説明

Fターム[4K021CA08]の内容

Fターム[4K021CA08]に分類される特許

81 - 100 / 311


【課題】少ない部品点数で効率的に酸素及び水素を生成でき、また、小型化を有効に行うことができる電解方法及び電解装置を提供すること。
【解決手段】電解装置1は、水を保持すると共に電極3が内部に設けられた容器2と、容器2に水を循環させる循環路4を備える。循環路4には、容器2から水が排出される側から順に、循環する水から水素と酸素を分離して取り出す分離器5と、炭素微粒子と窒素の微細気泡を含む水を供給する供給管6と、水を循環させる循環ポンプ7が介設されている。電極3は、容器2の対抗する内側面に夫々配置された陽極電極31及び陰極電極32と、これら陽極電極31と陰極電極32の間に配置された3つの中間電極33、33、33を有する。炭素微粒子により、水の電気分解による水素及び酸素の生成効率を向上させ、窒素の微細気泡により、電気分解で生成された水素及び酸素の防爆を行う。 (もっと読む)


【課題】水の分解反応を効率よく進行させることができる水素製造装置を提供する。
【解決手段】酸素発生用電極、水素発生用電極および非導電性の多孔質構造体を有する電極部、該電極部に電解質水溶液を供給する電解質水溶液供給機構、ならびに、電極表面へ光を導入する採光部を備えてなる光水分解反応を利用した水素製造装置において、電極が空間中に存在するものとし、装置の運転時に、電解質水溶液供給機構により、電極に電解質水溶液を供給し、電極表面に電解質溶液の液膜を形成する。 (もっと読む)


【課題】簡単且つ経済的に構成することができ、しかも低温部品を高温から保護するとともに、排熱の有効利用を図ることを可能にする。
【解決手段】水電解システム10は、純水を電気分解することによって高圧水素を製造する水電解装置12と、前記水を前記水電解装置12に循環させる水循環装置14と、前記水電解装置12から排出される前記酸素及び高圧水素を、前記水循環装置14内の水から分離する気液分離装置16と、前記気液分離装置16に貯留される前記水を、前記水電解装置12に循環させる水循環装置14と、前記気液分離装置16に希釈用エアを供給するエア供給装置90とを備え、これらが筐体22に収容される。エア供給装置90は、水電解装置12で発生する熱を回収する熱回収機能と、前記熱を希釈用エアに伴って気液分離装置16に供給する送風機能とを兼用する単一のエアブロア92を備える。 (もっと読む)


【課題】シール部材のコンパクト化を容易に図るとともに、高圧水素を良好に得ることを可能にする。
【解決手段】水電解装置10を構成する単位セル12は、電解質膜・電極構造体32をアノード側セパレータ34及びカソード側セパレータ36により挟持する。単位セル12の外周部に設けられる第1突出部48a、第2突出部48b及び第3突出部48cには、水供給連通孔50a、排出連通孔50b及び高圧水素連通孔50cが形成される。第3突出部48cには、高圧水素連通孔50cに隣接して第1位置決め孔部70aが形成され、第1突出部48aには、水供給連通孔50aに隣接して第2位置決め孔部70bが形成される。第1位置決め孔部70aは、第2位置決め孔部70bよりも高い寸法精度に設定される。 (もっと読む)


【課題】運転停止後に、シール部材の内部における水素の急膨張が発生することを阻止し、前記シール部材の破損を可及的に回避することを可能にする。
【解決手段】減圧速度設定方法は、高圧な水素をシールするための第1シール部材62dを、水電解装置10の運転時の設定水素圧力下に配置し、前記第1シール部材62dの内部に前記水素を取り込む工程と、前記水素を取り込んだ前記第1シール部材62dを、大気圧下に配置した状態で、前記第1シール部材62dの内部に取り込まれた前記水素が、該第1シール部材62dの外部に透過する透過時間を得る工程と、前記透過時間以上の減圧時間を設定し、前記減圧時間に基づいて、前記設定水素圧力から前記大気圧までの減圧速度を算出する工程とを有する。 (もっと読む)


【課題】外部からの電力供給が容易でない地域でも、二酸化硫黄ガスを発電・水素製造のための燃料として利用可能とする。
【解決手段】二酸化硫黄ガスを利用する水電解水素発生器10と、水素を利用する燃料電池12を具備し、前記水電解水素発生器では亜硫酸水の電気分解反応により水素と硫酸を発生し、前記水電解水素発生器で発生した水素を前記燃料電池で利用して水と電力を発生し、前記燃料電池で発生した電力を前記水電解水素発生器における電気分解に使用するように両者を組み合わせ、余剰に発生する水素及び/又は電力を外部に取り出すようにした二酸化硫黄ガスを燃料とする発電・水素製造装置である。水電解水素発生器には水素タンク24を、燃料電池に充電装置30を付設することで、余剰に発生する電力と水素を内部で貯蔵可能にすると共に、必要に応じて余剰の電力及び/又は水素を外部に供給することができる。 (もっと読む)


【課題】ナトリウムイオンの移動量を容易にモニタリングする過塩素酸塩の製造装置及び製造方法の提供。
【解決手段】陽極4が設けられる陽極側4Aと陰極5が設けられる陰極側5Aとが陽イオン交換膜6で仕切られ、陽極側4Aにおいて塩化ナトリウム水溶液を電解酸化する一次電解槽1と、陰極側5Aにおいて上記電解酸化に伴い変化するpH値、水温及び液量に基づいて、上記電解酸化に伴い陽極側4Aから陽イオン交換膜6を通過して陰極側5Aに移動したナトリウムイオンの移動量を計測する計測装置13と、を有する過塩素酸アンモニウム製造装置Aを採用する。 (もっと読む)


【課題】揚水発電所方式の代替システムとして、深夜電力に加えて自然エネルギーを利用した風力発電・太陽光発電等の電力も貯蔵でき、環境破壊も大量のCO排出もない安価な無公害の電力需給平準化システムを提供すること。
【解決手段】本発明の電力需給平準化システムは、複数の電気所に分散配置され、深夜の余剰電力を使って水を電気分解後、水素ガスを熱交換で液体水素にして貯蔵し、電力需要ピーク時に液体水素をガス化した水素を用いて発電する。さらに、風力発電・太陽光発電等のP、Q、V短周期変動が激しい電力もP、Q、V短周期変動平滑化装置2によって平滑化して、水を電気分解するために使用する。 (もっと読む)


【課題】有隔膜電解槽各電解室の上方に滞留しがちな塩素ガス等を、電解生成水の導出口部に速やかに導入して系外へ排出することにより、生成される電解生成水を導出口からスムーズに流出させ、また、電極板の上端部が塩素ガスに曝されるのを抑制または確実に規制して、電極板の早期の腐食を大幅に抑制または防止する電解槽の提供。
【解決手段】電極板ユニット10を構成するスペーサ10a,10bの各縦枠部13の上端部位に、隔膜10cとは反対側に開口する凹状の段差部13a,13bを設けて、段差部13a,13bに対向する部材との間に電解室の幅方向に並列する複数の隙間Eを形成し、各隙間Eは電極板10d,10eの表面に発生するガスを捕捉し、捕捉したガスを電解生成水とともに流出させるように構成した。 (もっと読む)


【課題】筺体の下方に導入した被電解水を電極板ユニットの下方から各電解室の各チャンネル内に流入し、各チャンネルを上方へ流動する間に有隔膜電解する形式の有隔膜電解槽において、被電解水が各チャンネルに対して偏って流入するのを防止して各電極板を有効に活用し、電極板が有する電極端子での過電解を防止して電極板の早期の腐食の進行を防止することのできる電解槽の構造を提供する。
【解決手段】電極板ユニット10の下方の部位に筺体20内に流入する被電解水の液溜まりDを形成して、被電解水を液溜まりDに滞留させた状態で各チャンネルE1〜E6に流入するようし、また、電極板10d,10eが有する電極端子10d1,10e1を液溜まりDに位置させようにした。 (もっと読む)


【課題】複数の電極板ユニットを互いに重合して、各電極板ユニット内に形成した各電解室を複数対形成した有隔膜電解槽において、各対の電解室からの被電解水、電解生成水等の漏洩を、シール部材を用いることなく防止する構造を提供する。
【解決手段】電極板ユニット10を構成する各スペーサ10a,10bに、各電極板10d,10eを嵌合させて外周枠部11.12内に位置する嵌合凹部14,15を形成するとともに、外周枠部11,12には、前記嵌合凹部14,15と同等の深さの嵌合凹部11a,12aを有する凹凸形状に形成して、各嵌合凹部11a,12a、14,15の電極板10d,10eの厚みと同等の深さに設定し、両スペーサ10a,10bを、互いに対向する外周枠部11,12を互いに嵌合させて密接して組付ける。 (もっと読む)


【課題】簡単な構成及び工程で、吸着装置の交換作業が迅速且つ良好に遂行され、効率的なメンテナンス作業を遂行することを可能にする。
【解決手段】水電解システム10は、水電解装置14と、生成された水素に含まれる水分を吸着して除去しドライ水素を得る水吸着装置20と、前記水吸着装置20に連通して前記ドライ水素をシステム外部に供給するためのドライ水素供給装置24と、前記水吸着装置20を交換するための第1及び第2分離部42a、42bと、前記ドライ水素供給路22から分岐するパージガス供給路46に設けられ、前記水吸着装置20を交換する際に、貯留されている前記ドライ水素を新たな該水吸着装置20にパージガスとして供給するパージ専用水素タンク48と、前記水素導出路16から分岐し、前記水吸着装置20に供給されたパージガスを排出するパージ流路52とを備える。 (もっと読む)


【課題】二分子膜を有する電解セルを提供する。
【解決手段】
電解セル10は、アノード電極14を有するアノード12と、カソード電極18を有するカソード16と、未処理膜層22およびプラチナ交換膜層24を有する二分子膜20と、直流(DC)電源26と、外部回路28と、水供給ライン30と、低圧水素32と、高圧酸素34と、を有する。電解セル10の一方の側にアノード12が位置し、これと対向する他方の側にカソード16が位置する。二分子膜20はアノード12とカソード16との間に配設され、このうち未処理膜層22がアノード12に隣接し、プラチナ交換膜層24がカソード16に隣接するように配される。直流電源26は、外部回路28を介してアノード電極14およびカソード電極18に接続され、電解セル10に電力を供給する。水供給ライン30はカソード16に水を供給する。 (もっと読む)


複数の異なる高さに配置されたセルスタック(32)に電解質液を供給するためのシステム(10)は、異なる高さに1つずつ、電解質液を入れるための複数の定水頭供給タンク(12)を備える。各供給タンク(12)は、電解質液の表面が大気圧であることを確保するように適合され、かつ電解質液をセルスタックに供給し、越流ダクト(18)が組み込まれて、電解質液を一定レベルに保持する。システムは、電解質液貯蔵タンク(20)と、電解質液貯蔵タンク(20)から最も上の供給タンク(12)に電解質液を供給するための手段(24、26)とを備える。 (もっと読む)


【課題】緊急停止時に安全に停止させることができ、かつ速やかに再起動させることができるフッ素ガス生成装置を提供する。
【解決手段】フッ素ガス生成装置100の緊急停止時に作動する緊急停止設備を備え、緊急停止設備は、フッ素ガス生成装置100の緊急停止に伴う駆動源の喪失に伴って同伴ガス遮断弁47が閉弁されることによって遮断される同伴ガスに代わり、精製装置16の冷媒を代替ガスとして供給可能な代替ガス供給設備201と、代替ガスのフッ化水素供給通路41への供給と遮断を切り替える代替同伴ガス遮断弁209と、フッ素ガス生成装置100の緊急停止に伴う駆動源の喪失に伴って開弁して計装ガスが供給可能となる計装ガス遮断弁を有する緊急停止用計装ガス供給設備とを備え、フッ素ガス生成装置100の緊急停止時には、計装ガスの供給を受けて代替同伴ガス遮断弁209が開弁し代替ガスがフッ化水素供給通路41へと供給される。 (もっと読む)


【課題】フッ素ガスの粗精製の過程で電解槽を停止させる必要がなく、かつ簡便な構造にてフッ素ガスを粗精製すること。
【解決手段】陽極7にて生成されたフッ素ガスが導かれる第1気室11aと、陰極8にて生成された水素ガスが導かれる第2気室12aとが区画された電解槽1と、電解槽1の溶融塩から気化して主生ガスに混入したフッ化水素ガスを凝縮させてフッ素ガスを粗精製する粗精製装置50とを備え、粗精製装置50は、主生ガスの通過中に凝縮したフッ化水素を貯留可能なフッ化水素貯留槽51と、フッ化水素貯留槽51をフッ化水素の融点を超える温度で冷却する冷却装置52とを備え、フッ化水素貯留槽51は、主生ガスが通過する気相部を有する凝縮槽54と、フッ化水素液中にキャリアガスが供給されることによってフッ化水素が外部へ排出される排出槽55とを備え、凝縮槽54と排出槽55の液相部は連通し、かつ気相部54a,55aは分離されてなる。 (もっと読む)


【課題】酸化性物質を含む水塊に適用される水塊自己生成電解還元モジュールを提供する。
【解決手段】本水塊自己生成電解還元モジュールは自己生成ユニットと電気分解ユニットとを備える。該自己生成ユニットは該電気分解ユニットに結合されている。水塊は水輸送管路内を流れる時、該自己生成ユニットが電力を生成し該電力を該電気分解ユニットに送るよう駆動する。該電気分解ユニットは該電力を受け取って、該電気分解ユニットを流れる該水塊に電気分解を行う。これにより該水塊内の酸化性物質に還元反応が起こる。 (もっと読む)


【課題】本発明は、安定したエッチング処理を行うことができるエッチング処理方法、微細構造体の製造方法、およびエッチング処理装置を提供する。
【解決手段】硫酸溶液を電気分解して酸化性物質を生成するとともに、生成される前記酸化性物質の生成量を制御して、所定の酸化種濃度を有するエッチング溶液を生成し、生成された前記エッチング溶液を被処理物の表面に供給すること、を特徴とするエッチング処理方法が提供される。 (もっと読む)


【課題】フッ素ガスの粗精製の過程で凝縮されたフッ化水素を有効に利用する。
【解決手段】陽極7にて生成されたフッ素ガスを主成分とする主生ガスが導かれる第1気室11aと、陰極8にて生成された水素ガスを主成分とする副生ガスが導かれる第2気室12aとが溶融塩液面上に区画された電解槽1と、電解槽1に補充するためのフッ化水素が貯留されたフッ化水素供給源40と、電解槽1の溶融塩から気化して主生ガスに混入したフッ化水素ガスを凝縮させてフッ素ガスを粗精製する粗精製装置50とを備え、粗精製装置50は、主生ガスの通過中に凝縮したフッ化水素を貯留可能なフッ化水素貯留槽51と、フッ化水素貯留槽51をフッ化水素の融点以上の温度で冷却することによって主生ガス中のフッ化水素ガスを凝縮させる冷却装置52と、フッ化水素貯留槽51に貯留されたフッ化水素を電解槽1又はフッ化水素供給源40に搬送して回収する回収設備53とを備える。 (もっと読む)


【課題】フッ素ガスの精製の過程で電解槽を停止させる必要がなく、かつ簡便な構造にてフッ素ガスを精製すること。
【解決手段】陽極7にて生成されたフッ素ガスが導かれる第1気室11aと、陰極8にて生成された水素ガスが導かれる第2気室12aとが区画された電解槽1と、電解槽1の溶融塩から気化して陽極7から生成された主生ガスに混入したフッ化水素ガスを捕集してフッ素ガスを精製する精製装置16とを備え、精製装置16は、フッ化水素ガスを凝縮させてフッ素ガスを粗精製する粗精製装置13と、フッ化水素ガスを凝固させてフッ素ガスを本精製する本精製装置14とを備え、本精製装置14のガス通過部81を主生ガスが通過する際に凝固したフッ化水素は、粗精製装置13のフッ化水素貯留槽51に落下して貯留され、排出設備55を通じて外部へ排出される。 (もっと読む)


81 - 100 / 311