説明

Fターム[4M104FF22]の内容

半導体の電極 (138,591) | 構造 (12,435) | コンタクトホールの孔埋め構造 (1,175) | 2以上の物質で孔埋め (943)

Fターム[4M104FF22]の下位に属するFターム

Fターム[4M104FF22]に分類される特許

61 - 80 / 885


【課題】本実施形態は、コンタクトプラグの抵抗の低減を行うことができる半導体装置の製造方法を提供する。
【解決手段】本実施形態の半導体装置の製造方法は、基板にコンタクトホール又はコンタクトトレンチを形成し、コンタクトホール又はコンタクトトレンチの底に、アモルファスシリコン層又は多結晶シリコン層を形成し、アモルファスシリコン層又は多結晶シリコン層を覆うように不純物を含むニッケル膜を形成し、加熱することによりニッケル膜とアモルファスシリコン層又は多結晶シリコン層とを反応させて、ニッケルシリサイド膜を形成し、コンタクトホール又はコンタクトトレンチを埋め込むようにコンタクト金属膜を形成する。 (もっと読む)


【課題】製造時間とコストの大幅な削減が可能な下地導電層付き基板および貫通電極基板の製造方法を提供する。
【解決手段】厚さ方向に複数の貫通孔2を有するガラス基板3の貫通孔2内に下地導電層4を有する基板の製造方法であって、前記ガラス基板3の貫通孔2内に、金属粒子と分散媒とを含有する流動性の導電性組成物(金属インク)の層を形成する工程と、この導電性組成物の層を加熱して、貫通孔2の内壁面に金属粒子の金属を主体とする下地導電層4を形成する工程とを備える方法である。貫通電極基板5の製造方法は、こうして形成された下地導電層4上に電解めっき等により導電性金属の層を形成して、貫通孔2内に充填された貫通電極6を形成する工程を有する。 (もっと読む)


【課題】信頼性の高い薄膜トランジスタを提供する。
【解決手段】薄膜トランジスタ20のゲート電極15、ソース、ドレイン電極33、34のうち、いずれか一つ以上の電極はバリア膜25を有し、バリア膜25が成膜対象物21又は半導体層30に密着している。NiとMoを100原子%としたときに、バリア膜25は、Moを7原子%以上70原子%以下含有し、ガラスからなる成膜対象物21や半導体層30に対する密着性が高い。また、バリア膜25表面にCuを主成分とする金属低抵抗層26が形成された場合に、Cuが半導体層30に拡散しない。 (もっと読む)


【課題】Cuめっきを用いることなくPVDのみでトレンチまたはホールCuを埋め込んでCu配線を形成すること。
【解決手段】ウエハWに形成されたトレンチ203を有する層間絶縁膜202の全面にバリア膜204を形成する工程と、バリア膜204の上にRu膜205を形成する工程と、Ru膜205の上にPVDによりCuがマイグレーションする条件でトレンチ203内に第1のCu膜206を形成する工程と、第1のCu膜206の上に、第1のCu膜206よりも大きな成膜速度でPVDにより第2のCu膜207を形成する工程と、CMPにより全面を研磨する工程とを有する。 (もっと読む)


【課題】金属酸化物中の酸素欠損を低減し、電気的特性の安定した半導体装置を提供することを目的の一とする。
【解決手段】ゲート電極と、ゲート電極上に設けられたゲート絶縁膜と、ゲート絶縁膜上に設けられた第1の金属酸化物膜と、第1の金属酸化物膜に接して設けられたソース電極及びドレイン電極と、ソース電極及びドレイン電極上に設けられたパッシベーション膜と、を有し、パッシベーション膜は、第1の絶縁膜と、第2の金属酸化物膜と、第2の絶縁膜とが順に積層された半導体装置である。 (もっと読む)


【課題】熱(工程)に耐性のある配線構造を採用し、配線上の析出物の発生を抑制できる半導体素子を実現する。
【解決手段】半導体素子本体に接続する金材を含む配線パターンと、この配線パターンに一端側が接続され金材を含む接続端子と、前記半導体素子本体と前記配線パターンと前記接続端子とを覆う絶縁体と、を具備する半導体素子において、前記配線パターンあるいは接続端子の一方の面に一面が接し他面が前記絶縁体に接する面状のシリサイド体を具備したことを特徴とする半導体素子である。 (もっと読む)


【課題】配線信頼性が向上される。
【解決手段】半導体基板上に配線層11と層間絶縁膜12とが順に形成され、層間絶縁膜12にトレンチ溝13とトレンチ溝13中に配線層11に達するビア孔14とが形成され、トレンチ溝13内、ビア孔14内および層間絶縁膜12上に、チタン、ジルコニウムおよびマンガンのうちのいずれか、もしくはこれらの合金である金属膜15が成膜され、スパッタ法を用いて、ビア孔14の底部の金属膜15をエッチングするとともに、トレンチ溝13の底部および側壁とビア孔14の側壁に、タンタル、タングステンのいずれか、もしくはこれらの合金である金属膜16が成膜されて、さらに、ビア孔14の側壁にそれぞれの金属によって新たな金属膜が生成され、ビア孔14とトレンチ溝13とを導電性材料17aで埋め込んだ配線層が形成されるようになる。 (もっと読む)


【課題】めっき膜の成膜が進んでも、被めっき面の表面電位と所望する表面電位との誤差が生じることを抑制できる半導体装置の製造方法を提供する。
【解決手段】この半導体装置の製造方法は、半導体基板1に形成されたシード膜20を、めっき液32に接触させる工程と、シード膜20にカソード電極54を接続し、シード膜20とめっき液32中のアノード電極40との間で電流を流すことにより、シード膜20上にめっき膜22を形成する工程と、を備え、めっき膜22を形成する工程において、めっき液20中に挿入された参照電極34とカソード電極54との間の電位差、またはカソード電極54とアノード電極40の電位差を、時間の経過と共に徐々に下げる工程を有する。 (もっと読む)


【課題】バリアメタル膜とCu膜との密着性を向上する。
【解決手段】基板上に、スパッタ法によりバリアメタル膜としてTi膜又はTa膜を形成し、このバリアメタル膜上にスパッタ法により窒化物膜を形成し、この窒化物膜の上にCVD法によりCu膜を形成した後、100〜400℃でアニール処理を行う。このようにCu膜を形成することにより、バリアメタル膜とCu膜との密着性が向上する。 (もっと読む)


【課題】トレンチおよび/またはホールの間口のオーバーハングを抑制することができる成膜方法およびリスパッタリング方法を提供すること。
【解決手段】処理容器内にプラズマ生成ガスを導入しつつ誘導結合プラズマ生成機構により処理容器内に誘導結合プラズマを生成し、直流電源から金属ターゲットに直流電力を供給し、バイアス電源により載置台に高周波バイアスを印加して、載置台上の被処理基板に金属薄膜を堆積させる工程と、誘導結合プラズマ生成機構によるプラズマの生成と直流電源への給電を停止し、処理容器内にプラズマ生成ガスを導入しつつ載置台に高周波バイアスを印加して、処理容器内に容量結合プラズマを形成するとともにプラズマ生成ガスのイオンを被処理基板に引き込んで堆積された金属薄膜をリスパッタリングする工程とを有する。 (もっと読む)


【課題】ドレイン電極とドレイン層とのコンタクト抵抗を低減できる半導体素子及び半導体素子の製造方法を提供する。
【解決手段】半導体素子は、第1導電型のドレイン層と、ドレイン層上に形成された第1導電型のドリフト層と、ドリフト層上に選択的に形成された第2導電型のベース層と、ベース層上に選択的に形成された第1導電型のソース層と、ゲート絶縁膜を介して、ドリフト層、ベース層及びソース層に跨って形成されたゲート電極と、ベース層及びソース層に電気的に接続されたソース電極と、ドリフト層を貫通して、底部の少なくとも一部がドレイン層にまで達する第1のトレンチ内に形成され、ドレイン層と電気的に接続されたドレイン電極と、を備え、底部には、凹凸が形成されている。 (もっと読む)


【課題】高集積化を図ることができる半導体装置及びその製造方法を提供することである。
【解決手段】実施形態に係る半導体装置は、半導体基板と、前記半導体基板上に設けられ、相互に平行に延びる複数本の積層体であって、前記半導体基板上に設けられたゲート絶縁膜と、前記ゲート絶縁膜上に設けられたゲート電極と、前記ゲート電極上に設けられた絶縁膜と、を有する積層体と、前記ゲート電極の上端部の側面を覆い、前記ゲート電極における前記ゲート絶縁膜に接する部分の側面は覆わない絶縁側壁と、前記半導体基板上に設けられ、前記積層体を覆う層間絶縁膜と、前記層間絶縁膜内における前記積層体の相互間に設けられ、前記半導体基板に接続されたコンタクトと、を備える。 (もっと読む)


【課題】被処理基板を加熱してトレンチやホールの間口部のオーバーハングを抑制しつつ金属膜を成膜するとともに、成膜後に速やかに被処理基板の温度を低下させることができる成膜方法を提供すること。
【解決手段】載置台を低温に保持して、載置台上に被処理基板を吸着させずに載置する工程と、プラズマ生成ガスのプラズマを生成し、載置台に高周波バイアスを印加した状態で、被処理基板にプラズマ生成ガスのイオンを引きこんで被処理基板を予備加熱する工程と、ターゲットに電圧を印加して金属粒子を放出させ、プラズマ生成ガスのイオンとともにイオン化した金属イオンを被処理基板に引きこんで金属膜を形成する工程と、被処理基板を低温に保持された載置台に吸着させ、載置台と被処理基板との間に伝熱ガスを供給して被処理基板を冷却する工程とを有する。 (もっと読む)


【課題】可撓性を有する基板上に有機化合物を含む層を有する素子が設けられた半導体装置を歩留まり高く作製することを課題とする。
【解決手段】基板上に剥離層を形成し、剥離層上に、無機化合物層、第1の導電層、及び有機化合物を含む層を形成し、有機化合物を含む層及び無機化合物層に接する第2の導電層を形成して素子形成層を形成し、第2の導電層上に第1の可撓性を有する基板を貼りあわせた後、剥離層と素子形成層とを剥す半導体装置の作製方法である。 (もっと読む)


【課題】信頼性と電気的特性の確保を両立した半導体装置を提供する。
【解決手段】同一の半導体基板1上に形成されたパワーMOSFETと保護回路を備える。パワーMOSFETがトレンチゲート縦型PチャネルMOSFETであって、そのゲート電極6の導電型をP型とする。また、保護回路がプレーナゲート横型オフセットPチャネルMOSFETを備え、そのゲート電極10の導電型をN型とする。これらゲート電極6とゲート電極10は別工程で形成される。 (もっと読む)


【課題】nチャネル型電界効果トランジスタとpチャネル型電界効果トランジスタを有する半導体装置において、nチャネル型電界効果トランジスタ、pチャネル型電界効果トランジスタ共にドレイン電流特性に優れた半導体装置を実現する。
【解決手段】nチャネル型電界効果トランジスタ10と、pチャネル型電界効果トランジスタ30とを有する半導体装置において、nチャネル型電界効果トランジスタ10のゲート電極15を覆う応力制御膜19には、膜応力が引張応力側の膜を用いる。pチャネル型電界効果トランジスタ30のゲート電極35を覆う応力制御膜39には、膜応力が、nチャネル型トランジスタ10の応力制御膜19より、圧縮応力側の膜を用いることにより、nチャネル型、pチャネル型トランジスタの両方のドレイン電流の向上が期待できる。このため、全体としての特性を向上させることができる。 (もっと読む)


【課題】良好なノーマリ・オフ動作を可能とすることに加え、アバランシェ耐量が大きく、外部のダイオードを接続することを要せず、確実に安定動作を得ることができる信頼性の高い高耐圧のHEMTを得る。
【解決手段】化合物半導体積層構造2に形成された電極用リセス2Cを、ゲート絶縁膜6を介して電極材料で埋め込むようにゲート電極7を形成すると共に、化合物半導体積層構造2に形成された電極用リセス2Dを、少なくとも電極用リセス2Dの底面で化合物半導体積層構造2と直接的に接するように電極材料で埋め込み、化合物半導体積層構造2とショットキー接触するフィールドプレート電極8を形成する。 (もっと読む)


【課題】ゲート電極同士の間の突合わせ部を挟むように形成されたコンタクトプラグ同士が、当該突合わせ部の絶縁膜内に形成されたボイドを介してショートすることを防ぐ。
【解決手段】ゲート電極G2およびG5間の突合わせ部において対向するサイドウォールSW上には、ライナー絶縁膜6と層間絶縁膜7が形成されている。サイドウォールSW同士の間において、サイドウォールSWの側壁にそれぞれ形成されたライナー絶縁膜6を接触させてサイドウォールSW間を閉塞させることにより、層間絶縁膜7とライナー絶縁膜6の内部にボイドが発生することを防ぐ。 (もっと読む)


【課題】単膜でCu拡散のバリア膜及びめっきシード層として機能するとともに、Cuとの密着性にも優れた金属薄膜の成膜方法を提供する。
【解決手段】金属薄膜の成膜方法は、Ti膜を成膜する工程(STEP1)、Ti膜上にCo膜を形成する工程(STEP2)、Ti膜及びCo膜を熱処理してCoTi合金を含む金属薄膜を形成する工程(STEP3)を備えている。CoTi合金を含む金属薄膜は、優れた導電性とCu拡散バリア性を有し、Cuとの格子不整合が0.15%と非常に小さいため、Cu配線と優れた密着性が得られる。 (もっと読む)


【課題】成膜原料としてコバルトカルボニルを用いてCo膜を成膜する場合に、下地との密着性を良好にすることができる成膜方法を提供すること。
【解決手段】処理容器1内に基板Wを配置し、処理容器1内に気体状のコバルトカルボニルを供給し、基板W上でコバルトカルボニルを熱分解させて基板W上にCo膜を成膜するにあたり、基板WのCo膜の下地が、Co膜との界面近傍に混合層を形成する材料で構成されており、基板Wの加熱温度を190〜300℃とする。 (もっと読む)


61 - 80 / 885