説明

Fターム[4M104FF22]の内容

半導体の電極 (138,591) | 構造 (12,435) | コンタクトホールの孔埋め構造 (1,175) | 2以上の物質で孔埋め (943)

Fターム[4M104FF22]の下位に属するFターム

Fターム[4M104FF22]に分類される特許

121 - 140 / 885


【課題】バリア金属膜とCVD法によって形成される金属導体膜である銅膜との間の密着性に優れた半導体デバイスの製造方法を提供すること。
【解決手段】基板上に直接にまたは絶縁体膜を介してバリア金属膜を形成する工程と、該バリア金属膜上にCVD法によって銅膜を形成する工程とを含む半導体デバイス製造方法において、該バリア金属膜を形成する工程と該銅膜を形成する工程との間に、加熱条件下アンモニア、水素、またはシランのうちの少なくともいずれか1つを含む第1の還元性ガスに暴露する工程と、該銅膜を形成する工程の後に、加熱条件下第2の還元性ガスに暴露する工程と、を有することを特徴とする。 (もっと読む)


【課題】電気特性が良好な半導体装置を、歩留まり高く作製する。
【解決手段】半導体領域または導電領域を被覆する絶縁膜に、溝及び該半導体領域または導電領域に達するコンタクトホールの少なくともいずれかを形成し、溝及びコンタクトホールの少なくともいずれかに第一の導電膜を形成し、酸化性ガス及びハロゲン系ガスの混合ガスから生成するプラズマに暴露した後、水を含む雰囲気に暴露して、第一の導電膜の一部または全部を流動化し、その後、第一の導電膜上に第二の導電膜を形成する。 (もっと読む)


【課題】トレンチゲート構成のパワートランジスタを有する半導体装置のオン抵抗を低減する。
【解決手段】トレンチゲート構成のパワーMIS・FETQにおいて、ソース用の半導体領域3の上面の層間絶縁層12の端部(位置P1)と上記ソース用の半導体領域3の上面の上記ゲート電極9Eから遠い端部(溝16の外周の位置P2)との間の長さをaとし、上記層間絶縁層12と上記ソース用の半導体領域3の上面との重なり部の長さ(位置P1から溝5aの外周の位置P3までの長さ)をbとすると、0≦b≦aとする。これにより、ソースパッドSPとソース用の半導体領域3の上面との接触面積が増大する上、ソースパッドSPとチャネル形成用の半導体領域4との距離を短くすることができるので、トレンチゲート構成のパワーMIS・FETQのオン抵抗を下げることができる。 (もっと読む)


【課題】製造容易性、及び信頼性の高い半導体装置を提供する。
【解決手段】半導体装置100は、接続孔80を有する層間絶縁膜10と、接続孔80上に形成され、上端が接続孔80の上端より低い位置に位置する金属シード膜24と、金属シード膜24上に形成され、接続孔80内を埋め込んでおり、かつ金属シード膜24の上端を覆う金属膜20と、を備える。このためCMPによる平坦化工程において、金属シード膜24、26は露出せず、除去されない (もっと読む)


【課題】半導体装置の性能を向上させる。
【解決手段】素子分離領域13は、溝11に埋め込まれた酸化シリコン膜からなり、上部が半導体基板1から突出しており、半導体基板1から突出している部分の素子分離領域13の側壁上に、窒化シリコンまたは酸窒化シリコンからなる側壁絶縁膜SW1が形成されている。MISFETのゲート絶縁膜は、ハフニウムと酸素と低しきい値化用の元素とを主成分として含有するHf含有絶縁膜5からなり、メタルゲート電極であるゲート電極GEは、活性領域14、側壁絶縁膜SW1および素子分離領域13上に延在している。低しきい値化用の元素は、nチャネル型MISFETの場合は希土類またはMgであり、pチャネル型MISFETの場合は、Al、TiまたはTaである。 (もっと読む)


【課題】膜中及び膜表面の不純物が効果的に除去でき、Cu配線構造に適用したときにバリア層及びCu配線層に対する密着性に優れて一層の低抵抗を実現できるCo膜形成方法を提供する。
【解決手段】基材Sを処理室10内に配置して処理室内を真空引きすると共に、基材を一の所定温度に加熱し、アルキル基を有するイオン又は分子がコバルトに配位した有機金属材料Lを気化させ、気化させた有機金属材料を基材表面に供給し、有機金属材料を熱分解させてCo膜を成膜する。その後、同一の処理室内で、またはCo膜が成膜された基材を他の処理室内に配置し、この基材をアンモニアガスと水素ガスとを含む混合ガス雰囲気中にて他の所定温度でアニールする。 (もっと読む)


【課題】ドレインオフセット領域を有する高周波増幅用MOSFETにおいて、微細化およびオン抵抗低減を図る。
【解決手段】ソース領域10、ドレイン領域9およびリーチスルー層3(4)上に電極引き出し用の導体プラグ13(p1)が設けられている。その導体プラグ13(p1)にそれぞれ第1層配線11s、11d(M1)が接続され、さらにそれら第1層配線11s、11d(M1)に対して、導体プラグ13(p1)上で裏打ち用の第2層配線12s、12dが接続されている。 (もっと読む)


【課題】半導体集積回路の高集積化と機能素子の高性能化とを同時に実現する。
【解決手段】実施形態に係わる半導体装置は、半導体基板1の表面領域に配置されるスイッチ素子3,4と、下面がスイッチ素子3,4に接続されるコンタクトプラグ6と、コンタクトプラグ6の上面の直上に配置される機能素子7とを備える。コンタクトプラグ6の上面の最大表面粗さは、0.2nm以下である。 (もっと読む)


【課題】比誘電率の低い絶縁層の表面にMn等の金属を含む薄膜、例えばMnOxを効率的に形成することが可能な成膜方法を提供する。
【解決手段】絶縁層1が表面に形成された被処理体Wに対して成膜処理を施す成膜方法において、第1の金属よりなる第1の薄膜60を形成する第1の薄膜形成工程と、前記第1の薄膜を酸化して酸化膜60Aを形成する酸化工程と、前記酸化膜上に第2の金属を含む第2の薄膜62を形成する第2の薄膜形成工程とを有する。これにより、比誘電率の低い絶縁層の表面にMn等の金属を含む薄膜、例えばMnOxを効率的に形成する。 (もっと読む)


【課題】異なるチャネル長のトランジスタを有し、かつ、コンタクト抵抗の増加およびオン電流の減少を防止できる半導体装置の提供。
【解決手段】ピラートランジスタTr1と、前記ピラートランジスタTr1の下部拡散層7aへ信号または電源を供給するとともに、ポリシリコン層10aからの固相拡散し、下部拡散層7aを形成することにより、前記ピラートランジスタTr1のチャネル長d1を厚みにより制御する前記ポリシリコン層10aと、を具備してなることを特徴とする。 (もっと読む)


【課題】CMOS回路を構成するnチャネルMISFETとpチャネルMISFETの両者において、キャリア移動度を高めて高い性能を実現する半導体装置を提供する。
【解決手段】半導体基板の第1領域及び第2領域において第1ゲート絶縁膜及び第1ゲート電極(16,17)を形成し、第1ゲート電極の両側部における半導体基板中にソースドレイン領域を形成し、ソースドレイン領域の導電性不純物を活性化し、第1ゲート電極を被覆して全面に半導体基板に応力を印加するストレスライナー膜(27,28)を形成し、少なくとも第1領域に形成された部分のストレスライナー膜は残しながら第2領域における第1ゲート電極の上部部分のストレスライナー膜を除去し、第2領域における第1ゲート電極の上部を露出させて第1ゲート電極を全て除去して第2ゲート電極形成用溝Tを形成し、第2ゲート電極形成用溝内に第2ゲート電極(31,32)を形成する。 (もっと読む)


【課題】縦型のトランジスタにおいてゲートからシリサイドの位置を精度よく制御できるようにする。
【解決手段】柱状半導体14の中央部には、その周囲を囲むように、ゲート絶縁膜9が形成され、さらに、ゲート絶縁膜9の周囲を囲むように、ゲート層6が形成されている。この柱状半導体14の中央部、ゲート絶縁膜9、ゲート層6により、MIS構造が形成されている。ゲート層6の上下には、第1絶縁膜4が形成されている。第1絶縁膜4は、柱状半導体14にも接している。柱状半導体14の側面には、シリサイド18及びn型拡散層(不純物領域)19が形成されている。シリサイド18は、第1絶縁膜4によってセルフ・アラインされた位置に形成されている。 (もっと読む)


【課題】サリサイド構造を有するMIS型電界効果トランジスタにおいて、ゲート電極とソース・ドレインコンタクトとの間の短絡を防止する。
【解決手段】ゲート電極175上にはシリサイド層230が形成されている。シリサイド層230の上面は、シリサイド層230の中央から両端に向けて低くなっており、当該両端におけるシリサイド層230の上面の高さは、オフセットスペーサ180の高さ以下である。 (もっと読む)


【課題】 製造工程の増加を招くことなく、タングステン配線を低抵抗化できる半導体装置の製造方法を提供する。
【解決手段】 本発明は、基板表面に、微細形状を有する絶縁層を形成した後、この微細形状を含む絶縁層表面に、TiW膜からなる下地層を形成する工程と、下地層の表面に、タングステン膜からなる配線層を形成する工程とを含む。 (もっと読む)


【課題】ゲート電極に形成された研磨後のキャップ絶縁膜の厚さを容易に推定できる半導体装置の製造方法を提供する。
【解決手段】半導体装置形成領域に第1の導電膜よりなるゲート電極15、半導体装置非形成領域に絶縁膜形成部16、及び絶縁膜よりなり、ゲート電極の上面及び絶縁膜形成部の上面を覆うキャップ絶縁膜17を形成し、次いで、キャップ絶縁膜を覆う層間絶縁膜28を形成し、次いで、キャップ絶縁膜上に形成された層間絶縁膜にゲート電極の延在方向と交差する方向に延在する溝47を形成すると共に、溝の下方に位置する層間絶縁膜に不純物拡散層を露出するコンタクトホール22,23を形成し、次いで、溝及びコンタクトホールを埋め込む第2の導電膜51を形成し、次いで、CMP法により第2の導電膜を研磨することでコンタクトプラグを形成し、その後、絶縁膜形成部に形成されたキャップ絶縁膜の厚さを測定する。 (もっと読む)


【課題】 表面ラフネスの精度をさらに改善でき、進展するコンタクトホールやラインなどの微細化に対応可能なアモルファスシリコンの成膜方法を提供すること。
【解決手段】 下地2を加熱し、加熱した下地2にアミノシラン系ガスを流し、下地2の表面にシード層3を形成する工程と、下地2を加熱し、加熱した下地2の表面のシード層3にアミノ基を含まないシラン系ガスを供給し、アミノ基を含まないシラン系ガスを熱分解させることで、シード層3上にアモルファスシリコン膜を形成する工程と、を備える。 (もっと読む)


【課題】シリコン基板裏面をソース電極として使用するLDMOSFETにおいて、出力効率向上のため、基板抵抗を下げようとして高濃度ボロンドープ基板を用いると、ソースドレイン間のリーク不良が、多発することが、本願発明者等によって明らかにされた。更に、この不良解析の結果、ソース不純物ドープ領域からP型エピタキシ層を貫通してP型基板に至るP型ポリシリコンプラグに起因する不所望な応力が、このリーク不良の原因であることが明らかにされた。
【解決手段】本願発明は、LDMOSFETを含む半導体装置であって、LDMOSFETのソース不純物ドープ領域の近傍の上面から下方に向けてエピタキシ層内をシリコン基板の近傍まで延び、前記エピタキシ層内にその下端があるシリコンを主要な成分とする導電プラグを有する。 (もっと読む)


【課題】 信頼性が向上する半導体素子、及びその形成方法を提供する。
【解決手段】 半導体素子の形成方法は、半導体基板100の上にゲート電極120及びゲート電極120の両側にスペーサー110を形成する段階、ゲート電極120の上にキャッピングパターン170を形成する段階、ゲート電極120の間にメタルコンタクト195を形成する段階を含み、キャッピングパターン170の幅はゲート電極120の幅より大きく形成される。これにより、形成された半導体素子は、メタルコンタクト195とゲート電極120との間での電気的な短絡を效果的に防止することができる。 (もっと読む)


【課題】コンタクトの抵抗値のばらつきを抑え、歩留りを安定させることが可能な半導体装置の製造方法を提供する。
【解決手段】半導体基板上に形成された導電層上に、絶縁膜を形成し、ハロゲンガスを含む第1のガスを用いて絶縁膜をドライエッチングして、導電層の表面を露出させ、露出した導電層に対しハロゲンガスを還元可能な第2のガスを用いて第1のプラズマ処理を行い、露出した導電層に対しC元素及びO元素を含みハロゲン元素を含まない第3のガスを用いて、第2のプラズマ処理を行う。 (もっと読む)


【課題】半導体製造装置に備わる真空室と装置外部との間のリークを早期に検知することにより、半導体装置の製造歩留まりを向上させることのできる技術を提供する。
【解決手段】真空室において、高真空領域の圧力判定値と低真空領域の圧力判定値との間の圧力領域に任意の圧力値(例えば1Pa)を設定し、ウエハ搬送室の圧力が低真空側から高真空側へ通過する任意の圧力値を第1トリガポイントP1と設定し、次にウエハ搬送室の圧力が低真空側から高真空側へ通過する任意の圧力値を第2トリガポイントP2と設定する。第1トリガポイントP1と第2トリガポイントP2との間で、低真空側の最大圧力が低真空領域の圧力判定値に到達しているか否かの判定と高真空側の最小圧力が高真空領域の圧力判定値に到達しているか否かの判定を行う。 (もっと読む)


121 - 140 / 885