説明

Fターム[4M104AA03]の内容

半導体の電極 (138,591) | 基板材料 (12,576) | 化合物半導体(半絶縁性基板を含む) (3,646)

Fターム[4M104AA03]の下位に属するFターム

Fターム[4M104AA03]に分類される特許

401 - 420 / 1,500


【課題】GaN系HEMT及びMIMキャパシタを同一基板上に設ける場合でも小型化することができる半導体装置及びその製造方法を提供する。
【解決手段】基板1の表面上に下部電極11を形成し、下部電極11上に誘電体膜12を形成し、誘電体膜12上に基板1の表面に接する上部電極14aを形成する。また、基板1の裏面から基板1をエッチングすることにより、上部電極14aの基板1の表面に接する部分に達するビアホール1aを基板1に形成し、基板1の裏面上にビアホール1aを介して上部電極14aに接するビア配線36を形成する。 (もっと読む)


【課題】ノーマリオフ型の炭化珪素接合FETはゲートの特性が、使い勝手が悪いという問題がある。これは、ノーマリオフを実現するためにゲート電圧が0Vでオフしていなければならず、かつ、ゲート・ソース間のpn接合に電流が流れないようにオン状態としてはゲート電圧を2.5V程度に抑える必要があるため、実質的にゲート電圧を0Vから2.5Vの間で制御しなければならないためである。従って、閾値電圧からオン状態のゲート電圧までが1Vから2V程度しかなく、ドレイン電流がゲート電圧の変化に非常に敏感であるため、ゲートの制御が難しい。
【解決手段】本願発明は、ノーマリオフ型の炭化珪素接合FETのゲートに、接合FETのゲート容量と同等か少し小さな容量を持つ素子を接続したものである。 (もっと読む)


【課題】トランジスタの閾値電圧を高くする。
【解決手段】フローティング電極110は半導体層102上に形成されており、絶縁層はフローティング電極110上に形成されている。バイアス電極134は、絶縁層を介してフローティング電極110の一部に対向することにより、フローティング電極110と容量結合し、かつフローティング電極110が半導体層102にチャネル領域を形成しない大きさの電圧が印加される。制御電極132は、絶縁層を介してフローティング電極110の他の部分に対向することにより、フローティング電極110と容量結合し、かつトランジスタのオン/オフを制御するための制御電圧が入力される。 (もっと読む)


【課題】長期にわたって信頼性に優れた半導体素子及びその製造方法を提供する。
【解決手段】基板の一方の面に第1表面電極2を形成し、第1表面電極2が形成された基板1の表面にレジスト組成物を塗布し、プリベークしてレジスト膜10を形成し、該レジスト膜10を貫通して第1表面電極1上にコンタクトホールを形成し、このコンタクトホール内にコンタクト電極4を形成し、第1表面電極2が形成された基板の表面に、熱膨張率が2ppm/℃以上7ppm/℃未満の第1絶縁膜3aを形成し、次いで、該第1絶縁膜3a上に熱膨張率が7ppm/℃以上24ppm/℃以下の第2絶縁膜3bを積層して絶縁膜3を形成し、コンタクト電極4を介して絶縁膜上に第2表面電極5を形成し、第1表面電極2、第2表面電極5及び絶縁膜3が形成された基板の裏面側を支持体に固定し、第1表面電極側からダイシングして素子ユニットを分離して半導体素子を製造する。 (もっと読む)


【課題】本発明の半導体装置は、nチャネルの高電子移動度トランジスタ(HEMT)とpチャネル電界効果トランジスタとを単一の基板上に形成した。
【解決手段】nチャネル電界効果トランジスタは、第1チャネル層7と、この第1チャネル層7にヘテロ接合し、n型の電荷を供給するn型第1障壁層6と、n型第1障壁層6に対してpn接合型の電位障壁を有するp型ゲート領域10とを備え、pチャネル電界効果トランジスタは、p型の第2チャネル層13と、pn接合型の電位障壁を有するn型ゲート領域18とを備える。各トランジスタはpn接合型のゲート領域を有するのでターンオン電圧を高くすることが可能となり、ゲート逆方向リーク電流を減少させたエンハンスメントモードでの動作を実現した。 (もっと読む)


【課題】太陽電池や発光ダイオードなどの半導体素子に多元系硫化物薄膜を用いる際に好適な電気伝導性・強度を有する裏面電極材料及びその製造方法を提供する。
【解決手段】珪化化合物となる金属化学種を同時にスパッタ堆積し、さらに硫化化合物となる金属化学種またはこれらの硫化物を堆積し、これを硫黄雰囲気下にて加熱することにより基材表面に金属珪化物と硫化物の積層薄膜を同時に固定化させる。あるいは、珪化化合物となる金属化学種を同時にスパッタ堆積し、これを熱処理することで金属珪化物薄膜を基材表面に固定化し、この表面に硫化物薄膜を固定化させる。 (もっと読む)


【課題】ポリシリコンゲート電極の意図しないフルシリサイド化を防止する。
【解決手段】基板17上に、ゲート絶縁膜12およびシリコン層10をこの順に積層した積層体(10、12)を形成する工程と、積層体(10、12)の側壁沿いにSiN膜を有するオフセットスペーサ13を形成する工程と、その後、シリコン層10の上面を、薬液を用いて洗浄する工程と、その後、少なくともシリコン層10の上面を覆う金属膜19を形成する工程と、その後、加熱する工程と、を有し、オフセットスペーサ13が有するSiN膜は、ALD法を用いて450℃以上で成膜されたSiN膜、または、1Gpa以上の引張/圧縮応力を有するSiN膜であり、前記薬液は、重量比率で、HF/HO=1/100以上であるDHF、または、バッファードフッ酸である半導体装置の製造方法を提供する。 (もっと読む)



【課題】導体半導体接合を用いた電界効果トランジスタのオフ電流を低減せしめる構造を提供する。
【解決手段】半導体層1に、半導体層1の電子親和力と同程度かそれ以下の仕事関数の材料よりなる第1の導体電極3a、第2の導体電極3bを接して設け、さらに、半導体層1のゲートの形成された面と逆の面に接して、半導体層1の電子親和力より大きな仕事関数の材料で、半導体層を横切るようにして、第3の導体電極2を形成することにより、半導体層中にショットキーバリヤ型の接合を形成し、この部分のキャリア濃度が極めて低いことから、オフ電流を低減できる。 (もっと読む)


【課題】耐圧劣化を防止するとともに低コストで製造可能な構造を備える半導体装置を提供する。
【解決手段】半導体基板と、基板上に形成される炭化珪素からなる第1導電型の半導体層と、半導体層の表面に形成される活性領域と、活性領域を取り囲むように、半導体層の表面に形成される第2導電型の第1の半導体領域と、半導体層の表面に第1の半導体領域の外側に接し、第1の半導体領域を取り囲んで設けられ、第1の半導体領域と同一の不純物濃度および同一の深さを有する第2導電型の不純物領域がメッシュ形状に形成される第2の半導体領域と、活性領域上に設けられる第1の電極と、半導体基板の裏面に設けられる第2の電極を備えることを特徴とする半導体装置である。 (もっと読む)


【課題】酸化物の一部領域又は全領域の比抵抗を低下させることにより、簡易な工程で多様な電子素子を作製できる電子素子基板の製造方法を提供する。
【解決手段】少なくとも最表層の一部が比抵抗1×10Ω・cm以下の酸化物からなる基板における前記酸化物の一部領域又は全領域に対し、前記基板の電位よりも高い電位を印加することにより、前記一部領域又は前記全領域の比抵抗を低下させる低抵抗化処理工程を有する電子素子基板の製造方法である。 (もっと読む)


【課題】ゲート電極に注入された不純物に起因するゲートリークを低減させる。
【解決手段】ゲート電極14が形成されたアクティブ領域による被覆率が50%以上かつその面積が0.02mm以上の領域において、多結晶シリコン膜14´に炭素15を導入してから、多結晶シリコン膜14´にリン16を導入し、多結晶シリコン膜14´をパターニングすることにより、ゲート絶縁膜13上にゲート電極14を形成する。 (もっと読む)


【課題】パワーMOSFETデバイスのゲート・ドレイン間容量を低減させることにより、ターンオン時及び同様にターンオフ時における電力損失の量とを低減する。
【解決手段】トレンチ型電界効果パワートランジスタ及びトレンチ型ショットキダイオードのような、トレンチ20において絶縁トレンチ電極11を含む半導体デバイスにおいて、トレンチ20の底部27において本体部分14とトレンチ電極11との間の誘電結合部を低減させるために、トレンチ20の底部27とトレンチ電極11の底部25との間にキャビティ23がもたらされる。パワートランジスタにおいて、誘電結合部における低減によりスイッチング電力損失が低減させられ、ショットキダイオードにおいてトレンチ幅が低減させられ得る。 (もっと読む)


【課題】すず基はんだを用いて寿命信頼性の高い接合が可能な半導体素子および寿命信頼性の高い半導体装置を得ることを目的とする。
【解決手段】すず基はんだ8を用いて導電部材7と接合するための半導体素子10であって、半導体材料からなる基材1の前記導電部材7との接合面に、シリサイド層2Sと、チタンからなる第1の金属層3と、アンチモンからなる第2の金属層4と、ニッケルおよび/または銅を有する第3の金属層5と、が基材1側から順次積層されている、ように構成した。 (もっと読む)


【課題】耐圧の異なるトランジスタが同一半導体基板上に混載されている場合においても、それらのトランジスタの性能が向上するようにストレスライナ膜を構成することが可能な半導体装置及びその製造方法を提供する。
【解決手段】半導体基板1上に混載された低耐圧トランジスタおよび高耐圧トランジスタ上に形成するストレスライナ膜11、12は、互いに膜質を異ならせることができる。ここで、ストレスライナ膜11は、低耐圧トランジスタの性能が効果的に改善され、高耐圧トランジスタの性能があまり改善されないように膜質を設定することができる。また、ストレスライナ膜11は、高耐圧トランジスタの性能が効果的に改善され、低耐圧トランジスタの性能があまり改善されないように膜質を設定することができる。 (もっと読む)


【課題】電流コラプスが抑制された窒化物半導体を用いた電界効果トランジスタを容易に実現できるようにする。
【解決手段】電界効果トランジスタは、基板100の上に形成され、第1の窒化物半導体層122及び第2の窒化物半導体層123を有する半導体層積層体102を備えている。半導体層積層体102の上には、互いに間隔をおいてソース電極131及びドレイン電極132が形成されている。ソース電極131とドレイン電極132との間には、ソース電極131及びドレイン電極132と間隔をおいてゲート電極133が形成されている。ドレイン電極132の近傍には正孔注入部141が形成されている。正孔注入部141は、p型の第3の窒化物半導体層142及び第3の窒化物半導体層142の上に形成された正孔注入電極143を有している。ドレイン電極132と正孔注入電極142とは、電位が実質的に等しい。 (もっと読む)


【課題】ソース・ドレイン電極と半導体膜とのコンタクト不良を抑制することが可能な半導体装置等を提供する。
【解決手段】両端部30s、30dの膜厚が平坦部30cの膜厚よりも厚い半導体膜30を形成する。ゲート絶縁膜40は、両端部30s、30dが露出されるように形成される。両端部30s、30dには、ソース・ドレイン電極50s、50dとソース・ドレイン領域とを接続する中間電極50s、50dが形成され、この中間電極50s、50dまで開口するコンタクトホールが形成される。 (もっと読む)


【課題】トンネルFETの閾値ばらつきの抑制をはかる。
【解決手段】Si1-x Gex (0<x≦1)の第1の半導体層13上にゲート絶縁膜21を介して形成されたゲート電極22と、Geを主成分とする第2の半導体と金属との化合物で形成されたソース電極24と、第1の半導体と金属との化合物で形成されたドレイン電極25と、ソース電極24と第1の半導体層13との間に形成されたSi薄膜26とを具備した半導体装置であって、ゲート電極22に対しソース電極24のゲート側端部とドレイン電極25のゲート側端部とは非対称の位置関係にあり、ドレイン電極25のゲート側の端部の方がソース電極24のゲート側の端部よりも、ゲート電極22の端部からゲート外側方向に遠く離れている。 (もっと読む)



【課題】良好な特性を維持しつつ、微細化を達成した、酸化物半導体を用いた半導体装置を提供することを目的の一とする。
【解決手段】酸化物半導体層と、酸化物半導体層と接するソース電極及びドレイン電極と、酸化物半導体層と重なるゲート電極と、酸化物半導体層とゲート電極との間に設けられたゲート絶縁層と、を有し、ソース電極またはドレイン電極は、第1の導電層と、第1の導電層の端面よりチャネル長方向に伸長した領域を有する第2の導電層と、を含み、第2の導電層の伸長した領域の上に、前記伸長した領域のチャネル長方向の長さより小さいチャネル長方向の長さの底面を有するサイドウォール絶縁層を有する半導体装置である。 (もっと読む)


401 - 420 / 1,500