説明

Fターム[4K018BD01]の内容

粉末冶金 (46,959) | 粉末としての用途 (2,460) | 磁気的用途 (771)

Fターム[4K018BD01]の下位に属するFターム

Fターム[4K018BD01]に分類される特許

141 - 160 / 650


下記一般式:Ra−x−yHoDyFe1−a−b−c−dCo によって表された希土類永久磁性材料を提供すること。式中、x、y、a、b、c、およびdは対応する元素の重量割合であり、28%≦a≦34%、0.95%≦b≦1.3%、0≦c≦1.5%、1%≦d≦10%、15%≦x≦20%、および3%≦y≦8%であり;Rは希土類元素であり、Nd、Pr、La、Ce、Gd、Tb、およびそれらの組み合わせからなる群から選択され;Mは、Al、Cu、Ti、V、Cr、Zr、Hf、Mn、Nb、Sn、Mo、Ga、Si、およびそれらの組み合わせからなる群から選択される。また、希土類永久磁性材料を調製する方法を提供すること。 (もっと読む)


【課題】粒径の更に小さい高飽和磁束密度の非晶質軟磁性合金粉末を提供すること。
【解決手段】液相還元法により、例えば、下記組成を有する合金粉末を製造する:Fe100−a−b−x(NはCu,Ag,Au,Pt,Pdから選ばれる1種以上の元素であり、a,b,xは20原子%≦a≦35原子%、1原子%≦b≦3原子%、0原子%<x≦15原子%を満たす。)。これにより得られた軟磁性合金粉末は、平均粒径が0.05μm以上1.0μm以下であり、且つ、非晶質単相からなる。 (もっと読む)


本発明は、軌道を横切るビート作用によって、溶液中で経路に沿って微粒子(2)を推進させることができる少なくとも1つの長方形の可撓性テイル(6)であって、前記テイルが、このために少なくとも1つの磁気素子を備え、前記磁気素子が、経路に対して非同一直線上の外部交番磁界によって前記テイル(6)にビートを生じさせる、テイル(6)と、テイルの近位端部に機械的に接続されたヘッド(4)とを含む微粒子(2)に関する。微粒子(2)は、一体成形で作製されかつ前記テイル(6)と前記ヘッド(4)とを含む材料の少なくとも1つの層を含み、前記ヘッド(4)の寸法および/または形状は、前記テイル(6)の近位端部のビートが、テイル(6)の遠位端部のビートに対して制限されるように、かつ前記ヘッド(4)が、外部交番磁界への暴露を受けたときに、経路に平行な軸の周りを完全に一周しないように選択される。
(もっと読む)


【課題】吸着性粒子等の機能性粒子を構成する磁性担体の強度を簡易な手法で向上させる。
【解決手段】1次粒子である厚さ0.1μm以上1μm以下のZn膜を被覆した磁性粉、又は1次粒子である平均粒子径が0.1μm以上100μm以下のSn粒子を付着した磁性粉が凝集した2次凝集体を含むようにして多孔質担体を構成する。 (もっと読む)


【課題】ボンド磁石用組成物としたときの成形性やボンド磁石の機械強度に優れるボンド磁石用希土類−鉄系磁石粉末とその製造方法を提供。
【解決手段】表面に膜厚100nm以下のFe、P、O、RE(REは希土類元素)を含む被膜を有する希土類元素−鉄系磁石粉末において、被膜中に金属状態で存在するFeの量が、磁石粉末表面をX線光電子分光装置でFe2p3/2スペクトルを測定した後、得られたスペクトルプロファイルの面積に基づいて算出したとき、2.0%以下であることを特徴とする希土類−鉄系磁石粉末などによって提供する。被膜は、磁石粉末が燐酸を含む処理液と接触し、その後、特定温度で加熱乾燥処理されることで形成され、この燐酸との接触処理、加熱乾燥処理が繰り返されることで金属状態のFe量が低減する。 (もっと読む)


【課題】Ga、Dy、Tb等を含まない元素をHDDR磁粉外部から供給することで、HDDR磁粉の保磁力を向上させることを目的とする。
【解決手段】本発明のR−T−B系永久磁石の製造方法は、HDDR処理によって作製され、その組成中の希土類量が29mass%超40mass%以下およびB量が0.3mass%以上2mass%以下であるR−T−B系永久磁石粉末を用意する工程と、少なくともZnを30mass%以上含みGa、Dy、およびTbを含まない金属、合金のいずれかの粉末であるZn含有粉末を用意する工程と、前記異方性R−T−B系永久磁石粉末およびZn含有粉末を、Znが全体の0.05mass%以上1.5mass%以下となるように混合して混合粉末とする工程と、前記混合粉末を真空中あるいは不活性ガス中で450℃以上900℃未満の温度で拡散熱処理する工程と、を含むことを特徴とする。 (もっと読む)


【課題】大きな磁気熱量効果を有する磁気熱量材料を提供すること。
【解決手段】上記課題は、一般式
MnaCobGecx
[式中、
Aは、B又はC、すなわち、ホウ素又は炭素であり、
0≦x≦0.5、
0.9≦a≦1.1、
0.9≦b≦1.1、
0.9≦c≦1.0、
Mn若しくはCoの最大30モル%までをFe、Ni、Cr、V若しくはCuと置換しても良く、又はMn、Co若しくはGeの最大30モル%までを空孔により置換しても良い。]で表わされ、且つ
斜方晶TiNiSi構造型の相及び六方晶Ni2In構造型の相が、−40℃未満の温度で存在することを特徴とする多結晶磁気熱量材料による本発明によって達成される。 (もっと読む)


【課題】酸化性雰囲気中で熱処理を行う場合、非晶質合金粉末の表面の結晶化による磁気特性の低下を防止するとともに、機械的強度に優れた圧粉磁心を提供する。
【解決手段】第1の混合工程では、粒径が150μm以下の非晶質軟磁性合金粉末と、軟化点が406度の低融点ガラスと、ステアリン酸亜鉛とをV型混合機を使用して混合する。被覆工程では、第1の混合工程を経た混合物をアクリル酸共重合樹脂(EAA)エマルジョンを2.0wt%とを混合する。第2混合工程では、被覆工程を経た混合物に対して、0.2wt%のステアリン酸亜鉛を混合する。成形工程では、潤滑性樹脂を混合した混合物を加圧成形する。焼鈍工程では、大気中において、成形体に対して大気中で、350℃以下の温度で加熱を行う。その後、非酸化雰囲気で焼鈍を行う。その後、大気中でガラスの軟化点以上且つ焼鈍温度以下の温度で冷却を行うことで圧粉磁心を作製する。 (もっと読む)


【課題】形成される金属銅微粒子の平均粒子径を目的とする範囲で調整することを可能とした、新たな金属銅微粒子の作製方法の提供。
【解決手段】無水ギ酸銅粉末に、二座配位子として機能するアミノアルコールを作用させ、アミノアルコール錯体として溶解し、非極性有機溶媒により希釈した混合液を調製し、85℃以上90℃以下に加熱しつつ、無水ギ酸銅に含まれる銅1モル量当たり、脂肪族モノカルボン酸を0.05モル量以上0.5モル量以下、脂肪族モノアミンを、0.05モル量以上0.15モル量以下の範囲に選択して、添加し、反応溶液を作製し、90℃以上120℃以下で加熱して、分解還元反応を進行させ、平均粒子径10nm〜50nmの金属銅微粒子を形成し、同時に、形成される金属銅微粒子の表面に、脂肪族モノアミンまたは脂肪族モノカルボン酸からなる被覆層を形成する。 (もっと読む)


【課題】金型の内壁面に均等に潤滑剤を塗布することができる噴射ノズル、およびこの噴射ノズルを備える潤滑剤噴射装置を提供する。
【解決手段】ノズル本体2と、ノズル本体2の内部空間20にはめ込まれる拡散部材3とを備え、本体開口部20Aと拡散部材3との間に形成される環状の噴射口4から金型の内周面に潤滑剤を噴射する噴射ノズル1において、噴射口4の輪郭形状を、金型の開口部の輪郭形状と相似する非円形とする。このような噴射ノズル1を備える潤滑剤噴射装置によれば、金型の内周面全体に満遍なく潤滑剤を噴射することができる。その結果、金型から粉末成形体を外し易く、しかも、金型からはずした粉末成形体の表面に損傷が生じ難くなる。 (もっと読む)


【課題】希土類元素を用いないでナノコンポジット磁石を作製すること。
【解決手段】磁性粒子10は、Feを含む軟磁性相のコア部11と、ε−Feを含み、かつコア部11の少なくとも一部を被覆する硬磁性相のシェル部12と、を有する。磁性粒子10は、Feの粉末の表面を酸化することにより作製される。このように、磁性粒子10は、希土類元素を用いず、Feを酸化させることにより作製できる。そして、この磁性粒子10を用いて焼結磁石やボンド磁石を作製すれば、希土類元素を用いないナノコンポジット磁石を作製できる。 (もっと読む)


【課題】保磁力の高い永久磁石を製造することが可能な永久磁石用磁石粉末の製造方法、及び永久磁石粉末、並びに、優れた保磁力を有する永久磁石を提供する。
【解決手段】R−Fe−B系(Rは、Sc及びYを含む希土類元素から選ばれる1種以上である。)の組成を持ち内部に結晶粒界を持つ磁石粉末に対し、Sc及びYを含む希土類元素から選ばれる1種以上を含む金属を蒸着材又はターゲット材として用いて、蒸着又はスパッタリングを行い、その後熱処理を行い、永久磁石用磁石粉末を製造する。こうして得られた永久磁石用粉末を用いて永久磁石を得る。 (もっと読む)


【課題】磁性体に適用した場合に、フェライト焼結体と同等の高い実数部透磁率μ’、低い虚数部透磁率μ”を発現させることができ、十分な曲げ性を付与可能な扁平状軟磁性粉末を提供する。この扁平状軟磁性粉末を用いた磁性体を提供する。
【解決手段】Fe−Si−Cr系合金よりなり、アスペクト比が100〜150の範囲内にあり、厚みが1μm以下である扁平状軟磁性粉末とする。上記扁平状軟磁性粉末は、周波数13.56MHzにて好適に適用できる。また、上記扁平状軟磁性粉末を含む磁性体とする。上記磁性体は、周波数13.56MHzにおける実数部透磁率μ’が80以上、虚数部透磁率μ”が10以下であると良い。 (もっと読む)


本発明は、反応副生物として生じる塩によって被覆された金属粒子を生成するためにハロゲン化金属、またはハロゲン化金属の混合物の液相還元を使用する、金属粉末または合金粉末の製造方法を対象とする。反応条件を選定することにより、様々な金属粒子サイズを選択でき、塩皮膜により、酸化(または大気中の他のガスとの反応)が防止され、金属粉末を使用して実現するのが従来は難しかった様々な用途が可能になる。 (もっと読む)


【解決手段】R1214B型化合物を主相とするR1−T−B系焼結体に、R2(Sc及びYを含む希土類元素から選ばれる1種又は2種以上の元素)と、M(B、C、P、Al、Si、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Ga、Ge、Zr、Nb、Mo、Ag、In、Sn、Sb、Hf、Ta、W、Pt、Au、Pb、Biから選ばれる1種又は2種以上の元素)とを含有する溶湯を急冷して得た急冷合金粉末を接触させ、真空又は不活性ガス雰囲気中で焼結体の焼結温度以下の温度に加熱することによりR2元素を焼結体の内部に拡散させる。
【効果】R2とMを含有する急冷合金粉末を焼結体上に塗布、拡散処理することにより、粉末の酸化が抑制されて取り扱い上の危険性が低減し、生産性に優れると共に、高価なTbやDy使用量が少なく、残留磁束密度の低減を抑制しながら保磁力を増大させた高性能のR−T−B系焼結磁石を提供することができる。 (もっと読む)


【課題】金属粒子をその組成によって効率的に分別する。
【解決手段】金属粒子の分別方法は、金属粒子を、極性溶媒と非極性溶媒を含む溶媒の中に分散させる工程(ステップS40及びステップS50)と、極性溶媒と非極性溶媒を分離する工程(ステップS60)と、を備える。金属粒子は、ステップS40において、金属核と、第1有機物及び第2有機物とを備えている。金属核は、白金などの第1の金属を含んでいる。第1有機物は、金属核の表面の少なくとも一部を修飾しており、第1の金属に対して選択性を有する官能基を含んでいる。第2有機物は、金属核の表面の少なくとも一部を修飾しており、第1の金属に対して非選択性を有する官能基を含んでいる。 (もっと読む)


【課題】 特に、従来に比べて、ばらつきが小さく安定した特性を得ることができるFe基軟磁性合金粉末の製造方法を提供することを目的としている。
【解決手段】 設定温度をまずbcc相の結晶化開始温度(Tx1)よりも低い第3熱処理温度TAまで昇温させ、第3熱処理温度TAにて所定時間t1維持する。続いて、低速で、設定温度を、bcc相を析出させるための第2熱処理温度TBまで昇温させ、第2熱処理温度TBにて所定時間t2維持する。粉末温度にbcc相の析出による自己発熱に基づくオーバーシュートが生じ、その後、粉末温度がほぼ第2熱処理温度TBにまで低下したら、低速で、昇温過程における最終設定温度であり、前記オーバーシュートのピーク値より20℃低い温度以上の第1熱処理温度TCまで昇温させ、例えばbcc相と第2結晶相の双方を析出させる。 (もっと読む)


【課題】Feリッチ相が大幅に減少し、良好な保磁力と優れた角形性を有し、還元拡散法で安価に製造しうる希土類−鉄−マンガン−窒素系磁石粉末を提供。
【解決手段】希土類元素と、Mnと、Nと、残部が実質的にFeまたはFeおよびCoからなり、希土類元素が22〜27重量%、Mnが7重量%以下、Nが3.5〜6.0重量%である希土類−鉄−マンガン−窒素系磁石粉末であって、特定の原料粉末を用いた特定の還元拡散法と特定の窒化条件で製造され、Th2Zn17型結晶構造を有する相とアモルファス相とを含有するとともに、それ以外に共存するFeリッチ相は、下記の式で表される粉末X回折における回折線の強度比(X)が10%以下になるまで低減していることを特徴とする希土類−鉄−マンガン−窒素系磁石粉末によって提供する。
X=I(Fe)/Im
[式中、I(Fe)は、2θが44〜45°(Cu−Kα)に現れる回折線の強度であり、ImはTh2Zn17型結晶構造の回折線の中で最大の強度を表す] (もっと読む)


【課題】還元拡散反応により、安価で高特性の磁石粉末を安定的に生産できる希土類−遷移金属−窒素系磁石粉末の製造方法を提供。
【解決手段】酸化鉄粉末を水溶媒でスラリー化し、スラリーのpH値が2〜5の範囲に維持されるように1mol/L以下の希酸を添加しつつ希土類酸化物を所定量投入して溶解させ、アルカリ金属塩もしくはアルカリ土類金属塩を添加してpH>7.0で希土類水酸化物を酸化鉄表面に析出させた原料混合粉末を製造する第一の工程、得られた原料混合粉末を水素熱処理する第二の工程、水素熱処理された混合粉末に還元剤成分としてアルカリ土類金属を所定量添加し、混合して、不活性ガス雰囲気中で熱処理した後、同雰囲気中で冷却することにより希土類−鉄系母合金を得る第三の工程、引き続き、窒化処理する第四の工程、窒化処理物を湿式処理し、還元剤成分の副生成物を分離除去し、その後得られた粗粉末を解砕する第五の工程からなる。 (もっと読む)


【課題】
金属粒子を核とし金属が酸化や変質することなく、重合体を被覆する樹脂被覆金属粒子および粉砕物の製造方法を提供すること。
【解決手段】
工程(A):金属粒子を多官能チオール化合物で表面処理する工程、
工程(B):該多官能チオール化合物で表面処理した金属粒子をチオール化合物と反応し得る官能基と重合性反応基を有する反応性単量体とを反応させ該金属粒子表面に重合性二重結合を導入する工程、
工程(C):多官能チオール化合物とチオール化合物と反応し得る官能基と重合性反応基を有する反応性単量体とを反応させて多官能重合性単量体を生成させる工程、
工程(D):多官能重合性単量体を添加する工程、
工程(E):常温で固体または液状である分子量100以上1000以下の非重合性化合物を添加する工程、のうち
工程(A)、(B)、(C)、(E)、または、工程(A)、(B)、(D)、(E)で製造した樹脂被覆金属粒子を使用すること。 (もっと読む)


141 - 160 / 650