説明

Fターム[4M104DD19]の内容

Fターム[4M104DD19]に分類される特許

1 - 20 / 255


【課題】シュリンク技術を利用して、コンタクトホールとして利用できる複数の凹部を1回のレジストマスク工程で異なる深さ寸法に形成することのできるコンタクトホールの形成方法、および電気光学装置の製造方法を提供すること。
【解決手段】電気光学装置の素子基板10上にコンタクトホールを形成するにあたって、まず、第1開口部17aおよび第2開口部17bを備えたレジストマスク17を層間絶縁膜42の表面に形成した後、第1開口部17aおよび第2開口部17bから層間絶縁膜42および絶縁膜49をエッチングする。その後、シュリンク工程において、レジストマスク17を変形させて第2開口部17bを塞ぐ一方、第1開口部17aの開口面積を狭める。次に、第1開口部17aから層間絶縁膜41およびゲート絶縁層2をエッチングする。 (もっと読む)


【課題】電界が局所的に集中することを抑制して、高耐圧化した半導体装置を提供する。
【解決手段】第1導電型の第1ドリフト領域140は、平面視でソース領域110から離間して設けられている。第1導電型の第2ドリフト領域150は、平面視で第1ドリフト領域140のうちソース領域110と反対側の領域に接している。第1導電型のドレイン領域120は、平面視で第1ドリフト領域140から離間しているとともに、平面視で第2ドリフト領域150のうち第1ドリフト領域140と反対側の領域に接している。チャネル領域130上には、ゲート絶縁層200およびゲート電極400が設けられている。第1フィールドプレート絶縁層300は、半導体基板100上に設けられ、少なくとも平面視で第1ドリフト領域140と第2ドリフト領域150の一部と重なるように設けられている。第1フィールドプレート電極420は、第1フィールドプレート絶縁層300上に接している。 (もっと読む)


【課題】接合終端領域における電界を緩和し、高耐圧化可能な半導体装置を提供する。
【解決手段】第1導電型の不純物を有する第1半導体領域と、第1半導体領域上に配置された、第1導電型と異なる第2導電型の第2半導体領域とを有する半導体基体には、コレクタ電極若しくはドレイン電極を有するスイッチング素子が形成された素子領域と、上方から見て半導体基体の最外周部に形成された、第2半導体領域の上面から第1半導体領域に達する終端トレンチと、終端トレンチの側壁および底面に形成された絶縁膜と、絶縁膜を介して溝の内側に埋め込まれた電極とを有し、溝の内側に埋め込まれた電極が第1半導体領域又はコレクタ領域若しくはドレイン電極と接続された等電位リングである。 (もっと読む)


【課題】窒化物半導体層上の層間絶縁膜の開口部が、電界の集中が緩和される形状に安定して精度良く形成された窒化物半導体装置及びその製造方法を提供する。
【解決手段】窒化物半導体層30と、窒化物半導体層30上に配置された第1の絶縁膜41と、第1の絶縁膜41上に配置された第2の絶縁膜42と、窒化物半導体層30上に互いに離間して配置された第1及び第2の主電極51,52と、第1及び第2の主電極51,52間で第2の絶縁膜42上に配置され、第1及び第2の絶縁膜に設けられた開口部を介して窒化物半導体層に接続するフィールドプレート60とを備える窒化物半導体装置であって、開口部において、窒化物半導体層30の表面と第1の絶縁膜41の側面とのなす第1の傾斜角が、窒化物半導体層30の表面と第2の絶縁膜42の側面を延長した線とのなす第2の傾斜角よりも小さく形成されている。 (もっと読む)


【課題】窒化物半導体層とオーミック電極とのコンタクト抵抗を低減できる窒化物半導体装置を提供する。
【解決手段】Si基板10上に形成されたアンドープGaN層1,アンドープAlGaN層2と、アンドープGaN層1,アンドープAlGaN層2上に形成されたTi/Al/TiNからなるオーミック電極(ソース電極11,ドレイン電極12)とを備える。上記オーミック電極中の酸素濃度を1×1016cm−3以上かつ1×1020cm−3以下とする。 (もっと読む)


【課題】基板に定形された形態部の内部に、表面が平坦化された導電性材料を形成する方法を提供する。
【解決手段】平坦化表面を形成する方法であって、狭小形態部と幅広形態部が形成された基板上に、第1のプロセスでは電気めっき法により狭小形態部および幅広形態部の少なくとも一部を充填し、第1の層を形成し、第2のプロセスでは無電解めっき法により幅広形態部のに対応する第1の層中の孔および第1の層上に第2の層を充填形成し、表面が平坦な上層部110を形成する。 (もっと読む)


【課題】多層配線を形成する際における配線の加工に要する工程を簡便にすることを課題
とする。また、開口径の比較的大きいコンタクトホールに液滴吐出技術やナノインプリン
ト技術を用いた場合、開口の形状に沿った配線となり、開口の部分は他の箇所より凹む形
状となりやすかった。
【解決手段】高強度、且つ、繰り返し周波数の高いパルスのレーザ光を透光性を有する絶
縁膜に照射して貫通した開口を形成する。大きな接触面積を有する1つの開口を形成する
のではなく、微小な接触面積を有する開口を複数設け、部分的な凹みを低減して配線の太
さを均一にし、且つ、接触抵抗も確保する。 (もっと読む)


【課題】信頼性と電気的特性の確保を両立した半導体装置を提供する。
【解決手段】同一の半導体基板1上に形成されたパワーMOSFETと保護回路を備える。パワーMOSFETがトレンチゲート縦型PチャネルMOSFETであって、そのゲート電極6の導電型をP型とする。また、保護回路がプレーナゲート横型オフセットPチャネルMOSFETを備え、そのゲート電極10の導電型をN型とする。これらゲート電極6とゲート電極10は別工程で形成される。 (もっと読む)


【課題】nチャネル型電界効果トランジスタとpチャネル型電界効果トランジスタを有する半導体装置において、nチャネル型電界効果トランジスタ、pチャネル型電界効果トランジスタ共にドレイン電流特性に優れた半導体装置を実現する。
【解決手段】nチャネル型電界効果トランジスタ10と、pチャネル型電界効果トランジスタ30とを有する半導体装置において、nチャネル型電界効果トランジスタ10のゲート電極15を覆う応力制御膜19には、膜応力が引張応力側の膜を用いる。pチャネル型電界効果トランジスタ30のゲート電極35を覆う応力制御膜39には、膜応力が、nチャネル型トランジスタ10の応力制御膜19より、圧縮応力側の膜を用いることにより、nチャネル型、pチャネル型トランジスタの両方のドレイン電流の向上が期待できる。このため、全体としての特性を向上させることができる。 (もっと読む)


【課題】LELEプロセスよりも少ない工程数で、フォトリソグラフィ技術を2度使用することなく、微細なホール又はトレンチパターンを形成する方法を提供すること。
【解決手段】被処理体の上にレジスト膜を成膜し、成膜した前記レジスト膜をパターニングする、レジスト膜形成工程と、前記被処理体及び前記レジスト膜を被覆するようにスペーサ膜を成膜して、前記スペーサ膜で囲まれた凹部を形成する、スペーサ膜成膜工程と、前記凹部の底面にある前記被処理体及び前記レジスト膜の上面を露出させると共に、前記レジスト膜の側面側に前記スペーサ膜が残るようにエッチングして、前記凹部から第1の開口部を形成する、第1開口部形成工程と、前記レジスト膜を除去することにより第2の開口部を形成する、第2開口部形成工程と、を含むパターンの形成方法。 (もっと読む)


【課題】耐圧が数ボルトから数十ボルト程度のショットキダイオード等のガラス封止型のダイオードにおいては、半田の融点よりもずっと高い封止処理温度が適用されるため、通常、バンプ電極材料としては、銀等の比較的融点の高い金属材料が使用される。しかし、バンプ電極の厚さは、パッシベーション膜や表面電極膜の厚さと比較して、著しく厚いので、バンプ電極とチップ上面の連結部外周部、すなわち、バンプ電極内側外壁には、応力が集中しやすく、この応力により、パッシベーション膜にクラックが発生することがある。
【解決手段】本願発明は、ダイオード等のガラス封止型半導体装置の製造方法において、表面メタル電極の外周とバンプ電極の内側外壁の位置を相互に相違した位置に設定するものである。 (もっと読む)


【課題】オン電圧および損失の低減を可能にする電力用半導体装置を提供する。
【解決手段】pベース層2の表面からn層1の第1の主面に対して垂直方向で、n層1内に達する位置まで形成され、その後n層1の第1の主面に対して水平方向で、片側に所定の長さ延出した底部3dを有したL字形のトレンチゲート21を備え、さらに所定の隣合うL字形のトレンチゲート21の底部21dの延出方向が対向するようにして、それぞれの底部21dの間隔が、n層1の第1の主面に対して垂直方向に形成されている部分の間隔より狭くなるようにしたことを特徴とする。 (もっと読む)


【課題】微細化されたN+型ソース層とソース電極のコンタクト抵抗が低減されたパワーMOSトランジスタの実現を図る。
【解決手段】N型ドリフト層2の表面にP型ボディ層6を形成し、該P型ボディ層6の表面にN+型ソース層7を形成する。N+型ソース層7上を被覆する層間絶縁膜8に第1のコンタクトホール9を形成し、N+型ソース層7の一部を露出する。第1のコンタクトホール9の底面に露出したN+型ソース層7の表面からP型ボディ層6内まで第2のコンタクトホール10を形成する。第2のコンタクトホール10の底面に露出したP型ボディ層6の表面にP+型コンタクト層11を形成する。第1のコンタクトホール9の底面にフォトリソグラフィ工程のマスク合わせ精度のばらつき幅より小さい幅のN+型層7aを形成し、第1、第2のコンタクトホール9、10内をタングステン層12等で埋設する。 (もっと読む)


【課題】Si基板上に形成されたSiO膜を除去するラジカルクリーニング方法であって、ラジカルクリーニングを行う際に生成する残留生成物も除去することができるラジカルクリーニング方法を提供する。
【解決手段】プラズマによりHラジカル生成用ガスを分解してHラジカルを生成させ、このHラジカルとNFガスを反応させてN、F及びHからなるラジカルを生成するNFHラジカル生成工程と、真空槽内で、Si基板上に形成されたSiO膜に前記N、F及びHからなるラジカルを照射することにより前記SiO膜を除去するエッチング工程と、真空槽内で、前記エッチング工程で前記Si基板上に生成した残留生成物にマイクロ波を照射することにより、前記残留生成物を加熱して蒸発させて除去する残留生成物除去工程とを有する。 (もっと読む)


【課題】ドーパントの濃度をより高く確保しつつも、ドーパントが拡散されるジャンクション深さを制御することができ、改善された接触抵抗を実現し、チャネル領域との離隔間隔を減らしてチャネルのしきい電圧(Vt)を改善できる埋没ジャンクションを有する垂直型トランジスタ及びその形成方法を提供すること。
【解決手段】半導体基板に第1の側面に反対される第2の側面を有して突出した壁体)を形成し、壁体の第1の側面の一部を選択的に開口する開口部を有する片側コンタクトマスクを形成した後、開口部に露出した第1の側面部分に互いに拡散度が異なる不純物を拡散させて第1の不純物層及び該第1の不純物層を覆う第2の不純物層を形成することを特徴とする。 (もっと読む)


【課題】熱CVD法によって、M(BH(Mは、Zr又はHfを意味する)を原料としてM/Zr比が適正範囲内で良質なMB膜(Mは前記と同じ意味を有し、xは1.8〜2.5の数を意味する)を成膜する。
【解決手段】ガス供給源19から、ガス供給配管15aを介してHガスを原料容器21内に供給する。原料容器21内では、導入されたHガスとの接触によって、固体原料のZr(BHが気化する。そして、成膜ガスとしてのHガスとZr(BHガスの混合ガスが、ガス供給配管15c,15c1、シャワーヘッド11のガス拡散空間12及びガス吐出孔13を介して処理容器1内に導入され、ウエハW上の絶縁膜の表面を覆うように、ZrB膜の薄膜が形成される。 (もっと読む)


【課題】動作マージンの向上に対して有利な半導体装置およびその製造方法を提供する。
【解決手段】実施形態によれば、半導体装置は、半導体基板上に、互いのゲート電極が接続されて配置される第1トランジスタ(P2)と、前記第1トランジスタと異なる導電型を有する第2トランジスタ(N4)とを具備し、前記第1トランジスタのゲート電極は、第1不純物と前記第1不純物の拡散を抑制する第2不純物とを含有し、前記第1不純物の濃度ピーク(PE1)は、前記第2不純物の濃度ピーク(PE2)よりも浅い位置に形成されている。 (もっと読む)


【課題】コンタクト孔に埋め込まれる金属プラグの材料が層間絶縁膜に染み出すのを防止できる半導体装置を提供する。
【解決手段】隣り合う2つのメモリセル1のサイドウォール間の不純物拡散領域に電気的接続されるコンタクトプラグ40が、層間絶縁膜18を貫通して設けられている。コンタクト孔41の側壁は、層間絶縁膜18より緻密なシール膜42で覆われている。コンタクトプラグ40は、シール膜42の表面およびコンタクト孔41の底面部を覆うように形成されたバリアメタル膜43と、バリアメタル膜43に包囲された状態でコンタクト孔41内に埋め込まれた金属プラグ44とを含む。 (もっと読む)


【課題】サイドウォール間に層間絶縁膜を埋め込むときに埋め込み不良の発生を防止できる半導体装置の製造方法を提供する。
【解決手段】シリコン基板2の表面上に、ゲート酸化膜6、ポリシリコン層(第1ゲート層)9、タングステンシリサイド層(第2ゲート層)10および絶縁層8が形成される。絶縁層8が所定のゲートパターンにエッチングされる。タングステンシリサイド層10が前記所定のゲートパターンにエッチングされる。タングステンシリサイド層10の側壁が後退される。この後、ポリシリコン層9が前記所定のゲートパターンにエッチングされる。ゲート酸化膜6が前記所定のゲートパターンにエッチングされる。 (もっと読む)


【課題】トランジスタの耐圧を向上し得る半導体装置及びその製造方法を提供する。
【解決手段】半導体基板10上にゲート絶縁膜16を介して形成されたゲート電極18cと、ゲート電極の一方の側の半導体基板に形成された第1導電型のドレイン領域54aと、ゲート電極の他方の側の半導体基板に形成された第1導電型のソース領域54bと、ドレイン領域からゲート電極の直下に達する第1導電型の第1の不純物領域56と、ソース領域と第1の不純物領域との間に形成された、第1導電型と反対の第2導電型の第2の不純物領域58とを有し、ゲート電極は、第1導電型の第1の部分48aと、第1の部分の一方の側に位置する第2導電型の第2の部分48bとを含み、ゲート電極の第2の部分内に、下端がゲート絶縁膜に接する絶縁層24が埋め込まれている。 (もっと読む)


1 - 20 / 255