説明

Fターム[4M104GG12]の内容

半導体の電極 (138,591) | 適用素子 (17,168) | MESFET (697)

Fターム[4M104GG12]に分類される特許

681 - 697 / 697


半導体デバイスは、少なくとも1つの表面を含むIII族窒化物半導体材料の層と、半導体材料の電気的応答を制御するための、表面上にある制御コンタクトと、制御コンタクトに隣接する1つの表面の少なくとも一部を被覆する誘電体バリア層であって、III族窒化物のバンドギャップよりも大きなバンドギャップと、III族窒化物の導電帯からずれている導電帯とを有する、誘電体バリア層と、III族窒化物の表面の残り部分を被覆する誘電体保護層とを備えている。
(もっと読む)


ソース電極およびドレイン電極が半導体層に接触した、基板上の複数の活性半導体層を備えるトランジスタ。ゲートが、ソース電極とドレイン電極との間に、複数の半導体層上に形成される。複数のフィールドプレートが、半導体層上に配置され、各フィールドプレートは、ゲートのエッジからドレイン電極に向かって延び、また各フィールドプレートは、前記半導体層から、また他のフィールドプレートから分離される。最上部のフィールドプレートは、ソース電極に電気的に接続され、他のフィールドプレートは、ゲートまたはソース電極に電気的に接続される。
(もっと読む)


本発明に係る電界効果トランジスタは、基板(12)上に連続的に形成されるバッファ及びチャネル層(16)を備える。ソース電極(18)、ドレイン電極(20)、並びに、ソース及びドレイン電極間にあるゲート(22)はすべて、チャネル層に電気的に接続して形成される。スペーサ層(26)は、前記ゲートと前記ドレイン電極との間にあるチャネル層の表面の少なくとも一部の上に形成され、フィールドプレート(30)は、前記ゲート及びチャネル層から絶縁されるスペーサ層上に形成される。フィールドプレート(30)は、少なくとも1つの導電性パスによってソース電極に電気的に接続され、金属半導体電界効果トランジスタ内におけるピーク操作電界を低減する。
(もっと読む)


ショットキーバリア炭化ケイ素デバイスは、レニウムショットキー金属接触を有している。レニウム接触(27)は250Åよりも厚く、2000Åから4000Åまでの間であり得る。ターミネーション構造は、ショットキー接触の周囲の環状領域をイオンミリングすることによって与えられる。
(もっと読む)


電流安定性の改善された自己整列型炭化ケイ素パワーMESFETおよびそのデバイスの作成方法を記載する。このデバイスは、ゲート凹部により分離されたレイズドソースおよびドレイン領域を含み、低ゲートバイアスにおいてでさえ表面トラップ効果が低減されるため、電流安定性が改善される。このデバイスは自己整列型プロセスを用いて作成され得る。このプロセスでは、金属エッチマスクを用いて、nドープのSiCチャネル層上のnドープのSiC層を備えた基板がエッチングされてレイズドソースおよびドレイン領域が規定される。この金属エッチマスクがアニールされ、ソースおよびドレイン・オームコンタクトが形成される。単層または多層の誘電性フィルムが成長または堆積され異方性エッチングされる。蒸着または別の異方性堆積技術を用いて、ショットキーコンタクト層および最終金属層が堆積され、オプションとして、誘電性層の等方エッチングされる。
(もっと読む)


窒化物半導体を有する窒化物半導体装置のオーム性電極構造であって、窒化物半導体上に形成された第1の金属膜と、第1の金属膜上に形成された第2の金属膜とを有する。第1の金属膜は、V、Mo、Ti、Nb、W、Fe、Hf、Re、Ta、Zrから成るグループの中から選ばれた少なくとも一つの材料で構成されている。第2の金属膜は、第1の金属膜102と異なる、V、Mo、Ti、Nb、W、Fe、Hf、Re、Ta、Zr、Pt、Auから成るグループの中から選ばれた少なくとも一つの材料で構成されている。 (もっと読む)


【課題】 本発明は、ショットキ・コンタクト(16)を形成するために半導体(14)上に導電性炭素材料(17)を堆積する方法に関する。
【解決手段】 本発明の方法は、半導体(14)をプロセス・チャンバ(10)内に導入するステップと、プロセス・チャンバ(10)の内部(10')を所定温度に加熱するス
テップと、プロセス・チャンバ(10)を第1所定圧力以下に減圧するステップと、プロセス・チャンバ(10)の内部(10')を第2所定温度に加熱するステップと、少なく
とも炭素を含むガス(12)を、第1所定圧力よりも高い第2所定圧力に達するまで導入するステップと、少なくとも炭素を含むガス(12)から、半導体(14)上に導電性炭素材料(17)を堆積することにより、半導体(14)上に堆積した炭素材料(17)がショットキ・コンタクト(16)を形成するステップを備えている。 (もっと読む)


電磁放射線を用いた一回の露光プロセスでT−ゲートを製造する方法が開示される。
(もっと読む)


半導体素子の製造方法は、炭化珪素基板1上に形成された炭化珪素薄膜2内にイオンを注入する工程と、炭化珪素基板を減圧雰囲気で加熱することで炭化珪素基板の表面にカーボン層5を形成する工程と、カーボン層5を形成する工程より高い圧力で、且つ高い温度の雰囲気中で炭化珪素基板を活性化アニールする工程とを含んでいる。 (もっと読む)


III族窒化物デバイスが、名目上オフ、すなわち、エンハンスメントモードのデバイスを作製するための凹部電極を含む。凹部電極を設けることによって、デバイス中の電流の流れを阻止するために、電極が非能動であるときに2つのIII族窒化物材料の境界面に形成された導電チャネルが中断される。電極はショットキー接点または絶縁金属接点であり得る。名目上オフの特性を有する整流器デバイスを形成するために、2つのオーム接点を設けることができる。電極が形成された凹部は傾斜側面を有することができる。電極は、デバイスの電流運搬電極と組み合わせて幾つもの幾何学配置で形成可能である。電極が凹部でないとき、名目上オンのデバイス、すなわち、ピンチ抵抗が形成される。ダイオードは、絶縁体を貫通してAlGaN層に達する非凹部のオーム接点およびショットキー接点を設けることによっても形成される。
(もっと読む)


窒化ガリウム材料デバイスおよびその形成方法を提供する。該デバイスは、電極規定層を包含する。電極規定層は典型的にはその内部に形成されたビアを有し、該ビア内に電極が(少なくとも部分的に)形成される。したがって、ビアは、電極の寸法を(少なくとも部分的に)規定する。いくつかの場合において、電極規定層は、窒化ガリウム材料領域上に形成された不動態化層である。 (もっと読む)


低接触抵抗を実現しつつ表面荒れの少ない電極が得られる技術を提供する。
半導体膜101の上部に設けられる電極であって、この半導体膜101の上部にこの半導体膜の側から順に積層された第一金属層102と第二金属層103とを有し、この第一金属膜102が、Alからなり、この第二金属膜103が、Nb、W、Fe、Hf、Re、TaおよびZrからなる群より選ばれる1種以上の金属からなることを特徴とする電極。 (もっと読む)


【課題】
【解決手段】III族窒化物半導体素子およびその製造方法の実施形態は、高温処理中にIII族窒化物材料に損傷を与えずに、素子のコンタクトを形成することを可能にする低抵抗の不動態化層を備えてよい。不動態化層は、素子全体を不動態化するために用いられてよい。不動態化層は、さらに、素子のコンタクトと活性層との間に設けられて、導電のための低抵抗の電流路を提供してもよい。この不動態化処理は、FET、整流器、ショットキダイオードなど、任意の種類の素子に用いて、破壊電圧を改善すると共に、コンタクトの接合部付近の電界集中効果を防止してよい。不動態化層は、外部拡散に関してIII族窒化物素子に影響を与えない低温アニールで活性化されてよい。 (もっと読む)


【課題】 製造コストを低減し品質の均一性および安定性を高めたモノリシック集積型エンハンスメントモード/デプリーションモードFETデバイスを提供する。
【解決手段】 単一の半導体多層構造でデプリーションモード(Dモード)FETをエンハンスメントモード(Eモード)FETとモノリシックに集積回路化する。上記多層構造にはチャネル層を設け、その上に障壁層をオーバーレイし、さらにその上にオームコンタクト層をオーバーレイする。これらDモードFETおよびEモードFETのソースコンタクトおよびドレーンコンタクトをオームコンタクト層に接続する。またDモードFETおよびEモードFETのゲートコンタクトを障壁層に接続する。障壁層の中のEモードゲートコンタクトの下に非晶質化領域を設ける。この非晶質化領域が障壁層との間の埋込みEモードSchottkyコンタクトを構成する。代わりに実施例ではDモードFETのゲートコンタクトを障壁層にオーバーレイした第1の層に接続し、その第1の層の中にDモード非晶質化領域を形成する。 (もっと読む)


【課題】ゲート長の短いゲート電極を有し、しかも低抵抗で高周波特性が優れている半導体装置およびその製造方法を提供する。
【解決手段】少なくともノンドープInGaP層又はノンドープInAlGaP層からなる上層半導体層12と、この上層半導体層直下にGaAs層またはAlGaAs層からなる下層半導体層11を含む半導体基板に、上層半導体層表面から上層半導体層への浸入が、下層半導体層で略停止するショットキーゲート電極15と、このショットキーゲート電極部に接続して第1の電極の抵抗を低減する第2の電極部16からなるT字型ゲート電極を形成する。 (もっと読む)


【課題】 電界緩和を図り高耐圧化を実現することに加え、デバイスサイズの更なる減少化、正孔の引き抜きを容易にして、信頼性の高い優れた化合物半導体装置を実現する。
【解決手段】 本発明の化合物半導体装置は、GaAs等の第1の化合物半導体層上に、電子に対する障壁が伝導帯にあり、且つ正孔に対する障壁が価電子帯にない、即ちタイプII構造のバンド構造を有する属元素と6属元素の化合物からなるアモルファス層、例えばアモルファスGaS層(a−GaS層)を有するものである。 (もっと読む)


【課題】 半導体上の膜付着力が強く、かつ温度特性が優れたショットキー電極を備えた窒化物系III−V族化合物半導体装置の電極構造を提供する。
【解決手段】 この窒化物系III−V族化合物半導体装置の電極構造は、電極4の材料として金属窒化物(窒化タングステン)を用いたので、半導体GaN層3への膜付着力が強く、かつ、加熱によってショットキー特性が劣化することがないショットキー電極4を得ることができた。 (もっと読む)


681 - 697 / 697