説明

Fターム[4K017EF05]の内容

金属質粉又はその懸濁液の製造 (21,321) | 高密度エネルギーによる製造 (180) | 電子、イオン、レーザービーム (57)

Fターム[4K017EF05]に分類される特許

1 - 20 / 57


【課題】被記録媒体上に、厚膜でも膜割れの発生が抑制された表面抵抗値の低い銅微粒子焼結膜からなる銅パターン膜を形成することができ、かつ分散性が高く、インクジェット印刷適性が良好である上、焼成温度及び/又は焼成時間の低減が可能な銅微粒子分散体を提供する。
【解決手段】平均一次粒径が1〜200nmの銅微粒子、ポリエーテル構造を有し、重量平均分子量が500〜50,000の範囲にある分散剤、及び分散媒を含有し、かつ、シリコーン系添加剤及び/又はフッ素含有添加剤を0.1〜1.0質量%含有する銅微粒子分散体である。 (もっと読む)


【課題】ナノ粒子を内部に分散させたナノ粒子分散イオンゲルを提供する。
【解決手段】ナノ粒子の製造方法は、イオンゲルの内部に複数のナノ粒子が分散されたナノ粒子分散イオンゲルを製造する工程(ステップS10)と、ナノ粒子分散イオンゲルを溶解し、複数のナノ粒子が分散された液体を製造する工程(ステップS20)と、を含む。 (もっと読む)


【課題】厚膜のパターンを形成した際にも、加熱する事なく高い導電性を発現させる事が可能な金属超微粒子の製造方法、および金属超微粒子含有組成物を提供する。
【解決手段】水性媒体中に平均粒径が0.1μm以下の金属超微粒子を分散させた分散液を得る工程、該分散液と水溶性ハロゲン化物とを、金属超微粒子に対する水溶性ハロゲン化物のモル比で0.15%以上8.0%以下の範囲内で混合する工程、および金属超微粒子の精製を行う工程、の3工程を少なくともこの順序に具備する金属超微粒子の製造方法。 (もっと読む)


【課題】 対象となる金属を効率的に回収するとともに、材料密度が高い状態で対象金属を回収可能とする。
【解決手段】 液体中にプラズマを発生させる工程と、レアメタル又は貴金属を含む材料を液体に投入する工程と、材料がプラズマの照射を受けて分解し、粒子化して、液体中に沈殿する工程と、沈殿したレアメタル又は貴金属のナノ粒子を回収する工程とを有した。 (もっと読む)


【課題】十分に高度な殺菌性能を発揮することが可能な銀ナノ粒子を提供すること。
【解決手段】銀からなる粒子であって、平均粒子径が1〜5nmであり、且つ、粒子数を基準として全粒子の80%以上が略四角錐又は略八面体の形状を有する粒子であることを特徴とする銀ナノ粒子。 (もっと読む)


【課題】ナノ粒子を内部に分散させたナノ粒子分散イオンゲルを提供する。
【解決手段】ナノ粒子分散イオンゲルは、イオン液体をゲル化して形成したイオンゲルの内部に複数のナノ粒子を分散させたものである。複数のナノ粒子の分散は、ナノ粒子分散イオンゲルは、内部気圧を大気圧よりも減圧させた蒸着装置を用いて、ナノ粒子前駆体のナノ粒子をイオンゲルに蒸着させる工程により行われる。 (もっと読む)


【課題】イオン液体代替の、より環境負荷が小さく安定的に金属微粒子を製造する方法を提供する。
【解決手段】微粒子の製造方法は、液体高分子ポリエチレングリコールに貴金属、Si及びCdの少なくともいずれかをスパッタリングする。また、この手段において、貴金属は、金、銀、銅、白金の少なくともいずれかを含むことが好ましい。また、この手段において、高分子ポリエチレングリコールの数平均分子量は、200以上800以下の範囲にあることが好ましい。また、本手段において、スパッタリングの後、加熱処理を行うことが好ましい。 (もっと読む)


【課題】反応基質として有機溶媒を使用することなく、化合物ナノ粒子を十分に高度な収率で製造することが可能な化合物ナノ粒子の製造方法を提供すること。
【解決手段】レーザー光Lを発生させるためのレーザー発振器10と、溶媒13を保持するための処理容器12と、処理容器12内に保持されている溶媒13と、処理容器12内に配置したターゲット14とを備える液相レーザーアブレーション装置を用い、ターゲット14として、レーザー光Lを吸収する材料を2種類以上含有するものを用い、ターゲット14の密度が前記溶媒の密度よりも大きくなるようにターゲット14及び溶媒13を選択して用い、ターゲット14を処理容器12の底部Bに沈殿させて配置し、ターゲット14に対してレーザー光Lを照射して液相レーザーアブレーションを行い、発生させた各微粒子同士を反応た化合物からなるナノ粒子を形成することを特徴とする化合物ナノ粒子の製造方法。 (もっと読む)


【課題】連続した試薬流のレーザ熱分解によりナノメートルサイズまたはサブミクロンサイズの粉体を高いエネルギー収率で製造するシステム及び方法を提供する。
【解決手段】第1の軸に沿ってレーザ光線11を照射するレーザ10と、第1の軸と垂直な方向から試薬流13を流し第1の相互作用ゾーン15でレーザ光線と交差するように構成された第1の注入装置と、第1の軸に沿って第1の相互作用ゾーンの下流側に第2の相互作用ゾーン15’を形成する第2の試薬流13’を与える第2の注入装置と、レーザ光線のエネルギーをレーザ光束の幅及び高さを独立して変更可能な光学部材12を備え、レーザ光密度が第1の相互作用ゾーンと第2の相互作用ゾーンにおいて同一の水準にすることが可能なシステムを用い、試薬流のレーザ熱分解によりナノメートルサイズまたはサブミクロンサイズの粉体を高いエネルギー収率で製造する。 (もっと読む)


本発明は、電子産業におけるスパッタリングターゲット材の製造及び貫通子ライナーなどに用いられる高純度銅(Cu)粉末材料の製造方法に関する。原料供給部、プラズマトーチ部、及び反応容器を備えている装置を用いて金属粉末を製造する方法において、平均粒径30〜450μmの銅(Cu)粉末を2〜30kg/hr注入速度で熱プラズマトーチに通過させることで、平均粒径5〜300μmの高純度銅粉を得る。
(もっと読む)


【課題】凝集が進行しにくく分散性が優れる球状ナノ粒子の製法を提供する。
【解決手段】液相中に1〜1000nmの大きさの原料粒子あるいは金属酸化物粒子を分散させ、この液相中の粒子に1レーザーパルスあたり0.5J/cm以下の弱いレーザー光を照射して、原料粒子を一旦溶融かつ融合させ、その後液相中で急冷することにより10〜1000nmの大きさの球状ナノ粒子を製造する、あるいは金属酸化物粒子に還元反応を起こさせて、これにより金属球状ナノ粒子若しくは還元球状ナノ粒子またはこれらの複合構造の粒子を生成させる。 (もっと読む)


【課題】ナノワイヤ変形現象を低減又は除去し、同時にゲルマニウムリッチナノワイヤを製造する実行容易な方法を提供する。
【解決手段】基板2は、第1シリコン層3と、第1及び第2固定領域と少なくとも1つの接続領域を含む3次元パターンを形成するシリコンゲルマニウム合金系材料からなるターゲット層1を備える。第1シリコン層3は引張応力がかかり、及び/又は、ターゲット層1は炭素原子を含む。第1シリコン層3は接続領域において除去される。接続領域のターゲット層1は、ナノワイヤ8を形成するために熱酸化される。第1シリコン層3の格子パラメータは、第1シリコン層3の除去後、サスペンデッドビームを構成する材料の格子パラメータと同一である。 (もっと読む)


【課題】金属微粒子を製造する製造時間を短縮できる金属微粒子の製造装置、金属微粒子の製造方法、及び、複合微粒子の製造方法を提供する。
【解決手段】金属微粒子の製造装置1は、レーザ光Lを照射するレーザ装置2と、レーザ光Lのビーム径を拡大するビームエキスパンダ4と、拡大されたレーザ光Lのエネルギー分布を長軸方向で平均化する長軸用ホモジナイザ6とを備えている。 (もっと読む)


【課題】本発明では、平均一次粒子径、組成等の制御をして、金属、半金属、金属化合物及び半金属化合物の少なくとも1種を含む微粒子を製造する方法及び装置を提供する。
【解決手段】減圧容器内で、少なくとも1種の金属及び/又は半金属を含有する原料を加熱して蒸発させ、蒸発させた原料を、プラズマ雰囲気を介して、微粒子として液体媒体の表面に付着させ、得られた付着物を回収することを含む、微粒子の製造方法とする。また、減圧容器17、原料を加熱して蒸発させる原料加熱部11、液体媒体15を流動させる液体媒体流動部17、雰囲気ガスを導入する雰囲気ガス導入部18、並びにプラズマ発生部12を有する、微粒子製造装置100とする。 (もっと読む)


【課題】水酸化マグネシウム粉末から水素化マグネシウム粉末へのリサイクルを可能にする酸化マグネシウム還元方法及び反応装置を提供する。
【解決手段】不活性ガスの熱プラズマを生成するプラズマ反応炉に酸化マグネシウム粉末と、メタン及び/又は水素とを供給し、酸化マグネシウム粉末をマグネシウムにプラズマ還元し、プラズマ還元された気体のマグネシウムを凝縮させることによって、マグネシウム粉末又は水素化マグネシウム粉末の混合物或いは水素化マグネシウム粉末を生成する。反応装置に、プラズマ反応炉と、プラズマ反応炉の上部に設けられた筒状のトーチ電極と、トーチ電極を囲繞するトーチノズルと、プラズマ反応炉の下部に設けられた下部電極と、トーチ電極及び下部電極に電力を供給する電源と、トーチ電極を通じてメタンを供給する第1供給路と、トーチノズルを通じて酸化マグネシウムを供給する第2供給路とを備える。 (もっと読む)


【課題】高容量と良好なサイクル特性を実現するリチウムイオン二次電池用の負極材料を提供する。
【解決手段】種類の異なる元素Aと元素Mとを含み、前記元素AがSi、Sn、Al、Pb、Sb、Bi、Ge、InおよびZnからなる群より選ばれた少なくとも1種の元素であり、前記元素MがCu、AgおよびAuからなる群より選ばれた少なくとも1種の元素であり、前記元素Aの単体または固溶体である第1の相と、前記元素Aと前記元素Mとの化合物または前記元素Mの単体もしくは固溶体である第2の相を有し、前記第1の相と前記第2の相の両方が外表面に露出し、前記第1の相と前記第2の相が球形状であることを特徴とするナノサイズ粒子と、ナノサイズ粒子を負極活物質として含むリチウムイオン二次電池用負極材料である。 (もっと読む)


【課題】高容量と良好なサイクル特性を実現するリチウムイオン二次電池用の負極材料を提供する。
【解決手段】Si、Sn、Al、Pb、Sb、Bi、Ge、InおよびZnからなる群より選ばれた2種の元素である元素A‐1と元素A‐2とを含み、前記元素A‐1の単体または固溶体である第1の相3と、前記元素A‐2の単体または固溶体である第2の相5と、を有し、前記第1の相3と前記第2の相5との両方が外表面に露出し、前記第1の相と前記第2の相の外表面が球形状であることを特徴とするナノサイズ粒子1と、このナノサイズ粒子を用いたリチウムイオン二次電池用負極材料。 (もっと読む)


【課題】高容量と良好なサイクル特性を実現するリチウムイオン二次電池用の負極材料を提供する。
【解決手段】種類の異なる元素Aと元素Dとを含み、前記元素AがSi、Sn、Al、Pb、Sb、Bi、Ge、InおよびZnからなる群より選ばれた1種の元素であり、前記元素DがFe、Co、Ni、Ca、Sc、Ti、V、Cr、Mn、Sr、Y、Zr、Nb、Mo、Tc、Ru、Rh、Ba、ランタノイド元素(CeおよびPmを除く)、Hf、Ta、W、Re、OsおよびIrからなる群より選ばれた1種の元素であり、前記元素Aの単体または固溶体である、球形状の第1の相と、前記元素Aと前記元素Dとの化合物である第2の相を有し、前記第2の相の一部または全部が、前記第1の相に覆われていることを特徴とするナノサイズ粒子と、前記ナノサイズ粒子を負極活物質として含むリチウムイオン二次電池用負極材料である。 (もっと読む)


【課題】磁性粒子と、該磁性粒子を分散させる分散媒とを含有する磁気粘性流体において、高温を含む広い温度範囲で、磁性粒子を分散媒中に安定して分散させるようにする。
【解決手段】ナノサイズの金属粒子(金属ナノ粒子)からなる軟磁性粒子の表面を、熱に強く親油性(疎水性)を有する炭素皮膜で覆い、シリコーンオイルやフッ素系オイル等の分散媒中に分散して磁気粘性流体とする。これにより、従来の有機ポりマー被覆が熱に弱く、酸や高温で分解し易いという問題を解決し、環境条件等による用途の制限をなくすことができる。 (もっと読む)


【課題】還元・窒化に要する時間を短縮し、磁気特性に優れた窒化鉄系磁性微粒子を効率良く製造する方法を提供する。
【解決手段】本発明の窒化鉄系磁性微粒子の製造方法では、まず、酸化鉄微粒子を用意する(第1工程)。次に、水素を含むプラズマによって前記酸化鉄微粒子に対する還元処理を行い、前記酸化鉄微粒子からα−Fe金属微粒子を形成する(第2工程)。更に、窒素を含むプラズマによってα−Fe金属微粒子に対する窒化処理を行い、α−Fe金属微粒子からFe162化合物微粒子を形成する(第3工程)。第2工程と第3工程との間において前記α−Fe金属微粒子を大気に暴露しない、窒化鉄系磁性微粒子の製造方法。 (もっと読む)


1 - 20 / 57