説明

Fターム[4M104BB25]の内容

半導体の電極 (138,591) | 電極材料 (41,517) | 遷移金属のシリサイド (5,826) | 高融点金属のシリサイド (2,215) | TiSi (828)

Fターム[4M104BB25]に分類される特許

41 - 60 / 828


【課題】高耐圧及び高電流の動作が可能な半導体素子及びその製造方法を提案する。
【解決手段】内部に2次元電子ガス(2DEG)チャンネルを形成する窒化物半導体層30と、窒化物半導体層30にオーミック接合されたドレイン電極50と、ドレイン電極50の方向に突出した多数のパターン化された突起61を備え、内部に窒化物半導体層30にオーミック接合されるオーミックパターン65を含むソース電極60と、ドレイン電極50とソース電極60との間の窒化物半導体層30上に、且つ、パターン化された突起61を含んでソース電極60上の少なくとも一部に亘って形成された誘電層40と、一部が、誘電層40を間に置いてソース電極60のパターン化された突起61部分及びドレイン方向のエッジ部分の上部に形成されたゲート電極70と、を含んでなる。 (もっと読む)


【課題】半導体素子、例えばFETのソース領域にショットキー電極を形成し、ゲート電極をソース電極の一部領域と窒化物半導体領域の一部に形成することによって、ノーマリ−オフまたはエンハンスメントモード動作する半導体素子及び製造方法を提供する。
【解決手段】基板10上に配設され、内部に2次元電子ガス(2DEG)チャネルを形成する窒化物半導体層30と、該窒化物半導体層30にオミック接合されたドレイン電極50と、該ドレイン電極50と離間して配設され、該窒化物半導体層30にショットキー接合されたソース電極60と、該ドレイン電極50と該ソース電極60との間の窒化物半導体層30上及び該ソース電極60の少なくとも一部上にかけて形成された誘電層40と、該ドレイン電極50と離間して誘電層40上に配設され、一部が誘電層40を挟んでソース電極60のドレイン方向のエッジ部分上に形成されたゲート電極70とを含む。 (もっと読む)


【課題】FETのソース領域にショットキー電極を形成し、内部にオミックパターン電極を備え、ゲート電極をソース電極の一部領域と窒化物半導体領域の一部に形成することによって、ノーマリ−オフ動作すると共に高耐圧及び高電流で動作可能な、半導体素子及び製造方法を提供する。
【解決手段】内部に2次元電子ガス(2DEG)チャネルを形成する窒化物半導体層30と、窒化物半導体層30にオーミック接合されたドレイン電極50と、ドレイン電極50と離間され、窒化物半導体層30にショットキー接合されるソース電極60と、ドレイン電極50とソース電極60との間の窒化物半導体層30上及びソース電極60の少なくとも一部上にかけて形成された誘電層40と、ドレイン電極50と離間されるように誘電層40上に配設され、一部が誘電層40を挟んでソース電極60のドレイン方向のエッジ部分上部に形成されたゲート電極70とを含む。 (もっと読む)


【課題】オン抵抗を低め、高電流で動作する半導体素子及び製造方法を提供する。
【解決手段】基板10上部に配設され、内部に2次元電子ガスチャネルを形成する窒化物半導体層30と、窒化物半導体層30にオーミック接合されたドレイン電極50と、ドレイン電極50と離間して配設され、窒化物半導体層30にショットキー接合されたソース電極60と、ドレイン電極50とソース電極60との間の窒化物半導体層30上及びソース電極60の少なくとも一部上にかけて形成され、ドレイン電極50とソース電極60との間にリセスを形成する誘電層40と、ドレイン電極50と離間して誘電層40上及びリセスに配設され、一部が誘電層40を挟んでソース電極60のドレイン方向へのエッジ部分上部に形成されたゲート電極70とを含む。 (もっと読む)


【課題】良好なオン特性を維持したまま、逆方向バイアスに対するリーク電流を低減した半導体デバイスを得る。
【解決手段】窒化物系化合物半導体からなるチャネル形成層と、チャネル形成層上に設けられ、第1の窒化物系化合物半導体からなる第1の半導体層、および、第2の窒化物系化合物半導体からなる第2の半導体層を有する疑似混晶からなる疑似混晶層と、疑似混晶層上に設けられ、窒化物系化合物半導体からなり、チャネル形成層の多数キャリアと反対の導電型を有する導電半導体層と、導電半導体層に接する第1の電極と、チャネル形成層に電気的に接続された第2の電極と、を備える半導体デバイスを提供する。 (もっと読む)


【課題】製造工程の増大を抑制し、コンタクト抵抗および界面抵抗の増大を防止する。
【解決手段】実施形態において、シリコン層は、ゲートラストスキームを用いた機能的ゲート電極の製造後に、形成される。初期的な半導体構造物は、半導体基板上に形成された少なくとも一つの不純物領域、不純物領域の上に形成された犠牲膜、犠牲膜の上に形成された絶縁層、絶縁層の上に形成された絶縁層を備える。ビアは、初期の半導体構造物の絶縁層へ、および、コンタクト開口部が絶縁層に形成されるように絶縁層の厚さを通り抜けて、パターン化される。次に、絶縁層の下にある犠牲膜は、絶縁層の下に空隙を残して除去される。次に、金属シリサイド前駆体は、空隙スペースに配置され、金属シリサイド前駆体は、アニールプロセスを通じてシリサイド層に変換される。 (もっと読む)


【課題】パターンの微細化、特に、SRAMのセル面積を縮小するためには、隣接ゲートの端部間距離を縮小することが重要となる。しかし、28nmテクノロジノードにおいては、ArFによる単一回露光でパターンを転写することは、一般に困難である。従って、通常、複数回の露光、エッチング等を繰り返すことによって、微細パターンを形成しているが、ゲートスタック材にHigh−k絶縁膜やメタル電極部材が使用されているため、酸化耐性やウエットエッチ耐性が低い等の問題がある。
【解決手段】本願発明は、メモリ領域におけるhigh−kゲート絶縁膜およびメタル電極膜を有するゲート積層膜のパターニングにおいて、最初に、第1のレジスト膜を用いて、隣接ゲート電極間切断領域のエッチングを実行し不要になった第1のレジスト膜を除去した後、第2のレジスト膜を用いて、ライン&スペースパターンのエッチングを実行するものである。 (もっと読む)


【課題】本発明は、Si基板の表面にシリサイド層を形成しつつ、Si基板の裏面における低融点金属とSi基板のSiとの相互拡散を防止できる半導体素子の製造方法を提供することを目的とする。
【解決手段】本願の発明に係る半導体素子の製造方法は、Si基板の裏面に低融点金属を形成する工程と、該Si基板の表面に高融点金属層を形成する工程と、該高融点金属層の上にレーザ吸収層を形成する工程と、該レーザ吸収層にレーザ光を照射し、該低融点金属と該Si基板のSiとの相互拡散を防ぐように該低融点金属の温度を低く保ちつつ、該レーザ吸収層と該高融点金属層の界面、及び該高融点金属層と該Si基板の界面にシリサイド層を形成する工程と、該レーザ吸収層をエッチングする工程と、を備えたことを特徴とする。 (もっと読む)


【課題】パターンの微細化、特に、SRAMのセル面積を縮小するためには、隣接ゲートの端部間距離を縮小することが重要となる。しかし、28nmテクノロジノードにおいては、ArFによる単一回露光でパターンを転写することは、一般に困難である。従って、通常、複数回の露光、エッチング等を繰り返すことによって、微細パターンを形成しているが、ゲートスタック材にHigh−k絶縁膜やメタル電極部材が使用されているため、酸化耐性やウエットエッチ耐性が低い等の問題がある。
【解決手段】本願発明は、メモリ領域におけるhigh−kゲート絶縁膜およびメタル電極膜を有するゲート積層膜のパターニングにおいて、ハードマスクに対して、2枚のレジスト膜を用いて、ライン&スペースパターンおよび隣接ゲート電極間切断領域パターンのパターニングを実行し、パターニングされたハードマスクを用いて、ゲート積層膜のエッチングを実行するものである。 (もっと読む)


【課題】高耐圧な半導体素子を提供することを目的とする。
【解決手段】 実施形態の半導体装置は、第一と第二の主面を有する炭化珪素基板と、炭化珪素基板の第一の主面に設けられた第一導電型の第一の炭化珪素層と、第一の炭化珪素層の表面に形成された第二導電型の第一の炭化珪素領域と、第一の炭化珪素領域の表面に形成された第一導電型の第二の炭化珪素領域と、第一の炭化珪素領域の表面に形成された第二導電型の第三の炭化珪素領域と、第一の炭化珪素層、第一の炭化珪素領域および第三の炭化珪素領域の表面に連続的に形成されたゲート絶縁膜と、ゲート絶縁膜上に形成された炭化珪素からなる第一の電極と、第一の電極上に形成された第二の電極と、第一と第二の電極を被覆する層間絶縁膜と、第二の炭化珪素領域と第三の炭化珪素領域と電気的に接続される第三の電極と、炭化珪素基板の第二の主面に形成された第4の電極と、を具備することを特徴とする。 (もっと読む)


【課題】応力等のストレスによる、素子の特性変動や、PN接合破壊などの信頼性劣化を防ぐことが可能な半導体装置、および半導体装置の製造方法を提供する。
【解決手段】サリサイド構造の半導体装置の高濃度ソース・ドレイン領域とゲート電極表面に形成される金属シリサイドを複数のアイランド状金属シリサイドからなる構成とする。これにより、全面に形成された金属シリサイド層よりも、シリコンと金属シリサイド層間の応力を緩和することができ、シリコンと金属シリサイド層間の応力等のストレスによる、素子の特性変動や、PN接合破壊などの信頼性劣化を防ぐことができる。 (もっと読む)


【課題】小数キャリアが注入される電圧を低下させ、十分なサージ電流耐性を有するワイドバンドギャップ半導体を用いた半導体整流装置を提供する。
【解決手段】ワイドギャップ半導体の第1導電型の半導体基板と、半導体基板の上面に形成され、不純物濃度が1E+14atoms/cm以上5E+16atoms/cm以下、厚さが8μm以上のワイドギャップ半導体の第1導電型の半導体層と、半導体層表面に形成されるワイドギャップ半導体の第1導電型の第1の半導体領域と、第1の半導体領域に挟まれて形成され、幅が15μm以上であるワイドギャップ半導体の第2導電型の第2の半導体領域と、第1および第2の半導体領域上に形成される第1の電極と、半導体基板の下面に形成される第2の電極と、を備えることを特徴とする半導体整流装置。 (もっと読む)


【課題】少数キャリアが注入される電圧を低下させ、十分なサージ電流耐性を有するワイドバンドギャップ半導体を用いた半導体整流装置を提供する。
【解決手段】ワイドギャップ半導体の第1導電型の半導体基板と、半導体基板の上面に形成され、半導体基板より低不純物濃度のワイドギャップ半導体の第1導電型の半導体層と、半導体層表面に形成されるワイドギャップ半導体の第1導電型の第1の半導体領域と、第1の半導体領域の周囲に形成されるワイドギャップ半導体の第2導電型の第2の半導体領域と、第1の半導体領域に挟まれ、接合深さが第2の半導体領域の接合深さよりも深いワイドギャップ半導体の第2導電型の第3の半導体領域と、第1、第2および第3の半導体領域上に形成される第1の電極と、半導体基板の下面に形成される第2の電極と、を備えることを特徴とする半導体整流装置。 (もっと読む)


【課題】
ドーパントが注入されたSiC基板がオーミックコンタクトの形成前に薄くされる場合には、オーミックコンタクトを形成するために堆積された金属は、基板上に堆積されたときにオーム特性を持たないことがある。
【解決手段】
炭化ケイ素半導体デバイスを形成する方法は、第1の厚さを有する炭化ケイ素基板の第1の表面に半導体デバイスを形成するステップと、前記第1の表面にキャリア基板を取り付けるステップとを含む。さらに、前記炭化ケイ素基板を、前記第1の厚さ未満の厚さまで薄くするステップ、前記第1の表面とは反対側の前記薄くされた炭化ケイ素基板の表面に金属層を形成するステップ、前記金属層を局所的にアニールするステップを含む。前記炭化ケイ素基板は、個片化された半導体デバイスを提供するために、個片化される。 (もっと読む)


【課題】nチャネル型電界効果トランジスタとpチャネル型電界効果トランジスタを有する半導体装置において、nチャネル型電界効果トランジスタ、pチャネル型電界効果トランジスタ共にドレイン電流特性に優れた半導体装置を実現する。
【解決手段】nチャネル型電界効果トランジスタ10と、pチャネル型電界効果トランジスタ30とを有する半導体装置において、nチャネル型電界効果トランジスタ10のゲート電極15を覆う応力制御膜19には、膜応力が引張応力側の膜を用いる。pチャネル型電界効果トランジスタ30のゲート電極35を覆う応力制御膜39には、膜応力が、nチャネル型トランジスタ10の応力制御膜19より、圧縮応力側の膜を用いることにより、nチャネル型、pチャネル型トランジスタの両方のドレイン電流の向上が期待できる。このため、全体としての特性を向上させることができる。 (もっと読む)


【課題】信頼性を犠牲にすることなく、オン抵抗を低減することができるトレンチゲート型の半導体装置を提供する。
【解決手段】半導体装置1は、ドレイン領域21と、ドレイン領域21に積層されたチャネル領域20と、チャネル領域20に積層されたソース領域16とを有するシリコン半導体層からなる活性領域30を含む。半導体装置1は、さらに、ソース領域16からチャネル領域20を貫通してドレイン領域21に至るトレンチ15内に埋め込まれたゲート導体(ポリシリコンゲート)26と、ソース領域16に電気的に接続されたソース電極4とを含む。ソース電極4は、ソース領域16に接するように形成され、ソース領域16との界面がシリサイド化された密着層41を有する。密着層41は、膜厚が150Å以下の金属層からなる。 (もっと読む)


【課題】配線加工時のエッチングレートの極端な上昇を抑え、プロセスを安定化させる。
【解決手段】炭化珪素基板1上に形成された炭化珪素層20の上に、ソース電極8、ゲート電極9、層間絶縁膜10、層間絶縁膜10上に形成されたソース電極上部配線11およびゲート電極上部配線12とが形成され、ソース電極上部配線11とゲート電極上部配線12の下には、これらの上部配線を構成する金属が炭化珪素層20に拡散することを抑制するためのバリアメタル16が形成されている。層間絶縁膜10には、炭化珪素層20上に形成されたソース電極8およびゲート電極9に到達するようにコンタクトホール13、15が形成されており、バリアメタル16はコンタクトホール内の電極と上部配線との界面、層間絶縁膜10の側壁と上部配線との界面、および側壁の上端部近傍と上部配線との界面にのみ形成されている。 (もっと読む)


【課題】微細化を達成するとともに、ゲート電極等の信頼性を確保する半導体装置の製造方法を提供する。
【解決手段】N型MISトランジスタ及びP型MISトランジスタのそれぞれのゲート形成領域において、N型MISトランジスタのゲート形成領域の凹部内に形成されたゲート絶縁膜F0上に第1の金属含有膜F1を、P型MISトランジスタのゲート形成領域の凹部内に形成されたゲート絶縁膜F0上に第3の金属含有膜F3を形成し、第1の金属含有膜F1上及び第3の金属含有膜F3上に第2の金属含有膜F2を形成し、N型MISトランジスタのゲート絶縁膜F0に接する第1の金属含有膜F1の仕事関数がP型MISトランジスタのゲート絶縁膜F0に接する第3の金属含有膜F3の仕事関数よりも小さい。 (もっと読む)


【課題】半導体装置の高集積化を図り、単位面積あたりの記憶容量を増加させる。
【解決手段】半導体装置は、半導体基板に設けられた第1のトランジスタと、第1のトランジスタ上に設けられた第2のトランジスタとを有する。また、第2のトランジスタの半導体層は、半導体層の上側で配線と接し、下側で第1のトランジスタのゲート電極と接する。このような構造とすることにより、配線及び第1のトランジスタのゲート電極を、第2のトランジスタのソース電極及びドレイン電極として機能させることができる。これにより、半導体装置の占有面積を低減することができる。 (もっと読む)


【課題】簡単な工程でニッケル含有シリサイドを形成する。
【解決手段】シリコン基板を用いた場合であって、ゲート絶縁膜、ゲート電極、ゲート電極側面のサイドウォールを形成し、不純物イオンをドープしてソース領域及びドレイン領域を形成し、表面酸化膜を除去し、シリコン基板を450℃以上に加熱しながら、ニッケル含有膜を10nm〜100nmの膜厚で形成することにより、ソース領域、ドレイン領域、及びゲート電極上にニッケル含有シリサイドを形成することができる。その後、未反応のニッケルを除去する。 (もっと読む)


41 - 60 / 828