説明

Fターム[4K018FA08]の内容

粉末冶金 (46,959) | 後処理 (2,168) | 熱処理 (690)

Fターム[4K018FA08]の下位に属するFターム

Fターム[4K018FA08]に分類される特許

21 - 40 / 582


【課題】 高温軟化抵抗性に優れた高強度金型の製造方法を提供する。
【解決手段】 工具鋼粉末と酸化物粉末との混合粉末であって、質量%でC:0.1〜3.0%、Cr:1.0〜18.0%を含有し、かつ、体積%で酸化物を0.3〜5.0%含有する混合粉末をメカニカルミリングした後、熱間静水圧プレスによって固化し、型彫り面形状に機械加工して焼入れ焼戻しするか、または、焼入れ焼戻しして型彫り面形状に機械加工する高強度金型の製造方法において、前記熱間静水圧プレスは、プレス時の圧力をP(MPa)、温度をT(℃)としたときに、P≦200、T≦1100であり、かつ、Log10P≧−0.00135×T+3.40の条件で行う金型の製造方法である。好ましくは、T≦1050である。そして、前記混合粉末をメカニカルミリングした後、金型基体の表面に固化する高強度金型の製造方法である。 (もっと読む)


【課題】透磁率のさらなる向上を図る新たな磁性材料を提供し、あわせて、そのような磁性材料をもちいたコイル部品を提供すること。
【解決手段】金属粒子11を成形して酸化雰囲気下で熱処理することにより得られる粒子成形体1からなる磁性材料であって、金属粒子11はFe−Cr−Si系合金からなり、成形前の金属粒子のXPSによる709.6eV、710.7eVおよび710.9eVの各ピークの積分値の和FeOxide、ならびに、706.9eVのピークの積分値FeMetalについてFeMetal/(FeMetal+FeOxide)が0.2以上である、磁性材料。 (もっと読む)


【課題】高い磁束密度を有し、さらに、焼結収縮量が高く、その結果、焼結部品において高い接合強度が得られ、小型部品にも適用可能な軟磁性焼結材料を提供する。
【解決手段】主たる成分としてのFeを80質量%以上含有する合金粉末に、粒径30μm以下のCo粉又はCo合金粉を添加した軟磁性焼結材料であって、Coの含有量が全質量に対して15質量%未満(0を含まない)であることを特徴とする。 (もっと読む)


【課題】低損失な圧粉成形体を製造することができる圧粉成形体の製造方法を提供する。
【解決手段】軟磁性粒子の外周に絶縁被膜が被覆された被覆軟磁性粒子を複数具えてなる被覆軟磁性粉末を用いて圧粉成形体を製造する方法で、素材準備工程と、表面処理工程とを具える。素材準備工程では、被覆軟磁性粉末を加圧成形した成形体を用意する。表面処理工程では、素材成形体の表面の一部にウォータージェットを噴射する。素材成形体の表面の一部にウォータージェットを噴射することで、素材成形体の表面で複数の軟磁性粒子の構成材料同士が導通した導通部を除去でき、圧粉成形体の損失を低減できる。 (もっと読む)


【課題】HDDR処理を用いて希土類磁石を製造する際に、従来よりも高い磁化を実現できる製造方法を提供する。
【解決手段】RFe14B粉末を作成する工程;
上記RFe14B粉末に水素化分解処理を施してNdH、Fe、FeBの3相に分解する工程;
上記3相の粉末に別のRFe14B粉末を混合する工程;
得られた混合粉末を磁場中で圧粉成形する工程;
次いで加圧成形する工程;および
脱水素再結合処理を行なう工程
を含むことを特徴とする希土類磁石の製造方法。 (もっと読む)


【課題】本発明は、熱処理後の圧粉磁芯の強度の向上および磁気特性の改善の二つを両立できる複合磁性材料を提供することを目的とする。
【解決手段】上記目的を達成するために本発明は、鉄を主成分とした複数の金属磁性粉と、金属酸化物と、無機フィラーとを含み、前記金属酸化物を介して前記金属磁性粉同士が結着しているとともに、前記金属酸化物は前記金属磁性粉の表面積の14.4%以上、35.5%以下を覆うことを特徴とした複合磁性材料とする。 (もっと読む)


【課題】溶成工程や粉砕混合工程を経ることなくβ鉄シリサイドや半導体などに変換可能な高純度の鉄シリコン合金の製造方法を提供する。
【解決手段】粒径が10μm以下の鉄粉と粒径が10μm以下のシリコン粉を焼結型内に充填し、この粉末をパルス通電焼結法で加圧しながら直流パルス通電することにより、プラズマ放電が発生し電界作用でイオンの移動が高速となって粉末中にある酸化物や吸着ガスの除去が効果的に行われ、αFeSi2を主成分とした品質が良好で且つ緻密な焼結体が得られる。 (もっと読む)


【課題】バレル処理により表面粗さを効率よく下げることができる焼結合金の製造方法を提供することを目的とする。
【解決手段】原料粉末を加圧して圧粉体を形成し、この圧粉体を焼結してなる焼結合金に焼入れ処理S31を施す焼結部品の製造方法において、前記焼入れ処理S21の前に第1バレル処理S2により焼結合金1の表面の凸部を除去すると共に表面の気孔を小さくし、、前記焼入れ処理S21の後にバレルを用いた精密仕上げS42により表面を平滑化する。このように焼入れ処理S21の前の比較的柔らかい状態で第1バレル処理S2を行うことにより焼結合金1の表面の凸部を除去すると共に表面の気孔を小さくし、焼入れ処理S31の後にバレルによる精密仕上げS42により焼結合金の表面を滑らかに加工して平滑化することができる。 (もっと読む)


【課題】フィルタ、触媒担体、電池用電極などの用途に適したアルミニウム多孔体の製造方法を提供すること。
【解決手段】連通気孔を有する多孔質樹脂成形体の表面にアルミニウム膜を形成してなるアルミニウム構造体のシート32を溶融塩浴槽30中の溶融塩浴に浸漬して前記多孔性樹脂成形体を分解処理して除去した後にアルミニウム多孔体のシートを溶融塩浴から引き出す工程を含むアルミニウム多孔体33の製造方法であって、前記シートの搬送をそれぞれ独立して回転駆動する複数のローラRを用いて行うことを特徴とするアルミニウム多孔体の製造方法。 (もっと読む)


【課題】高強度な浸炭焼結体を効率的に製造できる浸炭焼結体の製造方法を提供する。
【解決手段】本発明の浸炭焼結体の製造方法は、Fe、Mn、SiおよびCの合金または化合物からなるFe−Mn−Si−C粉末を鉄合金粉末に加えた原料粉末を、加圧成形して成形体を得る成形工程と、この成形体を浸炭温度が850〜980℃の浸炭雰囲気中で加熱することにより、表面近傍に浸炭層が形成された焼結体である浸炭焼結体を得る浸炭工程と、を備えることを特徴とする。Fe−Mn−Si−C粉末が鉄合金粉末の粒子表面を還元して活性化することにより、浸炭工程中に鉄合金粉末の粒子間にいわゆる焼結ネックが形成される。このため焼結工程を行わずに、成形体の焼結化と浸炭層の形成の両方が浸炭工程によりなされる。こうして本発明の製造方法によれば、高強度な浸炭焼結体を効率的に低コストで製造することが可能となる。 (もっと読む)


【課題】樹脂成形体とりわけ三次元網目構造を有する多孔質樹脂成形体の表面にアルミニウムをめっきするに際し、電流値を高くして効率よくアルミニウムめっき膜を形成する方法を提供することを目的とする。
【解決手段】表面に導電層2を形成することにより導電化された樹脂成形体1にアルミニウムを溶融塩浴中で電気めっきしてアルミニウムめっき層3を形成するアルミニウム多孔体の製造方法であって、陽極がアルミニウムエキスパンドメタルからなり、該陽極の表面積が樹脂成形体の表面積の1.3倍以上であることを特徴とするアルミニウム多孔体の製造方法。 (もっと読む)


【課題】磁気特性に優れ、磁石の素材に適した複合磁性材、及びその製造方法を提供する。
【解決手段】ナノ鉄粉と、希土類元素の水素化合物と鉄含有物とを含有する多相粉末と、バインダとを混合してなる造粒粉を加圧成形する。加圧成形は、0.9気圧以下に排気しながら、バインダの分解温度±20℃の温度で行う。得られた第一成形体に、減圧雰囲気中、再結合温度以上で熱処理(脱水素)して、多相粉末から希土類元素とFeとを含有する再結合合金を生成し、得られた第二成形体に、窒素雰囲気中、200℃〜450℃で熱処理(窒化)して、ナノ鉄粉からα"Fe16N2を、再結合合金から希土類-鉄-窒素系合金を生成する。熱処理はいずれも、強磁場を印加して行う。窒化処理時に磁場を印加してα"Fe16N2を生成すると共に、希土類-鉄-窒素系合金とα"Fe16N2との磁気容易軸の配向方向を共通させる。 (もっと読む)


【課題】異種金属間の接合における炭素拡散によるクリープ強度低下防止、熱膨張率差による応力の緩和の方法を提供する。
【解決手段】異種金属間の接続であって、接合部の逆形を複製するように設計されたモールド(成形型)を提供するステップと、低合金フェライト鋼組成物微粒化粉末をモールドの第1部分に導入するステップと、一連の微粒化粉末をモールドの第2部分に徐々に(段階的に)導入してフェライト鋼組成物とオーステナイトステンレス鋼組成物との間の移行領域を形成するステップと、オーステナイトステンレス鋼組成物微粒化粉末をモールドの第3部分に導入するステップとを含む。この方法は、高温、高圧の不活性ガス雰囲気中で微粒化粉末を固めて溶融させ、接合部を形成するステップをさらに含む。 (もっと読む)


【課題】残留磁束密度の低減を抑制しながら保磁力を増大させる。
【解決手段】組成Ra1bcd(Rは希土類元素、T1はFe又はCo、MはAl等、Bはほう素、a、b、c、dは原子百分率を示し、12≦a≦20、0≦c≦10、4.0≦d≦7.0、bは残部)からなる焼結磁石体に対し、組成R1i1j、R1i1jk又はR1x2y1z(R1は希土類元素、M1はAl等、T2はFe及び/又はCo、15<j≦99、k≧0.1、5≦x≦85、15<z≦95、i、yは残部)からなり、かつ金属間化合物相を70体積%以上含む合金粉末とR2の酸化物(R2は希土類元素)を含有した混合粉体を上記焼結磁石体の表面に存在させた状態で、熱処理を施すことにより、R1、R2、T2、M1の1種又は2種以上の元素を当該焼結磁石体の内部の粒界部、及び/又は、焼結磁石体主相粒内の粒界部近傍に拡散させる。 (もっと読む)


【課題】焼き入れ検査を簡単に行うことができるとともに検査精度を向上させることができる焼結部品及びその製造方法焼結部品及びその製造方法を提供する。
【解決手段】焼結部品は、金型により粉末成形体2を加圧成形する加圧成形工程、前記粉末成形体2を焼結して焼結体を得る焼結工程、及び前記焼結体の所定箇所を焼き入れ処理する焼き入れ工程を経て製造される。前記加圧成形工程において、前記焼き入れ処理による変色の許容範囲を示す目印、又は前記焼き入れ工程後に焼き入れ深さを測定するために切断する切断箇所を示す目印となる目印部10が、前記金型により加圧成形されている。 (もっと読む)


【課題】焼結前の原料粉末の組織が非晶質であるかナノ結晶質であるかによらず、高い残留磁化と高い保磁力とを同時に達成できる希土類磁石の製造方法を提供する。
【解決手段】異方性でナノ結晶質の希土類磁石の製造方法であって、
ナノ結晶質および/または非晶質の希土類磁石合金の粉末を準備する工程、
上記粉末を焼結する工程、
得られた焼結体を熱処理する第1熱処理工程、
次いで熱間強加工を行なう工程
を含むことを特徴とする希土類磁石の製造方法。 (もっと読む)


【課題】直流重畳特性の改善を実現できるリアクトル用コアとその製造方法およびリアクトルを提供する。
【解決手段】絶縁被膜で覆った金属磁性粒子を加圧成形してなるリアクトル用コアMで、前記金属磁性粒子が次の構成を備える。(1)平均粒径が1μm以上70μm以下であること。(2)粒径の標準偏差(σ)と平均粒径(μ)との比である変動係数Cv(σ/μ)が0.40以下であること。(3)円形度が0.8以上1.0以下であること。ここで、円形度は、無作為に抽出した1000個以上の金属磁性粒子について断面を顕微鏡で観察し、各金属磁性粒子の面積および外周長さを算出し、以下の式により求めた値の平均値である。
円形度=4π×金属磁性粒子の面積/金属磁性粒子の外周長さの2乗 (もっと読む)


【課題】R−T−B系焼結磁石内部に重希土類元素RHが効率よく拡散され、所定の磁気特性を得る磁石の製造方法を提供する。
【解決手段】R−T−B系焼結磁石の製造方法は、R−T−B系焼結磁石素材を準備する工程と、重希土類元素RH(RHはDyおよびTbの少なくとも一種を含む)と40質量%以上95質量%以下のFeとからなるRH−Fe合金と、軽希土類元素RL(Nd、Pr、Ce、Laの少なくとも一種を含む)を含むRL金属と、からなり、総希土類量が65質量%以上、軽希土類元素RLが20質量%以上70質量%以下、重希土類元素RHが50質量%以下、である粉末状の拡散材を準備する工程と、前記R−T−B系焼結磁石素材に対し、前記拡散材を前記R−T−B系焼結磁石素材の表面に存在させた状態で、800℃以上1000℃以下の温度で真空または不活性ガス中においてRH拡散処理する工程と、を包含する。 (もっと読む)


【課題】鉄損の少ない磁心が得られる圧粉成形体を成形可能な圧粉成形体の成形方法を提供する。
【解決手段】柱状の第一パンチ(下パンチ12)と筒状のダイ10とでつくるキャビティに、原料粉末3を充填し、下パンチ12と上パンチ11とで原料粉末3を加圧して、磁心に利用される圧粉成形体100を製造する。下パンチ12は、最大粒径:20μm以下の固体潤滑剤の粉末を液媒に分散させた金型用潤滑剤を充填する液溜め溝24を具える。液溜め溝24から下パンチ12の外周面12oとダイ10の内周面10iとの間に金型用潤滑剤を供給して、下パンチ12とダイ10との相対移動により、ダイ10の内周面10iに金型用潤滑剤を塗布する。原料粉末3は、絶縁層を具える軟磁性粉末である。成形用金型1に特定の大きさの潤滑剤の粉末を含む分散剤を塗布することで、成形用金型1と成形体との摺接による絶縁層の損傷を防止できる。 (もっと読む)


【課題】比抵抗および強度に優れる圧粉磁心を提供する。
【解決手段】本発明は、軟磁性粒子と、この軟磁性粒子間に形成される粒界相と、からなる圧粉磁心であって、粒界相は、軟磁性粒子の焼鈍温度よりも低い軟化点を有する第一無機酸化物からなる低温軟化材(低融点ガラス粒子)からなるマトリックス中に、焼鈍温度よりも高い軟化点を有する第二無機酸化物からなる高温軟化材(シリカやアルミナのナノ粒子)からなる微粒子が分散した複合分散組織であることを特徴とする。粒界相がこのような複合分散組織からなることにより、各軟磁性粒子は、低温軟化材により強固に結合されると共に高温軟化材により所定間隔が保持され絶縁性が確保される。こうして高比抵抗と高強度が高次元で両立した本発明の圧粉磁心が得られた。 (もっと読む)


21 - 40 / 582