説明

Fターム[4M104AA03]の内容

半導体の電極 (138,591) | 基板材料 (12,576) | 化合物半導体(半絶縁性基板を含む) (3,646)

Fターム[4M104AA03]の下位に属するFターム

Fターム[4M104AA03]に分類される特許

341 - 360 / 1,500


【課題】 ビアホール上にオーミック電極が形成された半導体装置において、装置の小型化を図ること。
【解決手段】 本半導体装置は、基板10と、基板10上に形成された半導体層12と、半導体層上12に形成されたソースまたはドレイン電極を構成するオーミック電極20と、を備え、基板10及び半導体層12には、基板10及び半導体層12を貫通するビアホール30が形成され、ビアホール30は、少なくとも半導体層を貫通する第1ビアホール32と、第1ビアホール32下の基板10に形成された、第1ビアホール32より開口断面積が大きい第2ビアホール34と、を含み、オーミック電極20は、第1ビアホール32の上に設けられている。 (もっと読む)


【課題】微細化してもソース領域およびベース領域に繋がるコンタクト領域とソース電極とのコンタクトが十分に取れるようにする。
【解決手段】コンタクトホール12aの長手方向、つまりソース電極11とn+型ソース領域4およびp+型ボディ層5とのコンタクト領域の長手方向とn+型ソース領域4およびp+型ボディ層5の長手方向も直交させる。これにより、n+型ソース領域4やp+型ボディ層5それぞれのソース電極11へのコンタクト幅をコンタクトホール12aの幅分とすることが可能となる。このため、コンタクトを広く取ることが可能となる。これにより、素子を微細化してもn+型ソース領域4やp型ベース領域3に繋がるp+型ボディ層5とソース電極11とのコンタクトが十分に取れるようにすることが可能となる。 (もっと読む)


【課題】活性層の上に電極パッドを形成する場合に生じる問題を解決し、オン抵抗の上昇を抑えた窒化物半導体装置を実現できるようにする。
【解決手段】窒化物半導体装置は、活性領域102Aを有する窒化物半導体層積層体102と、活性領域の上に互いに間隔をおいて形成されたフィンガー状の第1の電極131及び第2の電極132とを備えている。第1の電極の上に接して第1の電極配線151が形成され、第2の電極の上に第2の電極配線152が接して形成されている。第1の電極配線及び第2の電極配線を覆うように第2の絶縁膜が形成され、第2の絶縁膜の上に第1の金属層161が形成されている。第1の金属層は、第2の絶縁膜を介して活性領域の上に形成され、第1の電極配線と接続されている。 (もっと読む)


【課題】電気的特性が向上した、酸化物半導体を用いた半導体装置の作製方法を提供することを目的の一とする。
【解決手段】酸化物半導体膜と、酸化物半導体膜と重畳するゲート電極と、酸化物半導体膜と電気的に接続するソース電極およびドレイン電極と、を有する半導体装置の作製方法であって、酸化物半導体膜上に接して、酸化ガリウムを含む第1の絶縁膜を形成し、第1の絶縁膜上に接して第2の絶縁膜を形成し、第2の絶縁膜上にレジストマスクを形成し、第1の絶縁膜および第2の絶縁膜にドライエッチングを行ってコンタクトホールを形成し、レジストマスクを、酸素プラズマによるアッシングを用いて除去し、コンタクトホールを介して、ゲート電極、ソース電極またはドレイン電極のいずれか一または複数と電気的に接続される配線を形成する、半導体装置の作製方法である。 (もっと読む)


【課題】コンタクト抵抗率を低く抑えることが可能な半導体装置の製造方法を提供すること。
【解決手段】本発明は、Al組成比が0.2以上のAlGaN層をエッチングして、RMS粗さが0.3nm未満の底面を有する凹部を形成する工程と、前記凹部の底面に接して、4nmから8nmの厚さの第1Ta層を形成する工程と、前記第1Ta層に熱処理を施して、前記AlGaN層にオーミック接触させる工程と、を有する半導体装置の製造方法である。 (もっと読む)


【課題】窒化物系半導体素子及びその製造方法を提供する。
【解決手段】ダイオード構造物を有するベース基板110と、該ベース基板110上に配置されるエピタキシャル成長膜120と、該エピタキシャル成長膜120上に配置される電極部140とを含み、該ダイオード構造物は、第1タイプの半導体層112と、該第1タイプの半導体層の中央に介在する第2タイプの半導体層114とを含む。 (もっと読む)


【課題】エピタキシャル成長法により堆積させたSiC層の表面から深い位置に形成された結晶欠陥でも、確実に除去することができる方法を提供する。
【解決手段】単結晶SiCからなる半導体基板1表面にエピタキシャル層2を積層させて形成したSiC基板の表面にレジスト膜12を形成し、基板裏面から紫外線を照射することで、表面のレジスト膜12を露光する。結晶欠陥11のある部分は、レジスト膜12は露光されないため、開口が形成される。その開口部内にイオン注入することで、エピタキシャル層2、半導体基板1を高抵抗化し、結晶欠陥を除去する。最後に、レジスト膜12を除去することで、半導体装置を形成することができるSiC基板が得られる。 (もっと読む)


【課題】柱状結晶構造を有する金属を用いた場合でも、簡便な方法で、再現性良く階段構造状のテーパーを有する電極を形成する。
【解決手段】真空状態を保ったままの状態において、同一種類の金属を用いて、スパッタリング法で少なくとも2層の金属膜を成膜する成膜工程と、該成膜工程によって成膜された複数の金属膜にエッチング処理を施すことにより、階段構造状のテーパー形状を端部に有する、ゲート電極、ソース電極およびドレイン電極のうちの少なくとも1つを形成するエッチング工程とによって薄膜トランジスタを製造する。 (もっと読む)


【課題】オン抵抗の低減を図ることができる電界効果トランジスタ(FET)を提供する。
【解決手段】FET101は、化合物半導体基板1と、化合物半導体基板1上に形成され、当該基板側から見て、n型キャリアが蓄積するチャネル層5、ショットキー層8、及びキャップ層9を順次含む半導体積層構造10と、ゲート電極20、ソース電極21、及びドレイン電極22とを備えている。キャップ層9は、ショットキー層8側から見て、自然超格子構造を有するアンドープの又はn型キャリアが添加された第1のInGaP層9Aと、自然超格子構造を有しないn型キャリアが添加された第2のInGaP層9Bとを順次含んでいる。 (もっと読む)


【課題】金属配線膜のドライエッチングレートの低下やエッチング残渣を発生させることがなく、また該金属配線膜のヒロック耐性や電気抵抗率が抑制され、更に該金属配線膜と直接接続する透明導電膜や酸化物半導体層とのコンタクト抵抗率が抑制された薄膜トランジスタ基板、及び該薄膜トランジスタ基板を備えた表示デバイスを提供する。
【解決手段】薄膜トランジスタ基板であって、金属配線膜は、ドライエッチング法によるパターニングで形成された、Ni:0.05〜1.0原子%、Ge:0.3〜1.2原子%、Laおよび/またはNd:0.1〜0.6原子%を含有するAl合金膜とTi膜とからなる積層膜あって、該Ti膜が、該酸化物半導体層と直接接続していると共に、該Al合金膜が、該透明導電膜と直接接続している。 (もっと読む)


【課題】比誘電率の低い絶縁層の表面にMn等の金属を含む薄膜、例えばMnOxを効率的に形成することが可能な成膜方法を提供する。
【解決手段】絶縁層1が表面に形成された被処理体Wに対して成膜処理を施す成膜方法において、第1の金属よりなる第1の薄膜60を形成する第1の薄膜形成工程と、前記第1の薄膜を酸化して酸化膜60Aを形成する酸化工程と、前記酸化膜上に第2の金属を含む第2の薄膜62を形成する第2の薄膜形成工程とを有する。これにより、比誘電率の低い絶縁層の表面にMn等の金属を含む薄膜、例えばMnOxを効率的に形成する。 (もっと読む)


【課題】不純物ドープを用いることなく、低温プロセスでオーミック電極を形成することができる半導体装置の製造方法を提供する。
【解決手段】n+型基板1の表面側に素子構造や表面電極を形成した後、n+型基板1の裏面1bにアモルファス層12を形成する。そして、アモルファス層12が形成された裏面1b上に金属薄膜110を形成した後、n+型基板1の裏面1b側に光子エネルギーとレーザ出力の積が1000eV・mJ/cm2以上かつ8000eV・mJ/cm2以下となるような条件でレーザ光を照射することでシリサイド層111を含むドレイン電極11を形成する。これにより、n+型基板1に高温処理を行うことなく、n+型基板1にドレイン電極11にシリサイド層111を生成できる。したがって、不純物ドープ層を用いることなく、かつ低温プロセスによってドレイン電極11をオーミック電極にできる。 (もっと読む)


【課題】高いしきい値電圧と低いリーク電流のノーマリーオフの半導体素子を提供する。
【解決手段】基板2の上に少なくともAlを含むIII族窒化物からなる下地層(バッファー層)3を設けた上で、III族窒化物、好ましくはGaNからなる第1の半導体層(チャネル層)4と、少なくともAlを含むIII族窒化物、好ましくはAlxGa1−xNであってx≧0.2である第2の半導体層(電子供給層)6が積層されてなる半導体層群からなるHEMT構造の半導体素子の上に、Al2O3−Ga2O3の混晶からなる絶縁膜7を形成し、その上にゲート電極9を形成した。 (もっと読む)


【課題】オン抵抗の低減を図ることが可能な炭化珪素基板、エピタキシャル層付き基板、半導体装置および炭化珪素基板の製造方法を提供する。
【解決手段】炭化珪素基板10は、主表面を有する炭化珪素基板10であって、主表面の少なくとも一部に形成されたSiC単結晶基板1と、SiC単結晶基板1の周囲を囲むように配置されたベース部材20とを備える。ベース部材20は、境界領域11と下地領域12とを含む。境界領域11は、主表面に沿った方向においてSiC単結晶基板1に隣接し、内部に結晶粒界を有する。下地領域12は、主表面に対して垂直な方向においてSiC単結晶基板1に隣接し、SiC単結晶基板1における不純物濃度より高い不純物濃度を有する。 (もっと読む)


【課題】液晶表示装置の製造コストの低減を図る。
【解決手段】電界効果型の薄膜トランジスタを備える液晶表示装置であって、薄膜トランジスタの半導体層に、インジウムを材料に含む透明アモルファス酸化物半導体が用いられ、半導体層は、ソース電極およびドレイン電極並びにそれらの電極線として必要な領域を含む形状に形成され、半導体層に積層されるソース・ドレイン層に、インジウムを含む金属薄膜が用いられ、ソース・ドレイン層に積層される絶縁層に、窒化珪素による絶縁膜が用いられ、薄膜トランジスタのチャネル部が、絶縁層とソース・ドレイン層とに設けられた開口部によって形成されていることを特徴とする。 (もっと読む)


【課題】導電膜を有する半導体装置は、導電膜の内部応力の影響を受ける。内部応力について検討する。
【解決手段】絶縁表面上に設けられたnチャネル型TFTを有する半導体装置は、半導体膜が引っ張り応力を受けるように、導電膜、例えばゲート電極に不純物元素が導入され、絶縁表面上に設けられたpチャネル型TFTを有する半導体装置は、半導体膜が圧縮応力を受けるように、導電膜、例えばゲート電極に不純物が導入されている。 (もっと読む)


【課題】本発明は、かかる事情に鑑み、トランジスタの遮断状態を自然に実現し、半導体領域に金属領域との界面近傍の空乏層の形成を抑制しつつ、ショットキー障壁を実質的に下げることができるようにソース領域のフェルミ準位を選択することにより、駆動電流を増加させる半導体素子及び該半導体素子を備える半導体素子構造を提供することを課題とする。
【解決手段】ソース領域6及びドレイン領域7は、フェルミ準位が異なる第1金属領域10及び第2金属領域11を有し、第1金属領域10は、半導体領域5の価電子帯の頂上のエネルギーレベル以上で且つ半導体領域5の真性フェルミ準位以下のフェルミ準位を有する金属であり、第2金属領域11は、第1金属領域10のフェルミ準位以上で且つ伝導帯の底のエネルギーレベル以下のフェルミ準位を有する金属であることを特徴とする。 (もっと読む)


【課題】経時安定性の高い導電性酸化亜鉛膜を得る。
【解決手段】B、Al、GaおよびInからなる群から選ばれる1つ以上の元素をドーパントとして含む導電性酸化亜鉛膜において、膜中に水素を含むものとし、その水素の含有量を3×1021 atoms/cm3以下とする。 (もっと読む)


【課題】高周波信号経路を切り替えるために半導体基板上に形成された、小型でかつ低歪特性を実現するスイッチング素子を提供する。
【解決手段】スイッチング素子の一例であるFET100は半導体基板109上に形成された櫛型の2つのソース・ドレイン電極101と、2つのソース・ドレイン電極101の間を這うように配置された少なくとも2本のゲート電極102と、隣り合うゲート電極102の間に挟まれ、かつ、隣り合うゲート電極102に沿って配置された導電層103とを備え、ゲート電極102の2つのソース・ドレイン電極101の指状部と平行な部分である直線部108の直下に位置する層が、ゲート電極102の隣り合う一対の直線部108をつなぐ部分である屈曲部107の直下に位置する層から、電気的に分離されている。 (もっと読む)


【課題】Id―max特性低下を低減可能なIII族窒化物半導体電子デバイスが提供される。
【解決手段】III族窒化物半導体電子デバイス11では、チャネル層21はAlGaNからなると共に、バリア層23はチャネル層21より大きなバンドギャップのAlGaNからなる。チャネル層21が、GaNではなく、AlGaNからなるので、III族窒化物半導体電子デバイス11においてId―max特性低下を低減可能である。また、第1及び第2の電極17、19は、それぞれ、チャネル層21の第1及び第2の部分21a、21b上に設けられる。チャネル層21において第1の部分21aの不純物濃度が第2の部分21bの不純物濃度と同じであるから、チャネル層21における第1の部分にイオン注入が行われていない。半導体積層15に部分的にイオン注入を行っていない。このイオン注入の使用回避により、Id―max特性低下を更に低減可能である。 (もっと読む)


341 - 360 / 1,500