOが生成し、さらに溶鋼の真空槽内滞留時間が長くなって過熱するため耐火物損耗が激しくなる。
【0054】
以上の説明では、設備としてRHを、酸化性ガスと反応させる溶鋼成分としてAlを例にとって説明したが、RHに替わってVODやタンク脱ガスなどの真空精錬装置を用いることができ、低Al鋼などではAlに替わってSiを用いることもできる。
【0055】
さらに、ノズル1の利点を活用して酸化性ガス上吹き中に雰囲気圧力を変化させたりガス流量を変化させたりすることもできる。
【実施例】
【0056】
予め、必要に応じて溶銑脱硫および溶銑脱燐処理を行った溶銑を、300トン規模の上底吹き転炉に装入し、溶鉄中C含有率が0.03〜0.50%になるまで粗脱炭吹錬を行い、終点温度を1630〜1690℃として粗脱炭溶鋼を取鍋に出鋼し、出鋼時に各種脱酸剤および合金を添加して取鍋内溶鋼成分を、C:0.04〜0.60%、Si:0.03〜0.5%、Mn:0.3〜2.0%、P:0.005〜0.025%、S:10〜30ppm、sol.Al:0.02〜0.10%とした。さらに、出鋼時にCaOを添加し、スラグ中CaO/Al質量比を2〜2.5、スラグ中FeOとMnOの合計濃度を1%以上5%以下に調整した。
【0057】
その後、取鍋をRHへ移送し、図1におけるノズル管径Dを70mm、高さh=6mmとして、最大径d、角度θおよび長さLを変化させたノズル1を用い溶損速度を評価した。流動制御体3の設置位置は、その一部が突出部4の形成位置に掛かるように、すなわちその一部が軸方向に関して突出部の形成位置に存在するように、配置され、かつ、その最大径を有する部分が、突出部4が形成される位置よりも第1の開口部2aの側に配置され、かつ、最狭部断面積=800mmとなる位置とした。
【0058】
酸化性ガスは酸素ガスを用い、ガス流量は2500Nm/hrとした。酸素ガス量は溶鋼温度上昇量に応じて50〜250Nmの範囲で調整した。処理温度は1580〜1630℃、真空脱ガス処理時間は15〜20分間となるように調整した。酸素上吹き時の真空槽内の雰囲気圧力は4000〜10000Paとした。溶損速度の評価は、処理を20ヒート実施し、その前後で下部槽の煉瓦残厚を測定し、溶損速度を算出した。前述したとおり、耐火物の溶損速度は上記(2)式により定義した。
【0059】
結果を表1に示す。
【0060】
【表1】

【0061】
比較例1はスロート断面積700mmのラバールノズルを使用した例である。比較例2は本発明を満足しない例、つまり、比(L/A)が(1)式を満足しない例である。実施例1は第1発明を満足し、実施例2〜4は第2発明を満足する。
【0062】
比較例1〜2と実施例1とを比較すると、実施例1の溶損速度は低減していることが解る。実施例2〜4は、実施例1よりもさらに溶損速度を低減することができる。
【符号の説明】
【0063】
1、1−1 ノズル
2 本体
2a 第1の開口部
2b 第2の開口部
2c 内壁
3 流動制御体
3a 第1の尖端部
3b 第2の尖端部
4、4−1 突出部
5 最狭部
6 直管部
7 先端部
8 外周面

【特許請求の範囲】
【請求項1】
真空脱ガス装置の脱ガス槽の内部に配置される吹錬上吹きランスの先端に装着されるノズルを介して酸素ガスを溶鋼に吹き付けて酸素吹錬する際における真空脱ガス装置の耐火物の溶損抑制方法であって、
前記ノズルは、第1の開口部および第2の開口部を有するとともに前記第1の開口部から前記第2の開口部へ向かう軸方向へ向けて前記酸素ガスを流す管状の本体と、前記第1の開口部と前記第2の開口部との間に前記本体の内壁から離間して配置される流動制御体とを備えること、
前記本体は、前記第1の開口部と前記第2の開口部との間の内壁に環状に形成される突出部を有すること、
前記流動制御体は、横断面積が前記軸方向へ対称に増加する第1の尖端部と、前記軸方向へ前記第1の尖端部に並設されて横断面積が前記軸方向へ対称に減少する第2の尖端部とを有すること、
前記流動制御体は、その一部が前記軸方向に関して前記突出部の形成位置に存在するように、配置されること、
前記流動制御体の最大径を有する部分は、前記突出部が形成される位置よりも前記第1の開口部の側に、配置されること、および
前記突出部は、前記第2の開口部に一致する位置に形成されること
を特徴とする真空脱ガス装置の耐火物の溶損抑制方法。
【請求項2】
真空脱ガス装置の脱ガス槽の内部に配置される吹錬上吹きランスの先端に装着されるノズルを介して酸素ガスを溶鋼に吹き付けて酸素吹錬する際における真空脱ガス装置の耐火物の溶損抑制方法であって、
前記ノズルは、第1の開口部および第2の開口部を有するとともに前記第1の開口部から前記第2の開口部へ向かう軸方向へ向けて前記酸素ガスを流す管状の本体と、前記第1の開口部と前記第2の開口部との間に前記本体の内壁から離間して配置される流動制御体とを備えること、
前記本体は、前記第1の開口部と前記第2の開口部との間の内壁に環状に形成される突出部を有すること、
前記流動制御体は、横断面積が前記軸方向へ対称に増加する第1の尖端部と、前記軸方向へ前記第1の尖端部に並設されて横断面積が前記軸方向へ対称に減少する第2の尖端部とを有すること、
前記流動制御体は、その一部が前記軸方向に関して前記突出部の形成位置に存在するように、配置されること、
前記流動制御体の最大径を有する部分は、前記突出部が形成される位置よりも前記第1の開口部の側に、配置されること、および
前記突出部は、下記(1)式を満足する位置に形成されること
を特徴とする真空脱ガス装置の耐火物の溶損抑制方法。
0<L/A≦0.23 ・・・・・・・(1)
(1)式において、Lは前記突出部から前記第2の開口部までの長さ(mm)であり、Aは前記突出部と前記流動制御体との間に環状に形成されるスリットの断面積(mm)である。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate


【公開番号】特開2012−172156(P2012−172156A)
【公開日】平成24年9月10日(2012.9.10)
【国際特許分類】
【出願番号】特願2011−32064(P2011−32064)
【出願日】平成23年2月17日(2011.2.17)
【出願人】(000002118)住友金属工業株式会社 (2,544)
【Fターム(参考)】