説明

Fターム[5E040NN15]の内容

硬質磁性材料 (8,571) | 数値限定の対象 (1,979) | 磁気特性、用途 (288) | 他に分類されない磁気特性 (68)

Fターム[5E040NN15]に分類される特許

1 - 20 / 68


【課題】本発明は、かつ永久磁石による磁場変化が可能と考えられる2テスラ付近までで、従来の冷凍性能を大幅に超える磁気冷凍材料を提供するものである。
【解決手段】式La1−fRE(Fe1−a−b−c−d−eSiCo13(式中REはLaを除く、Sc及びYを含む希土類元素から選ばれる少なくとも1種を含む元素、XはGa、Alの少なくとも1種を含む元素、MはGe、Sn、B及びCの少なくとも1種を含む元素、ZはTi、V、Cr、Mn、Ni、Cu、Zn、Zrの少なくとも1種を含む元素を示し、aは0.03≦a≦0.17、bは0.003≦b≦0.06、cは0.02≦c≦0.10、dは0≦d≦0.04、eは0≦e≦0.04、fは0≦f≦0.50である。)で表される組成を有する第一の相と、Fe、BおよびZから選ばれる1種以上の元素を含有し、LaおよびREの含有量の合計が1原子%以下である第二の相を有し、第一の相および第二の相の平均的な結晶粒径が0.01μmから1μmの範囲であることを特徴とする磁気冷凍材料。 (もっと読む)


【課題】特に微粒子でありながら、磁気特性を維持しながら耐酸化性を改善させた金属磁性粉末の製造技術を提供する。
【解決手段】焼結防止元素を含有するオキシ水酸化鉄(α−FeOOH、ただしFeの一部が他の元素で置換されていても構わない)の粉末を弱還元性雰囲気に曝して個々の粒子の一部が金属鉄(α−Fe、ただしFeの一部が他の元素で置換されていても構わない)に還元された段階で還元反応の進行を止め、次いで弱酸化性雰囲気に曝すことによりウスタイト(FeO、ただしFeの一部が他の元素で置換されていても構わない)を合成し、そのウスタイトに対して還元熱処理を施す金属磁性粉の製法。 (もっと読む)


【課題】ボンド磁石を押出成形する方法において、ボンド磁石の配向率を向上させる。
【解決手段】異方性の磁性材料と樹脂とから構成されたボンド磁石組成物を溶融させた後、前方に押出す可塑化部3と、その可塑化部にて溶融されたボンド樹脂組成物の流れを制御するゲート部21と、上記磁性材料を配向させる磁場を印加する配向用磁石6が配置されるとともに、上記溶融されたボンド樹脂組成物を固化させるキャビティ19を有する成形部1と、を備えたボンド磁石の製造装置において、上記ゲート部21は、上記可塑化部3に接続された流路11,16が上記成形部1のほうに向かって分岐されてなる複数の流路と、それらの流路と上記キャビティ19とを接続する複数のゲートとを有しており、上記可塑化部で溶融されたボンド樹脂組成物が、上記複数の流路により複数の流れに分割された状態で、上記複数のゲートから上記成形部のキャビティ内に充填される。 (もっと読む)


【課題】還元拡散法により得られる希土類−遷移金属系合金粉末の減磁曲線の角形性を改善し、永久磁石性能を高めることができる希土類−遷移金属系合金粉末とその製造方法を提供。
【解決手段】希土類酸化物粉末と、遷移金属粉末および/またはその酸化物粉末と、粒状または粉末状の、アルカリ金属、アルカリ土類金属およびこれらの水素化物から選ばれる少なくとも1種の還元剤とを混合し、不活性雰囲気中で該混合物を850〜1200°Cで1〜10時間保持して希土類−遷移金属系合金を含む反応生成混合物を得る第1の工程、この反応生成混合物を300℃以下に冷却した後、水素ガスを導入し、水素ガス分圧20〜40kPaの雰囲気中において700〜900°Cの温度で1〜20時間保持する第2の工程、得られた反応生成混合物を真空もしくは水素ガス分圧10kPa未満の雰囲気下500〜900°Cで10分〜20時間熱処理する第3の工程、得られた熱処理物を水で洗浄し、還元剤を含む副生物を除去して希土類−遷移金属系合金を回収する第4の工程、洗浄後の希土類−遷移金属系合金を150〜400°Cの非酸化性雰囲気下で乾燥する第5の工程とを含む希土類−遷移金属系合金粉末の製造方法などにより提供。 (もっと読む)


【課題】α"Fe16N2を主成分とする鉄窒化物粒子の含有量が多い窒化鉄材、及びその製造方法を提供する。
【解決手段】α"Fe16N2を主成分とし、短軸の平均長さが100nm以下の鉄窒化物粒子からなる原料粉末とバインダとを混合して、平均粒径1μm以上の造粒粉を作製する。造粒粉を成形型に充填した後、加圧成形して成形体(窒化鉄材)を作製する。加圧成形は、成形型内を0.9気圧以下に排気しながら、バインダの分解温度±20℃の温度に加熱した状態、かつ2T以上の磁場を印加した状態で行う。加熱により溶融したバインダの存在下で強磁場を印加すると、鉄窒化物粒子の移動や回転を容易にして結晶方位を特定の方向に配向でき、加熱及び排気によりバインダを除去すると、鉄窒化物粒子の充填率を高められる。この製造方法は、鉄窒化物粒子の含有量が多く、配向組織を有する窒化鉄材が得られ、この窒化鉄材は、磁気特性に優れる。 (もっと読む)


【課題】α”Fe16N2相の含有量が多い窒化鉄材が得られる窒化鉄材の製造方法、及び窒化鉄材を提供する。
【解決手段】この製造方法は、純鉄や鉄合金、鉄化合物といったFeを含有する母材に磁場を印加した状態で、窒素雰囲気といった窒素元素含有ガス雰囲気下で上記母材を加熱してα”Fe16N2相を生成する工程を具える。印加する磁場Hは、母材の形状から規定される反磁界係数をNf(Nf=0〜1)とするとき、H=(7/3)+2×Nf以上の強磁場とする。H=(7/3)+2×Nf以上の強磁場を母材に印加することで、Feの基本格子が印加する磁界方向(一方向)に伸び、Nの侵入位置をこの一方向に規制し易い。そのため、過剰窒化を抑制し、磁気特性に優れるα”Fe16N2相を生成し易く、α”Fe16N2相の含有量が多い窒化鉄材を製造することができる。 (もっと読む)


【課題】 磁気ヒステリシス曲線の角型比を大きくすることによって磁気ヒステリシス損失を大きくすることで優れた発熱効率を示す、癌焼灼治療用強磁性酸化鉄粒子を提供すること。
【解決手段】 本発明の癌焼灼治療用強磁性酸化鉄粒子は、長径が30〜300nm、厚みに対する長径の比が1.5〜30である板状の形状を有し、保磁力が50〜500Oe、飽和磁化が30〜80emu/g、磁気ヒステリシス曲線の角型比が0.20〜0.50である磁気特性を有することを特徴とする。 (もっと読む)


【課題】 本発明は、工業的に高純度、且つ優れた磁気特性を示す強磁性粒子粉末及びその製造方法に関する。また、該強磁性粒子粉末を用いた異方性磁石、ボンド磁石、圧粉磁石を提供する。
【解決手段】 メスバウアースペクトルよりFe16化合物相が80%以上の割合で構成される強磁性粒子粉末であり、該強磁性粒子は粒子外殻にFeOが存在するとともにFeOの膜厚が5nm以下である強磁性粒子粉末は、出発原料の一次粒子の(粒子長軸長の偏差平均)/(平均粒子長軸長)が50%以下、Uが1.55以下、Cが0.95以上、C2が0.40以上であり、平均粒子長軸長が40〜5000nm、アスペクト比(長軸径/短軸径)が1〜200である鉄化合物を用い、凝集粒子の分散処理を行い、次いで、メッシュを通した鉄化合物粒子粉末を160〜420℃にて還元処理し、130〜170℃にて窒化処理して得ることができる。 (もっと読む)


【課題】希土類焼結磁石の磁気特性を向上させることができる希土類焼結磁石の製造方法を提供する。
【解決手段】発明に係る希土類焼結磁石の製造方法は、R214B(Rは1種類以上の希土類元素を表し、TはFe又はFe及びCoを含む1種以上の遷移金属元素を表し、BはB又はB及びCを表す)化合物を含む主相と、前記R214B化合物よりRを多く含む粒界相とを含む希土類焼結磁石を製造するにあたり、R214B相の組成を含む希土類焼結磁石体の表面に、重希土類化合物を含む希土類化合物含有液を付着させる重希土類化合物の付着工程と、前記重希土類化合物が付着した希土類焼結磁石体を熱処理する熱処理工程と、を有し、熱処理した希土類焼結磁石体の角形比Hk/HcJは、熱処理して角形比Hk/HcJが一番高くなる焼結条件において得られる希土類焼結磁石体の角形比Hk/HcJの0.8以上1.0未満であることを特徴とする。 (もっと読む)


【課題】磁気記録のトリレンマを解消するための手段を見出すこと。
【解決手段】Feの置換元素として2価元素のみをFe含有量100原子%に対して0.5〜5.0原子%含有し、かつ活性化体積が1200〜1800nm3の範囲であることを特徴とする六方晶フェライト磁性粒子からなる磁気記録用磁性粉。Fe置換成分として2価元素成分のみを含み、かつFe含有量100原子%に対する2価元素含有量が0.5〜5.0原子%である原料混合物を使用するガラス結晶化法により前記六方晶フェライト磁性粒子を得ることを特徴とする前記磁気記録用磁性粉の製造方法。非磁性支持体上に前記記載の磁気記録用磁性粉および結合剤を含む磁性層を有する磁気記録媒体。 (もっと読む)


【課題】還元拡散法を利用し希土類−鉄合金粉末を均一に窒化することで、磁気特性を向上させる希土類−鉄−窒素系磁石粉末の製造方法、及び得られる希土類−鉄−窒素系磁石粉末を提供。
【解決手段】希土類酸化物粉末、鉄粉末、及び該希土類酸化物を還元するための還元剤を混合し、この混合物を還元拡散法により非酸化性雰囲気中で加熱焼成して希土類−鉄母合金を含む還元拡散反応生成物を得る工程、得られた希土類−鉄母合金を窒化処理する工程とを含む下記の一般式(1)で表される希土類−鉄−窒素系磁石粉末を得る製造方法において、前記希土類酸化物を鉄粉末、及び還元剤と混合する前に、前記希土類酸化物のイグロス成分を0.1質量%以下に低減する条件で加熱乾燥処理することを特徴とする希土類−鉄−窒素系磁石粉末を得る製造方法などにより提供。
Fe(100−a−b) ・・・(1)
(式(1)中、Rは1種類または2種以上の希土類元素であり、またa、bは原子%で、4≦a≦18、10≦b≦17を満たす。) (もっと読む)


【課題】塗布型磁気記録媒体に適用可能な磁性粒子であって、高い熱的安定性と優れた記録性を兼ね備えた磁性粒子を提供すること。
【解決手段】炭化水素ガスを含有する還元性雰囲気中で六方晶フェライト磁性体に加熱処理を施すことにより得られた磁性粒子。炭化水素ガスを含有する還元性雰囲気中で六方晶フェライト磁性体に加熱処理を施すことを特徴とする磁性粒子の製造方法。非磁性支持体上に強磁性粉末と結合剤とを含有する磁性層を有する磁気記録媒体。前記強磁性粉末が上記磁性粒子である。 (もっと読む)


【課題】希少資源である希土類元素を使用せずに磁性材料の特性を改善すること。
【解決手段】磁粉の粒子の表面に、水素,窒素,フッ素,金属元素を含有し、窒素よりも水素が多くかつ金属元素よりフッ素が多いフッ素化合物の膜を形成させ、この膜に含まれる元素を磁粉の粒子を構成する結晶の格子間に侵入させることで、希土類元素を用いることなく磁粉の磁気特性を改善させた磁性材料を得ることができる。 (もっと読む)


【課題】 本発明は、工業的に高純度、且つ優れた磁気特性を示す強磁性粒子粉末及びその製造法に関する。また、該強磁性粒子粉末を用いた異方性磁石、ボンド磁石、圧粉磁石を提供する。
【解決手段】 メスバウアースペクトルよりFe16化合物相が80%以上の割合で構成される強磁性粒子粉末であり、該強磁性粒子は粒子外殻にFeOが存在するとともにFeOの膜厚が5nm以下である強磁性粒子粉末は、平均長軸径が40〜5000nm、アスペクト比(長軸径/短軸径)が1〜200の酸化鉄又はオキシ水酸化鉄を出発原料として用い、凝集粒子の分散処理を行い、次いで、メッシュを通した鉄化合物粒子粉末を160〜420℃にて水素還元し、130〜170℃にて窒化処理して得ることができる。 (もっと読む)


【課題】希少資源である重希土類元素を使用せずに磁性材料の特性を改善することが課題である。
【解決手段】希土類鉄系結晶粒と鉄コバルト合金結晶粒の間にフッ素含有粒界相を形成し、希土類元素が偏在化した希土類鉄系結晶粒と鉄コバルト合金結晶粒には磁気的な結合を発現させることにより高エネルギー積を実現させた。高い飽和磁束密度を有し、保磁力が10kOe以上かつキュリー点が600K以上の焼結磁石は、鉄コバルト合金結晶粒を焼結磁石全体に対して0.1重量%から90重量%の範囲の重量にした場合に達成可能である。 (もっと読む)


【課題】 高い表面抵抗値と高い透磁率を同時に有する電磁干渉抑制体の製造方法を提供すること。
【解決手段】 Fe−Si−Al合金からなる扁平状の軟磁性粉末11を熱処理した後、有機結合剤13中に分散して混合する工程を有し、前記熱処理は不活性気体に酸素を混合した混合気体中に前記軟磁性粉末11を配置して行われる熱処理であって、前記不活性気体中に前記軟磁性粉末11を配置して前記熱処理と同一の温度および同一の時間の熱処理を行ったときに得られる前記軟磁性粉末11の磁化の大きさをMsとするとき、前記混合気体中に前記軟磁性粉末11を配置して行われる熱処理によって得られる前記軟磁性粉末11の磁化の大きさがMs+ΔMs、但しΔMs=0.1〜10emu/gとなるように前記混合気体の酸素分圧の値が設定される。 (もっと読む)


【課題】電気電子機器やロボットなどの駆動源として利用される微小な回転電気機械のトルクを向上させる。
【解決手段】外部磁界Hexに対するトルク勾配dT/dHexは、試料を膜またはフレーク状粉末としたとき、それらの寸法比L/Dの原点をゼロとした一次関数となる。面内方向磁化の場合、フレーク状粉末よりも膜のトルク勾配dT/dHexの方が、寸法比L/Dの依存性が強い。これは、フレーク状粉末よりも膜のパーミアンスが高く、結果として反磁界が小さくなるために試料の寸法比L/Dの影響を受けにくい。両者のトルク勾配dT/dHexの比から本発明の積層磁石膜可動子を用いた回転電気機械のトルク定数は、355μm以下、厚さ45μmのフレーク状粉末の場合に比べて1.13倍となる。 (もっと読む)


【課題】高い磁気異方性を有し、優れた磁気特性を有する異方性交換スプリング磁石を提供する。
【解決手段】R14B型金属間化合物(RはNdを含む希土類元素を示し、TはFe又はCoからなる元素を示す。)からなるR−T−B相12と、α−Fe、α−Fe固溶体、α−Co、α−Co固溶体、及びα’−FeCo金属間化合物から選ばれる少なくとも一つからなるFe系相14と、銀、銀を含む固溶体、銀を含む金属間化合物、及び銀を含む非晶質から選ばれる少なくとも一つからなる銀リッチ相16と、を含有する異方性交換スプリング磁石10。 (もっと読む)


【課題】優れた着磁特性を有するR−T−B系永久磁石を提供する。
【解決手段】粉砕されたR−T−B系磁石の微粉末に対して、M−(OR)(式中、MはAl、Cu、Zr、Nb、Hf、Coの内、少なくとも一種を含む。Rは炭素数2〜6のアルキル基のいずれかであり、直鎖でも分枝でも良い。xは任意の整数である。)で示される有機金属化合物が添加された有機金属化合物溶液を加え、磁石の粒子表面に対して均一に有機金属化合物を付着させる。その後、圧粉成形した成形体を水素雰囲気において200℃〜900℃で数時間保持することにより水素中仮焼処理を行う。その後、800℃〜1180℃で焼成を行うことによって永久磁石1を製造する。 (もっと読む)


【課題】従来と同等の耐候性レベルを維持しながら、粒子体積の割に飽和磁化σsが大きい、高記録密度の塗布型磁気記録媒体に適した金属磁性粉末を提供する。
【解決手段】FeまたはFeとCoを主成分とする金属磁性相および酸化膜を有する粒子からなる粉末であって、その粉末粒子の平均長軸長が10〜50nm、酸化膜を含んだ平均粒子体積が5000nm3以下であり、粉末粒子中に含まれる各元素の含有量(原子%)の値を用いて算出される(R+Al+Si)/(Fe+Co)原子比が20%以下である磁気記録媒体用金属磁性粉末。ただし、Rは希土類元素(Yも希土類元素として扱う)である。この金属磁性粉末は錯化剤と還元剤を使用して焼成後に非磁性成分を溶出処理することにより得られる。 (もっと読む)


1 - 20 / 68