説明

Fターム[4K018AB08]の内容

粉末冶金 (46,959) | 添加非金属 (1,790) | 繊維、フィラメント (47)

Fターム[4K018AB08]に分類される特許

1 - 20 / 47


【課題】カーボンナノチューブなどを製造してから金属素材と混合する手段として金属に付着させるためにフェノール系のバインダを入れ混錬させてMIM方法やHIPで熱を上げとばしていた製造法が従来の製造方法として行われている、又、出来上がったCNTを特殊な界面活性剤に溶かして金属粉と混ぜ水素で満たした容器で加熱したりしている。
【解決手段】マイクロ、ナノ、ピコ構造炭素材料を混合したい金属やセラミックス、希土類などにじかに有機炭素液を介在させ金属触媒方法、アーク方法、CVD方法で炭素膜を形成してMIMやHIP法で炭素入機能性金属を製造する方法。フェノール系のバインダや特殊な界面活性剤が不要なため工程も少なくコストも大幅に安くなる。 (もっと読む)


【課題】炭化タングステン−遷移金属−カーボンナノチューブ系の超硬合金において、添加されたカーボンナノチューブのすべてがグラフェンに変化してしまうことが抑えられ、高い破壊靱性値及び硬度を有する超硬合金及びその製造方法を提供する。
【解決手段】炭化タングステン−コバルト−カーボンナノチューブ系の超硬合金は、炭化タングステン粉末に対して、結合剤としてのコバルト粉末(15重量%未満)、補強材料としてのカーボンナノチューブ(0.067重量%以下)を添加した原料粉末を固相焼結して得られる。炭化タングステンWC粒子の粒界には、コバルトCo粒子(例えばWC−Co系固溶体含む)と、カーボンナノチューブCNTとグラフェンとが存在している。つまり、原料のカーボンナノチューブは、焼結によって一部がグラフェンに変化し、炭化タングステンWC粒子の粒界には、カーボンナノチューブCNTとグラフェンとが共存している。 (もっと読む)


【課題】機械的強度が高く、かつ、通電発熱性を有し、抵抗発熱体として好適に使用可能であること。
【解決手段】多孔質焼結体1は、アルミニウム粉2と、黒鉛粉3と、陶磁器用の粘土粉4と、木粉5と、これら原料が比重の違いによって移動が生じない量の水及び/またはバインダ6とを混合してなる焼結原料混合物7を圧力を加えて成形し、1000℃〜1200℃の範囲内で焼結して5%〜50%の範囲内の空隙を有する成型体としてなる通電によって成型体が発熱するものである。 (もっと読む)


【課題】 既存の問題点であるアルミニウムと炭素材料の接合に関する問題を解決し、電気アーク又は電気化学的方法を用いて、重さが軽く力学的強度に優れた炭素材料−アルミニウム複合体を製造した。
【解決手段】 本発明は、電気化学的方法を用いてアルミニウム−炭素材料のAl−C共有結合を形成する方法を提供する。上記方法は、陽極と、炭素材料の連結された陰極とで構成され、電解液で満たされた電気化学装置に電位を印加して、陰極に連結された炭素材料の表面をアルミニウムでメッキする段階を含むことができる。更に、本発明は、上記電気化学装置に電位を印加し炭素材料の表面をアルミニウムでメッキして共有結合を形成したアルミニウム−炭素材料複合体を製造する方法、及び上記方法により製造されたアルミニウム−炭素材料複合体を提供する。 (もっと読む)


【課題】一般に用いられている安価な材料を用い、溶湯法で用いられるよりも少ないエネルギーによって作製することができ、広範囲の寸法および形状(特に大面積)を有する優れた熱伝導性かつ軽量な金属基炭素繊維複合材料を提供する。
【解決手段】炭素繊維を有機バインダーおよび溶剤と混合して塗布混合物を準備する工程と、シート状もしくはフォイル状の金属支持体上に塗布混合物を付着させて、金属支持体上に炭素繊維含有被膜が形成されたプリフォームを形成する工程と、プリフォームを積み重ねて、プリフォーム積層体を形成する工程と、プリフォーム積層体を真空中または非酸化雰囲気中で加熱圧接して、前記プリフォーム同士を一体化させる工程とを備えた、金属基炭素繊維複合材料の製造方法。 (もっと読む)


【課題】 アルミニウムを溶融したり、焼結することなく、容易にアルミニウムの固化成形物を得ることを可能にするアルミニウムの固化成形方法を提供する。
【解決手段】 容器10内に、アルミニウム材20と水30とを入れて撹拌し、アルミニウムと水とを混合させる工程と、アルミニウムと水との混合物20aを収容した容器10を静置させた状態で、アルミニウムと水との反応工程を経過させ、アルミニウムと水とが反応して生成されたアルミナ水和物を介して一体化した多孔質体からなる固化成形物22を得る固化工程と、を備えることを特徴とする。 (もっと読む)


【課題】高価な元素や物質を添加せずに、高い延性を著しく低下させることなく、高強度を発現するチタン基複合材料を提供する。
【解決手段】チタン基複合材料は、純チタンまたはチタン合金の素地と、素地中に分散した酸化チタン粒子とを備える。酸化チタン粒子の最大粒子径は10μm以下である。酸化チタン粒子の含有量は、重量基準で0.3%〜1.8%である。 (もっと読む)


金属本体または容器(10)に補強繊維(14)から成るインサートを圧密化することによって複合金属部品を実現する間に、圧密化に使用されるガスが、インサート(14)を覆う蓋(16)と容器(10)との間でインサート(14)を受け入れるために容器(10)に形成されるキャビティ(12)に入ることがある。この種の侵入は、圧密化、ならびに、それらの間で、および/またはキャビティ(12)の壁(10a)に対してインサート(14)の繊維シースの拡散溶接を妨げ、または低下させる場合がある。前記問題を解決するために、本発明は、容器(10)の上に蓋(16)を事前溶接することを含む。本発明は、温度を上昇させ、維持することを含む段階の後に、加圧ガスを加熱供給し、前記部品を得るためにアセンブリを機械加工することを含む段階によって、等静水圧圧密化を開始させることを含む。温度上昇段階は、調圧された蓋の壁(16a)および容器の壁(10a)を硬く接続する材料の拡散事前溶接を行うように調整される。本発明は、航空機の着陸装置用の部品などの、引張圧縮抵抗を有する部品を設計するために使用され得る。
(もっと読む)


【課題】コストを低減した複合材料の製造方法および複合材料を提供する。
【解決手段】複合材料10の製造方法は、以下の工程を備えている。開口部を有する表面を含む金属基材11を準備する。200W/mK以上の熱伝導率を有する熱伝導性粒子を含む粉末と、金属基材11を構成する材料と異なる金属材料を含む金属粉末とを、金属基材11の表面11aの開口部に供給する。粉末と、金属粉末と、金属基材11とを摩擦攪拌することにより、複合材料部12を形成する。複合材料10は、表面11aを有する金属基材11と、金属基材11の表面11aに配置された複合材料部12とを備えている。複合材料部12は、200W/mK以上の熱伝導率を有する熱伝導性粒子を含み、かつ金属基材11を構成する金属材料を含む合金であり、熱伝導性粒子は、複合材料部において10vol%以上70vol%以下の体積含有率を有する。 (もっと読む)


生体適合性人工器官構成部品(50;60;90)を実現する方法は、物理的/化学的特性が異なる少なくとも2つの材料(20、22、26)を準備するステップと、この構成部品(50;60;90)を、成形手段(10)の中に、少なくとも2つの材料(20、22、26)からなる少なくとも2つの体積で構成された構成物として定めるステップと、上記構成部品(50;60;90)を、成形手段(10)の中で、予め設定された焼結温度(T1)で焼結するステップとを含む。
(もっと読む)


【課題】遮断性能の良い真空バルブ用電気接点、及び大容量化に対応可能な真空開閉機器を提供する。
【解決手段】本発明の電気接点は、接点層と、前記接点層に対し導体に接続する側に設けられた高導電層の少なくとも2つの層を有する電気接点であって、前記接点層はCrとCuとTeを含む焼結体よりなり、前記高導電層はCuと炭素繊維を含む焼結体からなり、前記接点層と前記高導電層の間にCr炭化物が存在することを特徴とする。炭素繊維により高導電層の導電性を向上させるとともに、導電層と接点層との間にCr炭化物が存在することにより、層間の剥離を防止する。 (もっと読む)


【課題】通気特性と、熱交換性能に優れたステンレス鋼繊維焼結成形体、及びその応用に係わるスターリング機関の熱再生部材を提供する。
【解決手段】多孔質構造を備え、温度300℃以上の高温環境の用途に用いられる焼結成形体で、該成形体は、平均等価直径:5〜50μmとその直径の30〜2000倍の平均長さを持つステンレス鋼繊維のランダム分布と焼結によって構成され、平均空孔径1〜40μmで、かつ一方の一次面から温度(T℃)に加熱された加熱流体を他方の二次面側に向かって送給圧力10Paで供給した時の、次式による熱遮蔽効率(η)が60〜95%である高温用のステンレス鋼繊維焼結成形体と、これを用いたスターリング機関の熱再生器である。η=1−(下流側での排出温度(T1)/上面側の供給加熱空気の温度(T0))※但し、供給加熱温度(T0)は300℃、供給時間(t)は5sec間とする。 (もっと読む)


【課題】放電プラズマ焼結法を利用することにより、製造過程での分散粒子のダメージを少なくし、高い熱伝導率を有する金属基複合材料を製造する方法を提供する。
【解決手段】本発明による金属基複合材料の製造方法は、融点が10 ℃〜200 ℃異なる2種類の金属粒子(低融点金属粒子と高融点金属粒子)と分散粒子との混合体を用い、該混合体を低融点金属粒子の状態図における固‐液共存領域の固相線に沿って昇温させて焼結することに特徴を有する。 (もっと読む)


金属、とりわけAlもしくはMgまたはそれらを1つ以上含む合金より作られるエンジン52、とりわけ、燃焼エンジンもしくはジェットパワーユニットまたはエンジン部品54、56が本明細書内に開示される。エンジンまたはエンジン部品は、ナノ粒子、とりわけCNTによって強化された前記金属の複合材料より作られ、強化された金属は、前記ナノ粒子によって少なくとも部分的に分離された金属結晶を含む微細構造を有する。 (もっと読む)


金属、とりわけAl、Mg、CuもしくはTiまたはそれらを1つ以上含む合金より作られる結合手段58が本明細書内に開示される。結合手段58は、ナノ粒子、とりわけCNTによって強化された前記金属の複合材料より作られ、強化された金属は、前記ナノ粒子によって少なくとも部分的に分離された金属結晶を含む微細構造を有する。 (もっと読む)


【課題】液体/固体金属の音響インピーダンスの差異から、容器構造材料の急速変形時に容器内壁に沿った液/固体界面で不連続変形に伴う巨視的な負圧が起こり、液体界面近傍では、いわゆるキャビテーションが生じる。キャビテーション崩壊に伴う微視的局所衝撃を受けた固体側界面ではマイクロピット群からなる衝撃壊食損傷が生じる。この衝撃壊食損傷に耐えうる中性子源液体金属ターゲット用バブラーを提供する。
【解決手段】焼結によって実質的に拡散または揮発する中空用素材を利用し、その中空用素材を焼結によって除去し、プレス、焼結の工程によって設定した中空金属焼結体を得、この中空金属焼結体をバブラーとして、水銀ターゲット容器の所定位置に設置する。 (もっと読む)


【課題】 ボールミル(ball mill)法を用いて炭素材料の結晶性を損傷させずに、アルミニウムの中にカプセル化する方法を提供する。
【解決手段】 本発明は、(i)炭素材料に欠陥及び機能化を誘導する段階;(ii)上記機能化された炭素材料をアルミニウムと混合する段階;及び(iii)不活性気体雰囲気の下で上記混合物をボールミリングする段階;を含む、炭素材料をアルミニウムの中にカプセル化する方法を提供する。また、本発明は、(i)炭素材料に欠陥及び機能化を誘導する段階;(ii)上記機能化された炭素材料をアルミニウムと混合する段階;及び(iii)不活性気体雰囲気の下で上記混合物をボールミリングする段階;を含む、アルミニウム−炭素材料複合体を製造する方法を提供する。尚、本発明は、上記方法により製造されたアルミニウム−炭素材料複合体を提供する。 (もっと読む)


本発明は、セラミック繊維からなる補強材(15)を含む金属部品を作製する方法に関する。方法は、金属が被覆された繊維の束を集めることによって、少なくとも1つの環状形状のインサート(15)を形成するステップと、インサートが中空モールドの壁(10a、10b)間に間隔を置くように、インサートを中空モールド(10)に設置するステップと、モールドを金属粉末で満たすステップと、モールド内に真空を生成し、モールドを閉鎖するステップと、壁間で粉末粒子を結合するとともに、壁間で挿入繊維を結合するのに十分な温度および圧力で組立品を熱間等静圧圧縮成形するステップと、モールドを除去し、所望の形状に任意に機械加工するステップとを含む。
(もっと読む)


【課題】カーボンが均一に分散したマグネシウム合金の製造方法を提供すること。
【解決手段】マグネシウム合金100質量部に対し5〜30質量部のカーボン粉末、カーボンナノファイバーおよびカーボンナノチューブのいずれか少なくとも一種類を混合してマスターバッチを調製後、質量比で3〜20倍量のマグネシウム合金と混合することを特徴とするカーボン含有マグネシウム合金の製造方法である。 (もっと読む)


【課題】繊維状炭素材料含有アルミニウム複合材料の熱伝導性を高める。
【解決手段】アルミニウム等の金属マトリックス粉末に繊維状炭素材料が配合された放電プラズマ焼結体を作製する際に、マトリックス母材であるアルミニウム粉末に、その母材の焼結温度より融点が低いAl−12Si粉末等のAl合金粉末を配合する。アルミニウム粉末の焼結過程でAl合金粉末が溶融し、アルミニウム粉末粒子間、アルミニウム粉末粒子と繊維状炭素材料との間の熱伝導性が向上する。 (もっと読む)


1 - 20 / 47