説明

Fターム[4K029EA09]の内容

物理蒸着 (93,067) | 測定、制御 (3,915) | 供給電力 (320)

Fターム[4K029EA09]に分類される特許

1 - 20 / 320


【課題】蒸発量に見合った材料を連続的に供給する。
【解決手段】加速した電子を照射し、加熱して蒸発させた坩堝6内の材料7を基板フィルム2の表面に付着させて薄膜を連続的に形成する際の前記材料7の連続的な供給制御を、坩堝6内の材料7の蒸発速度が一定になるように制御されているエミッション電流値を検出することで行う電子ビーム蒸着用材料供給装置である。前記坩堝6として、内面を底部から開口端にかけて逆末広がりのテーパ状に形成したものを使用する。
【効果】材料供給装置からの材料の供給量が自動的に制御され、蒸発量に見合った材料を供給できるので、長時間の運転が可能になる。 (もっと読む)


【課題】ターゲットであるCu2Oから、単一結晶相からなる有用なCu2O被膜(堆積膜)又はCuO被膜を選択的に形成できると共に、そのCu2O被膜の形成に際して、そのCu2O被膜の膜質制御を簡単に行うことができる被膜形成方法を提供する。
【解決手段】ターゲットとして、Cu2Oを用い、Arをプラズマ化するための投入電力とArを含む全ガス圧力とを、前記Cu2Oからのスパッタ粒子をO2流量比が高まるに伴ってCu2O,Cu4O3,CuOに順次、変化し得るように設定し、その上で、前記投入電力及び前記全圧力の下で、O2流量比を調整する。これにより、的確に、単一結晶相からなる有用なCu2O被膜又はCuO被膜のいずれかを選択的に形成できるようにする。また、Cu2O被膜の形成に際しては、O2流量比調整により広い範囲で抵抗率(キャリア密度)を調整して、Cu2O被膜の膜質特性の変更を簡単に行えるようにする。 (もっと読む)


【課題】蒸着時の突沸を防止して膜上のパーティクルを低減すると同時に、蒸着材料の使用効率を向上させる装置を提供する。
【解決手段】電子ビーム蒸着装置において、蒸着材料が充填される坩堝、前記蒸着材料に電子ビームを照射して該蒸着材料を蒸発させるための電子銃、及び前記坩堝に対向して配置され、蒸発した前記蒸着材料が成膜される基板を保持する基板保持部を備え、前記電子ビームの出力電力が1.2〜3.0kWの範囲で、前記成膜の条件に基づいて加速電圧が数値2kV以上〜6kV未満の範囲で設定されるよう構成した。 (もっと読む)


【課題】成膜速度の面内均一性を確保しながら、成膜効率を向上させ、ターゲットの使用効率を向上させること。
【解決手段】真空容器2内に載置されたウエハ10に対向するようにターゲット31を配置し、このターゲット31の背面側にマグネット配列体5を設ける。このマグネット配列体5は、マグネット61,62がマトリックス状に配列された内側マグネット群54と、この内側マグネット群54の周囲に設けられ、電子の飛び出しを阻止するリターン用のマグネット53とを備えている。これによりターゲット31の直下にカスプ磁界による電子のドリフトに基づいて高密度のプラズマが発生し、またエロージョンの面内均一性が高くなる。このためターゲット31とウエハ10とを接近させてスパッタを行うことができ、成膜速度の面内均一性を確保しながら、成膜効率を向上させることができる上、ターゲットの使用効率が高くなる。 (もっと読む)


【課題】高密度かつ低抵抗のスパッタリングターゲット、電界効果移動度の高い薄膜トランジスタを提供する。
【解決手段】Gaをドープした酸化インジウム、又はAlをドープした酸化インジウムを含み、正4価の原子価を示す金属を、Gaとインジウムの合計又はAlとインジウムの合計に対して100原子ppm超1100原子ppm以下含み、結晶構造が、実質的に酸化インジウムのビックスバイト構造からなる焼結体を含むスパッタリングターゲット。 (もっと読む)


【課題】 真空アーク蒸着法により、基材に付着するマクロパーティクルを抑制することの可能な真空アーク式蒸発源を提供する。
【解決手段】 真空アーク式蒸発源は、蒸発させる物質からなる棒状又は板状の陰極3と、該陰極の蒸発面の反対面に設けられるスペーサー部16と、該スペーサー部16が取り付けられるバッキングプレート10とを含み、前記スペーサー部16の軸方向に垂直な断面積が前記陰極の厚さ方向に垂直な断面積より小さくする。 (もっと読む)


【課題】窒化リン酸リチウム膜の成膜速度を高めつつ、該窒化リン酸リチウム膜における膜特性の安定性を高めることの可能な窒化リン酸リチウム膜の成膜方法、該方法を用いて窒化リン酸リチウム膜を成膜する装置、及び該方法によって成膜された窒化リン酸リチウム膜を提供する。
【解決手段】
窒素とアルゴンとが含まれる真空槽11内でリン酸リチウムのターゲット13をスパッタして窒化リン酸リチウム膜を基板Sに成膜する。スパッタ装置のターゲット13には、インジウム層14を介して銅からなるバッキングプレート15が接合され、バッキングプレート15には、インジウム層14を温調する冷却水が循環される。スパッタ時には、真空槽11内の圧力を0.25Pa以上1.0Pa以下とし、ターゲット13に3.5W/cm以上5.7W/cm以下の電力密度で高周波電力を供給し、インジウム層14の温度を20℃以上60℃以下とする。 (もっと読む)


【課題】ペン入力耐久性および高温高湿信頼性に優れる透明導電体層を有する透明導電性フィルムを提供すること。
【解決手段】透明なフィルム基材の片面に少なくとも1層のアンダーコート層を介して、透明導電体層を有する透明導電性フィルムであって、前記透明導電体層は、厚さdが15〜35nmであり、平均表面粗さRaが0.37〜1nmであることを特徴とする透明導電性フィルム。 (もっと読む)


【課題】触媒金属の混入を抑えることの可能な窒化ガリウム柱状構造の形成方法、及び該方法を用いる窒化ガリウム柱状構造の形成装置を提供する。
【解決手段】
窒化ガリウム柱状構造を下地層上に反応性スパッタによって形成する。このとき、真空槽11内に供給されるアルゴンガス及び窒素ガスの総流量に占める窒素ガスの流量の割合である窒素濃度を窒化ガリウム膜の成長速度が窒素供給によって律速され、且つ、窒化ガリウムの成長速度における極大値の91%以上100%以下の窒化ガリウムの成長速度となるような窒素濃度とする。また、基板Sの温度T、ガリウムのターゲット14に供給される周波数が13.56MHzであるバイアス電力Pが、600≦T≦1200、0<P≦4.63、P<0.0088T−6.60、P≧0.0116T−11.37を満たす条件にて窒化ガリウム柱状構造を形成する。 (もっと読む)


【課題】コンタクトホール内に良好にAl膜が埋設されたコンタクトプラグを有する半導体装置を提供する。
【解決手段】半導体装置の製造方法は、基板の層間絶縁膜内にコンタクトホールを形成する工程と、基板を加熱した状態でコンタクトプラグを形成する工程を有する。コンタクトプラグを形成する工程では、スパッタ装置のチャンバー内のステージ上に、チャックを介して基板を保持し、チャックに印加するESC電圧を第一の電圧、第二の電圧、第三の電圧と、この順に3段階のステップ状に増加させる。チャンバー内のターゲットに対して第一のターゲット電力を印加してコンタクトホール内に第一のAl膜を成膜する。次に、チャンバー内のターゲットに対して第一のターゲット電力よりも高い第二のターゲット電力を印加して第一のAl膜上に第二のAl膜を成膜する。 (もっと読む)


【課題】耐熱温度の低い樹脂材料などに、膜応力が大きい膜材料を成膜するときに、膜クラックの発生が少なく、環境試験寿命を大幅に長くできるスパッタリング方法を提供することを目的としている。
【解決手段】樹脂基板9などに高屈折率膜15,低屈折率膜16,高屈折率膜17,低屈折率膜18をスパッタする場合に、スパッタの開始前の圧力を10−1Pa台の低真空として、膜応力を引張応力とすることを特徴とする。 (もっと読む)


【課題】耐摩耗性に優れ、苛酷な使用環境でも硼化物皮膜が剥離しないよう、高い密着強度を有した状態で被覆した被覆工具およびその製造方法を提供する。
【解決手段】工具の基材表面に中間皮膜を介して硬質皮膜を被覆した被覆工具であって、前記硬質皮膜は、Al、Si、Cr、W、Ti、Nb、Zrから選択される1種以上の元素の硼化物であって、六方晶の結晶構造であり、前記中間皮膜は、AlxMyからなる窒化物又は炭窒化物(但し、x、yは原子比を示し、x+y=100、かつ、40≦x≦95、かつ、5≦y≦60、MはTi、Cr、V、Nbから選択される1種以上)であり、前記基材側が立方晶の結晶構造、前記硬質皮膜側が六方晶の結晶構造である耐摩耗性に優れる被覆工具。硬質皮膜は、Tiの硼化物であることが好ましい。中間皮膜は、基材側から硬質皮膜側に向けてAlの含有量が増加することが好ましい。 (もっと読む)


【課題】広い範囲で制御された組成比を有し、結晶性に優れる化合物半導体の膜を用いた半導体素子を製造する方法を提供する。
【解決手段】基板110上にn型半導体およびp型半導体を含むように積層して構成された半導体素子の製造方法であって、異なるIII族元素による少なくとも2つのターゲット(第1ターゲット21および第2ターゲット22)を、V族元素を含むガスによりスパッタリングして、基板110上にIII−V族の化合物半導体の膜を形成する工程を含む。 (もっと読む)


【課題】広い範囲で制御された組成比を有し、結晶性に優れる化合物半導体の膜を用いた半導体素子を製造する方法を提供する。
【解決手段】基板110上にn型半導体およびp型半導体を含むように積層して構成された半導体素子の製造方法であって、異なるIII族元素による少なくとも2つのターゲット(第1ターゲット21および第2ターゲット22)を、V族元素を含むガスによりスパッタリングして、基板110上にIII−V族の化合物半導体の膜を形成する工程を含む。 (もっと読む)


【課題】本発明は、高い硬度及び優れた耐摩耗性を有する被覆部材及びその製造方法を提供することを目的とする。
【解決手段】本発明に係る硬質塗層を有する被覆部材は、硬質基材を備えている。前記被覆部材は、前記硬質基材に形成された結合層と、前記結合層に形成された中間層と、前記中間層に形成された硬質層と、を備えている。又、本発明は、硬質塗層を有する被覆部材の製造方法にも関している。 (もっと読む)


【課題】めっき法以外の方法によって、スズと鉄とタングステンからなる耐食性の三元合金皮膜を基材上に形成させる方法を提供すること。
【解決手段】本発明は、基材表面にスズ、鉄及びタングステンからなる耐食性合金皮膜を形成させる方法であって、
スズ、鉄及びタングステンの金属粉末を混合し、圧縮成形することによって、スパッタリングターゲットを形成する工程Aと、
真空チャンバー内に前記基材と前記スパッタリングターゲットとを対向させ、スパッタリング法によってスズ、鉄及びタングステンからなる合金皮膜を形成する工程Bとを有し、
前記金属粉末は、タングステンの質量を1とした場合、スズの質量は5以上7以下であり、鉄の質量は2以上4以下である、ことを特徴とする方法に関する。耐食性合金皮膜の結晶構造は、アモルファスである。 (もっと読む)


【課題】基板上への薄膜の成膜速度を上げ、かつトレンチやビアホールの底面に効率よく薄膜を成膜できる薄膜の形成方法を提供すること。
【解決手段】本発明の成膜方法は、開口幅又は開口径が3μm以下で、かつ、アスペクト比が1以上の段差であるトレンチ又はビアホールを有する基板上に薄膜を成膜する成膜方法であり、真空排気可能な処理室に、基板を支持する第1の電極と、前記基板に対向するように配置されターゲットを支持する第2の電極と、前記第2の電極の外側に配置されて当該第2の電極の内側にカスプ磁界を形成する複数のマグネットと、を備え、
前記処理室にNeを含む処理ガスを導入し、前記第1の電極と前記第2の電極の少なくとも一方にプラズマ形成用の高周波電力を供給すると共に、前記第2の電極上にカスプ磁場を生成してプラズマを発生させ、ターゲット物質をトレンチ又はビアホールを有する基板上に成膜する。 (もっと読む)


【課題】SGZO系酸化物半導体薄膜において、低温アニールによる低抵抗化が起こらず、成膜時の抵抗値と低温アニール後の抵抗値が同等となる組成を明らかとし、再現性が高く、大面積デバイス、特にフレキシブルデバイス作製に適した製造方法を提供する。
【解決手段】構成元素の組成比をSn:Ga:Zn=a:b:cとした場合、組成比が、a+b=2、且つ1≦a≦2、且つ1≦c≦11/2、且つc≧−7b/4+11/4を満たす酸化物半導体薄膜を基板上に成膜する成膜工程と、成膜工程後、酸化性雰囲気中で100℃以上300℃未満の熱処理を施す熱処理工程と、を有する。 (もっと読む)


【課題】本発明は、電極触媒の製造方法に関し、直流式のスパッタリング装置を用いる際に、微細化した触媒金属をカーボン粉末の表面に担持可能な電極触媒の製造方法を提供することを目的とする。
【解決手段】内部が真空に保持された回転バレルと、該回転バレル内に配置したターゲットユニットと、該プラズマを発生可能な直流式のスパッタリング電源と、を備えたスパッタリング装置を用い、上記回転バレル内にカーボン粉末を収納すると共に、上記ターゲットユニット内に白金プレートを設置して、上記回転バレルを回転させつつ上記スパッタリング電源からのスパッタ出力を1.0kWよりも小さい値に設定して、上記白金プレートの白金を前記カーボン粉末にスパッタリングする。 (もっと読む)


【課題】層状構造の窒化ガリウム膜を汎用的の高められたプロセスで選択的に形成することの可能な窒化ガリウム膜の形成方法、及び該形成方法を用いて窒化ガリウム膜を形成する装置を提供する。
【解決手段】
窒化ガリウム膜を反応性スパッタにて単結晶の基板S上に形成するときに、真空槽11内に供給されるアルゴンガス及び窒素ガスの総流量に占める窒素ガスの流量の割合を窒化ガリウム膜の成長速度が窒素供給によって律速され、且つ、窒化ガリウム膜の成長速度の極大値に対して30%以上90%以下の成長速度となる範囲とする。また、基板温度T(℃)、ガリウムのターゲット14に供給される周波数が13.56MHzである高周波電力をバイアス電力P(W/cm)とするとき、基板温度T及びバイアス電力Pが、600≦T≦1200、0<P≦4.63、T≧0.0083P−4.7、T≦0.0084P−6.6を満たすようにする。 (もっと読む)


1 - 20 / 320