説明

Fターム[5F033QQ58]の内容

Fターム[5F033QQ58]に分類される特許

121 - 140 / 558


【課題】配線層に銅配線を使用する半導体装置において、半導体基板の裏面に付着した銅原子が半導体基板の裏面から内部へと拡散することを抑制し、半導体基板の主面に形成されているMISFETなどの半導体素子の特性劣化を抑制できる技術を提供する。
【解決手段】半導体基板1Sの主面に形成される銅拡散防止膜を銅拡散防止膜DCF1aとし、半導体基板1Sの裏面に形成される銅拡散防止膜を銅拡散防止膜DCF1bとする。本実施の形態1の特徴は、半導体基板1Sの裏面に銅拡散防止膜DCF1bを形成する点にある。このように、銅配線の形成工程の前に、半導体基板1Sの裏面に銅拡散防止膜DCF1bを形成することにより、半導体基板1Sの裏面から銅原子(銅化合物を含む)が拡散することを防止できる。 (もっと読む)


【課題】絶縁膜上とホール内に形成したカーボンナノチューブを絶縁膜に損傷を与えることなく絶縁膜上から除去すること。
【解決手段】配線15a上方に絶縁膜17、18を形成し、絶縁膜17、18をパターニングして配線15aに達するホール17aを形成し、ホール17a内と絶縁膜17、18上面にカーボンナノチューブ22を形成し、カーボンナノチューブ22の層の上に第2絶縁膜23を形成し、第2絶縁膜23をエッチングすることによりカーボンナノチューブ22を露出するとともに、カーボンナノチューブ22の層の凹部に第2絶縁膜23を残し、カーボンナノチューブ22をエッチングしてカーボンナノチューブ22の上端の位置を揃え、さらにカーボンナノチューブ22上の第2絶縁膜23をエッチングし、カーボンナノチューブ22をエッチングして絶縁膜17上面から除去するとともにホール17a内に残す工程を含む。 (もっと読む)


【課題】静電気放電保護装置及び方法を提供する。
【解決手段】本発明の実施例は、静電気放電(ESD)保護装置、及び、ESD保護装置を形成する方法に関する。一実施例は、ESD保護装置で、基板に配置されたpウェルと、基板に配置されたnウェルと、基板中のpウェルとnウェルの間に配置された高電圧nウェル(HVNW)と、pウェルに配置されたソースn+領域と、nウェルに配置された複数のドレインn+領域と、からなる。 (もっと読む)


【課題】不純物層が浅く形成された場合にも接合リーク電流の増大を抑制できるようにすると共に、コンタクトホール形成時に位置合わせずれが生じた場合にもコンタクト抵抗の上昇を抑制できるようにする。
【解決手段】基板100上に素子分離領域102及び不純物層103が互いに隣接するように形成されている。不純物層103上にシリサイド層106Bが形成されており、シリサイド層106B上に形成されたコンタクト109が形成されている。不純物層103とシリサイド層106Bとの界面は、素子分離領域102の上面よりも低く、シリサイド層106Bは素子分離領域102の上部コーナーを覆っている。 (もっと読む)


【課題】集積度が高く低ノイズで高速な半導体装置を提供する。
【解決手段】半導体装置の製造方法は、第1導電型領域と第2導電型領域とに対して共通のコンタクトホールを形成するホール形成工程と、前記第1導電型領域および前記第2導電型領域の少なくとも一方に対して不純物を注入する注入工程と、前記コンタクトホールに導電材料を充填してシェアードコンタクトプラグを形成するプラグ形成工程とを含む。前記注入工程では、前記第1導電型領域と前記シェアードコンタクトプラグとがオーミック接触し、かつ前記第2導電型領域と前記シェアードコンタクトプラグとがオーミック接触するように、前記第1導電型領域および前記第2導電型領域の少なくとも一方に対して不純物を注入する。 (もっと読む)


【課題】半導体装置の製造方法において歩留まりを向上させること。
【解決手段】シリコン基板30の上方に金属からなる第1の配線66を形成する工程と、第1の配線66の上に層間絶縁膜69を形成する工程と、第1の配線66の表面が露出する開口69aを層間絶縁膜69に形成する工程と、開口69aの内面及び層間絶縁膜69の表面に、上記金属の拡散を抑制するバリアメタル膜72を形成する工程と、バリアメタル膜72上に第1の導電膜73を形成する工程と、第1の導電膜73の表面を化学機械研磨法により研磨し、バリアメタル膜72の表面を露出させる工程と、開口69aの内の第1の導電膜73上及びバリアメタル膜72上に、第2の導電膜80を形成する工程と、第2の導電膜80を、開口69aよりも拡大した領域に残して選択的に除去し、第2の配線80aを形成する工程とを有する半導体装置の製造方法による。 (もっと読む)


【課題】高融点バリアメタル層を形成すること無く、Si膜又はSiを主成分とする膜と良好なコンタクト特性を実現するAl合金膜を提供する。
【解決手段】半導体デバイス(TFT)は、チャネル部11を形成する様にSi半導体膜7上に配設された被酸化のオーミック低抵抗Si膜8と、オーミック低抵抗Si膜8と直接に接続し、且つ、接続界面近傍に、少なくともNi原子、N原子及びO原子を含むアルミニウム合金膜から成る、ソース電極9及びドレイン電極10とを有する。 (もっと読む)


【課題】酸化物半導体を用いた薄膜トランジスタにおいて、電界効果移動度を向上させることを課題の一とする。また、薄膜トランジスタの電界効果移動度を向上させても、オフ電流の増大を抑制することを課題の一とする。
【解決手段】酸化物半導体層を用いた薄膜トランジスタにおいて、酸化物半導体層とゲート絶縁層の間に、該酸化物半導体層より導電率が高い酸化物クラスターを形成することによって、該薄膜トランジスタの電界効果移動度を向上させ、且つオフ電流の増大を抑制することができる。 (もっと読む)


【課題】半導体装置の結晶欠陥発生を抑制することができる半導体装置の製造方法を提供する。
【解決手段】ウエハ上にSTI用のトレンチを形成し、そのトレンチに絶縁膜を埋め込む。次に、ウエハ表面に酸素を導入する。酸素導入は、酸素100%雰囲気下で、1100℃、60秒間、ウエハ表面にRTO(Rapid Thermal Oxidation)を行う。その後、高温アニールを行う。SRAM製造プロセスにおいて、転位が発生するおそれのある高温アニール工程とソース/ドレイン部のイオン注入工程の前に酸素導入を行うため、ウエハの結晶強度を高めることができ、アニール工程やイオン注入工程によって発生する転位を抑えることができる。 (もっと読む)


【課題】ゲルマニウムを高濃度に含む界面を形成することができ、従来に比べてコンタクト抵抗を低下させることのできる半導体装置の製造方法及び半導体装置を提供する。
【解決手段】p型拡散層5が形成されたシリコン基板1上に層間絶縁膜7を形成する。次に、層間絶縁膜7に、シリコン基板1のp型拡散層5が形成された部位に達するコンタクトホール10を形成する。次に、コンタクトホール10の底部にあるシリコン基板1に、ホウ素とゲルマニウムを含むクラスターイオンビーム20を照射して、シリコン基板1中にホウ素とゲルマニウムとを含むシリコン層11を形成する。次に、ホウ素とゲルマニウムを含むクラスターイオンビームを照射20して、ホウ素とゲルマニウムを含む層12をシリコン基板1の表面よりも上に形成する。 (もっと読む)


【課題】高アスペクト比を有するプラグを充填する方法を提供する。
【解決手段】高アスペクト比を有するプラグを充填する本発明の方法においては、核形成層を、バイアの側壁上ではなく、バイアの底に形成する。プラグ充填はバイアの底からトップへの方向であり、側壁から内側へではない。得られるプラグは、無ボイドであり、継ぎ目無しである。 (もっと読む)


【課題】平坦性の向上により、TFTの移動度を向上させ、TFTのオフ電流を低減する

【解決手段】基板上に非晶質構造の半導体膜を形成する工程と、前記半導体膜上に結晶化
を促進する金属元素を添加する工程と、加熱処理を行って、前記半導体膜を結晶構造の半
導体膜とする工程と、前記結晶構造の半導体膜に第1のレーザー光を照射する工程と、前
記結晶構造の半導体膜に第2のレーザー光を照射する工程とを有する。レーザー光を照射
する工程を2回設けることにより、結晶構造の半導体膜の平坦化を向上させることができ
る。その結果、TFTの移動度を向上させ、TFTのオフ電流を低減させることができる
(もっと読む)


【課題】容易に製造することができ、トランジスタの性能を向上させることができる半導体装置及びその製造方法を提供する。
【解決手段】半導体基板1上にゲート絶縁膜2及びゲート電極3が形成されている。半導体基板1の表面の、平面視でゲート電極3を挟む位置に2個の不純物拡散層4が形成されている。2個の不純物拡散層4の表面に、ゲート絶縁膜2と半導体基板1との界面より低くなった掘り込み部6が設けられている。更に、半導体基板1のゲート絶縁膜2下の領域(チャネル)に応力を付加する応力付加膜が、少なくとも掘り込み部6内に位置している。 (もっと読む)


【課題】キャパシタ誘電体膜の劣化を防止しながら、金属配線間を絶縁膜で所望に埋め込むことができる半導体装置の製造方法を提供すること。
【解決手段】シリコン基板(半導体基板)1の上方に下地絶縁膜9を形成する工程と、キャパシタQ1、Q2を下地絶縁膜9の上に形成する工程と、キャパシタQ1、Q2を覆う第1層間絶縁膜68を形成する工程と、第1、第2配線溝30、33と、該配線溝30、33の底部から下に延びる第1、第2コンタクトホール31、34とを第1層間絶縁膜68に形成する工程と、第1、第2配線溝30、33と第1、第2コンタクトホール31、34とに第1拡散防止膜35と第1銅膜36(第1導電体)とを埋め込む工程と、水素を含まない還元性ガス中において第1銅膜36をアニールする工程とを有することを特徴とする半導体装置の製造方法による。 (もっと読む)


【課題】酸素ガスを主に含有したガスでエッチングを行う必要がある金属材料を用いてピラー型電極を形成する際に、ピラー型電極のアスペクト比が高くなると製造が困難になるという課題があった。
【解決手段】層間絶縁膜上に第1〜第6の絶縁膜を積層した後、第1のフォトレジスト膜を形成する工程と、前記第1のフォトレジスト膜をマスクとして第1の溝部を形成する工程と、前記第1の溝部を充填するように電極材料を堆積する工程と、前記第4の絶縁膜上に第7〜第9の絶縁膜を形成した後、第2のフォトレジスト膜を形成する工程と、前記第2のフォトレジスト膜をマスクとして第2の溝部を形成すると共に、前記電極材料をピラー型に残存させる工程と、前記第8、前記第7、前記第4および前記第2の絶縁膜を除去して、前記電極材料からなるピラー型電極を露出する工程と、を有する半導体装置101の製造方法を用いることにより、上記課題を解決できる。 (もっと読む)


【課題】SOI(セミコンダクタ・オン・インシュレータ)基板内の底部半導体層からの半導体デバイスについて強化された信号分離を可能とする半導体構造、これを製造する方法、およびこれを操作する方法を提供する。
【解決手段】底部半導体層10と反対の導電性タイプを有するドープ接点領域18は底部半導体層10内の埋め込み絶縁体層20の下に設ける。少なくとも1つの導電ビア構造47,77は、相互接続レベル金属ライン94から、中間工程(MOL)誘電体層80、最上部半導体層30内の浅いトレンチ分離構造33、および埋め込み絶縁体層20を通り、ドープ接点領域18まで延びる構造とする。 (もっと読む)


【課題】トランジスタのリーク電流の低減。
【解決手段】半導体材料の表面に沿って互いに隣接する複数の電気素子要素と、複数の電気素子要素を覆う、シリコンを含まない下層保護絶縁膜と、下層保護絶縁膜の上に配置され、シリコンを含む上層保護絶縁膜と、を備える半導体装置が提供される。上記半導体装置において、複数の電気素子要素の少なくとも一つは、シリサイド化される金属を含有でき、下層保護絶縁膜は、電気素子要素に含有される金属と上層保護絶縁膜に含有されるシリコンとの接触を阻害できる。下層保護絶縁膜は、比誘電率が10以上の高誘電体層を有してよい。上層保護絶縁膜は、シリコンおよび窒素を含有することができる。 (もっと読む)


【課題】ゲート電極とのコンタクトのためのコンタクトホールの形成時に、ゲート電極が深く掘り下げられることを防止できる半導体装置を提供すること。
【解決手段】ゲートトレンチ6を有するエピタキシャル層3に、ボディ領域5、ドレイン領域4、ソース領域9およびボディコンタクト領域10を形成する。ゲートトレンチ6には、ゲート電極8を埋設する。エピタキシャル層3には、層間絶縁膜11を積層する。ゲート電極8と層間絶縁膜11との間には、エピタキシャル層3とはエッチングレートの異なる材料からなるエッチングストッパ層14を介在させる。そして、エッチングにより、ゲート電極8およびボディコンタクト領域10それぞれとのコンタクトのための、ゲートコンタクトホール13およびソースコンタクトホール15を同時に形成する。ゲートコンタクトホール13は、平面視でエッチングストッパ層14と重なるように形成する。 (もっと読む)


【課題】加熱による不具合の発生を回避した半導体装置の製造方法を提供する。
【解決手段】本発明に係る半導体装置1の製造方法は、表面に酸化膜、ゲートパターンおよび不純物イオン注入部を有し所定の深さに水素イオン注入部41が形成されているSi基板を用いてSi薄膜トランジスタを形成しており、水素イオン注入部41にマイクロ波M1を照射して水素イオン注入部41を熱処理する照射工程と、照射工程の後、水素イオン注入部41においてSi基板を劈開剥離して、酸化膜、ゲートパターンおよび不純物イオン注入部を有するSi薄膜を分離する剥離工程と、Si薄膜を絶縁基板上に接合する接合工程とを含む。 (もっと読む)


【課題】配線層に新たな機能を有する素子を設けた半導体装置を提供する。
【解決手段】半導体基板上に形成された第1配線層150、及び半導体素子200を備える。第1配線層150は、絶縁層156と、絶縁層156の表面に埋め込まれた第1配線154とを備える。半導体素子200は、半導体層220、ゲート絶縁膜160、及びゲート電極210を備える。半導体層220は、第1配線層150上に位置する。ゲート絶縁膜160は、半導体層220の上又は下に位置する。ゲート電極210は、ゲート絶縁膜160を介して半導体層220の反対側に位置する。 (もっと読む)


121 - 140 / 558