説明

Fターム[5F048BB13]の内容

MOSIC、バイポーラ・MOSIC (97,815) | ゲート (19,021) | 多層(2層)ゲート (2,461) | 3層以上 (480)

Fターム[5F048BB13]に分類される特許

301 - 320 / 480


【課題】高速動作または低消費電力動作が可能な半導体装置を提供することを目的とする。
【解決手段】直列接続されたn型MOSトランジスタ及びp型MOSトランジスタと、前記n型MOSトランジスタと前記p型MOSトランジスタのチャネルの上に絶縁膜を介して延在した第1ゲートと、を備え、前記第1ゲートに光を与えると、電子及び正孔が生成し、前記電子及び正孔のいずれかが前記n型MOSトランジスタと前記p型MOSトランジスタの前記チャネルの上を走行することにより、前記n型MOSトランジスタと前記p型MOSトランジスタがスイッチングすることを特徴とする半導体装置を提供する。 (もっと読む)


【課題】適切な仕事関数を有する金属ゲート電極を備え、空乏化が抑制され、高速に動作可能な半導体装置およびその製造方法を提供する。
【解決手段】半導体装置は、半導体基板1001内に形成されたp型活性領域1003およびn型活性領域1004と、p型活性領域1003の上面に形成された第1のゲート絶縁膜と、第1のゲート絶縁膜上に形成され、金属元素を含む第1の電極形成膜1007を有する第1のゲート電極とを有する第1のMISFETと、n型活性領域1004の上面に形成された第2のゲート絶縁膜と、第2のゲート絶縁膜上に形成された第2の電極形成膜1010を有する第2のゲート電極とを有する第2のMISFETとを備えている。第2の電極形成膜1010は、第1の電極形成膜1007と同じ金属元素を含み、第1の電極形成膜1007よりも酸素の含有比が高い。 (もっと読む)


【課題】厚いゲート絶縁膜を形成することに起因する不具合を生じさせることなく、高耐圧デバイスにも適用可能なMOSトランジスタを備えた半導体装置を提供する。
【解決手段】ドレイン領域はN−ドレイン領域3dとN+ドレイン領域11dからなる二重拡散構造を備えている。ゲート電極は、ゲート絶縁膜7上に形成された第1ゲート電極9と、第1ゲート電極上9にゲート電極間絶縁膜11を介して形成された第2ゲート電極13とからなる。第2ゲート電極13にゲート配線13gが接続され、第1ゲート電極9にはゲート配線13gは接続されていない。ゲート絶縁膜7とN+ソース領域11sの間の半導体基板1表面にフィールド絶縁膜15配置されている。第1ゲート電極9のドレイン領域側の端部はフィールド絶縁膜15上に配置されている。第2ゲート電極13に印加されるゲート電圧はゲート絶縁膜7とゲート電極間絶縁膜11で分割される。 (もっと読む)


【課題】メモリセルと同一の基板上に、表面チャネル構造を有する高性能な高耐圧のpチャネル型MOSトランジスタが形成された半導体装置及びその製造方法を提供する。
【解決手段】積層ゲート型不揮発性メモリセルと、pチャネル型の第1のトランジスタとを有する半導体装置の製造方法であって、半導体基板上に前記第1のトランジスタのゲート絶縁膜を形成する工程と、前記半導体基板上に前記積層ゲート型不揮発性メモリセルのトンネル絶縁膜を形成する工程と、前記トンネル絶縁膜及び前記ゲート絶縁膜上に、n型の不純物を有する第1の導電層を形成する工程と、前記第1の導電層のうち、前記第1のトランジスタが形成される領域にp型の不純物をイオン注入し、前記第1の導電層の前記領域をp型の導電型にする工程とを備える。 (もっと読む)


【課題】被覆率としては従来と変わることなく、かつシリコン酸化膜との間で選択比の取れるシリコン窒化膜を有する半導体装置の製造方法を提供することにある。
【解決手段】半導体基板の主表面上に層間絶縁膜を形成する工程と、前記層間絶縁膜に前記半導体基板の主表面に達するコンタクトホールを形成する工程と、前記側壁にシリコン窒化膜が形成されたコンタクトホール内にTi層およびTiN層を有するバリアメタル層を形成する工程と、前記バリアメタル層が形成されたコンタクトホール内に導電層を形成する工程と、SiCl2n+2とNHとの混合ガス、またはSiCl2n−2−xとNHとの混合ガスを用い(nは2以上の自然数、xは2n+2以下の自然数)、700℃以下の成膜温度で、前記コンタクトホール内の導電層上に塩素を含有するシリコン窒化膜を形成する工程とを備えたことを特徴とする。 (もっと読む)


【課題】従来のCMISデバイスにおいては、価電子帯端近くの高い仕事関数を有する金属は、還元雰囲気アニール後に実効仕事関数が低下する。
【解決手段】半導体装置は、ソースとドレイン間のN型半導体層上に形成された金属元素を含むゲート絶縁膜と、ゲート絶縁膜上に形成され、膜厚が3nm以下であるカーボン層と、カーボン層上に形成されたゲート電極とを有し、ゲート電極/ゲート絶縁膜界面へのカーボン層による仕事関数の上昇効果により、還元雰囲気アニール耐性のない価電子帯端近くの高い仕事関数を有する金属を用いずとも、PMISFETに必要な実効仕事関数を得ることができ、低い閾値電圧を実現する。 (もっと読む)


【課題】シリコンから構成される導電パターンの下から上までの幅を均一化すること。
【解決手段】半導体基板1上に絶縁膜5を介して第1シリコン膜6を形成し、第1シリコン膜6に高濃度で一導電型不純物を導入し、第1シリコン膜6上に第2シリコン膜9を形成し、第2シリコン膜9上に所定パターンのマスク10mを形成した後、マスク10mから露出する領域で、第1シリコン膜6が露出しない深さまで第1条件により第2シリコン膜9をエッチングし、ついで第1条件に比べて半導体基板1の垂直方向へのエッチング成分の高い第2条件によって第2シリコン膜9の残りと第1シリコン膜6を絶縁膜5が露出しない深さまでエッチングし、さらに第2条件に比べて絶縁膜に対する第1シリコン膜6のエッチング選択比が大きな第3条件により第1シリコン膜6の残りをエッチングする工程とを有している。 (もっと読む)


【課題】微細化が進みゲート長のバリエーションが増大した場合にも、高駆動力MISFETを搭載した高性能デバイスを安定して実現できる簡便なFUSI化技術を提供する。
【解決手段】第1のゲート長(相対的に短いゲート長)を持つ第1のゲート電極105Aがフルシリサイド化されているのに対して、第2のゲート長(相対的に長いゲート長)を持つ第2のゲート電極105Bはフルシリサイド化されていない。 (もっと読む)


【課題】信頼性の高いフルシリサイドMOSFETおよびシリサイドMOSFETを従来よりも簡単に同一基板上に形成することができる半導体装置の製造方法を提供する。
【解決手段】半導体装置の製造方法は、半導体基板10上にゲート絶縁膜30を形成し、ゲート絶縁膜上に第1のゲート電極40および第2のゲート電極42を形成し、第1のゲート電極および第2のゲート電極上にマスク材料90を堆積し、第2のゲート電極を被覆したまま第1のゲート電極の上面を露出させるようにマスク材料をパターニングし、マスク材料を利用して第1のゲート電極の上部をエッチングし、マスク材料を除去し、第1のゲート電極および第2のゲート電極上に金属膜100を堆積し、第1のゲート電極の全部および第2のゲート電極の上部をシリサイド化することを具備する。 (もっと読む)


【課題】半導体装置およびその製造方法は高誘電体をゲート絶縁膜として有し、かつ、適正な閾値電圧を有する。
【解決手段】半導体装置は、半導体基板101と、半導体基板上に設けられ、シリコン酸化膜よりも比誘電率の高い高誘電体から成るゲート絶縁膜108,109と、ゲート絶縁膜上に設けられたアルミニウム層を含むN型FET用の第1のゲート電極110aと、ゲート絶縁膜上に設けられ、NiSi(X>Y)から成るP型FET用の第2のゲート電極110bとを備えている。 (もっと読む)


【課題】デュアルメタルゲートCMOS半導体素子を提供する。
【解決手段】金属窒化物層及び多結晶シリコンキャッピング層を備え、nMOS領域及びpMOS領域の金属窒化物層は同種物質で形成され、相異なる不純物含有量により相異なる仕事関数を持つデュアルメタルゲートCMOS半導体素子。同種の金属窒化物層によりメタルゲートを形成するので、工程が単純化して収率が向上すると共に、高性能のCMOS半導体素子を得ることができる。 (もっと読む)


【課題】MOSトランジスタのチャネル領域に高ストレス窒化膜を用いた場合に比してさらに大きな歪を与えることができる半導体装置を得ること。
【解決手段】シリコン基板10上の所定の位置に形成されるゲート絶縁膜12、ゲート電極13、ゲート絶縁膜12とゲート電極13の積層体の線幅方向両側側面に形成されるオフセットスペーサ膜15、およびオフセットスペーサ膜15の外側に形成されるサイドウォール膜16を有するゲート構造11と、ゲート構造11の線幅方向両側のシリコン基板10表面付近に形成される拡散層17と、を有する電界効果型トランジスタと、サイドウォール膜16と拡散層17上に形成される金属からなるバリア層20と、バリア層20上に形成される金属からなる応力印加層21と、を備え、バリア層20と応力印加層21は、オフセットスペーサ膜15とサイドウォール膜16によってゲート電極13と絶縁されている。 (もっと読む)


【課題】製造のばらつきを抑制することができるとともに適切なしきい値電圧を有するMISトランジスタを備えた半導体装置およびその製造方法を提供することを可能にする。
【解決手段】n型半導体基板1と、n型半導体基板に離間して形成されたp型の第1ソース・ドレイン領域5a、5bと、第1ソース領域と第1ドレイン領域との間のn型半導体基板上に形成された第1ゲート絶縁膜11と、第1ゲート絶縁膜上に形成され、Siに対するNiの組成比が1より大きな第1ニッケルシリサイド層15aと、この第1ニッケルシリサイド層上に形成され酸化物生成エネルギーの絶対値がSiのそれよりも大きな金属を含みかつSiに対する前記金属の組成比が前記Siに対するNiの組成比より小さいシリサイド層15bと、を含む第1ゲート電極15と、を有するpチャネルMISトランジスタと、を備えている。 (もっと読む)


【課題】ゲート電極の上方にコンタクトプラグを形成するときに、ゲート絶縁膜やゲート電極を構成する材料がエッチングされることが無く、高い信頼性を有するゲート電極を有する絶縁ゲート電界効果トランジスタを提供する。
【解決手段】絶縁ゲート電界効果トランジスタは、ソース/ドレイン領域13及びチャネル形成領域12、ゲート電極23、並びに、ゲート絶縁膜30を備えており、ゲート絶縁膜30は、ゲート電極23とチャネル形成領域12との間に形成されたゲート絶縁膜本体部30A、及び、ゲート絶縁膜本体部30Aからゲート電極23の側面部23Aの途中まで延在するゲート絶縁膜延在部30Bから構成されており、チャネル形成領域12の表面を基準としたゲート電極23の高さをHGate、ゲート絶縁膜延在部30Aの高さをHInsとしたとき、HIns<HGateを満足する。 (もっと読む)


【課題】溝ゲート構造を有するトランジスタとプレーナゲート構造を有するトランジスタを同一基板上に有する半導体装置であって、ゲート電極構造をポリメタルゲート構造とし、溝ゲートとプレーナゲートとを異なる導電型としたデュアルゲート構造としても、溝ゲートのポリシリコンに十分なドーパントを導入して空乏化を防止し、一方、プレーナゲートも同じ層厚のポリシリコンでも不純物イオンのゲート絶縁膜突抜けが起こらない新たな製造方法を提供する。
【解決手段】溝ゲート用のシリコン層にイオン注入し、その後一旦ポリシリコン化し、再度イオン注入によりポリシリコン層の表面をアモルファス化(層9,10)して、プレーナゲート用の異なる導電型のイオン注入を行う。 (もっと読む)


【課題】ゲート電極層の除去に伴うトランジスタの性能の低下を抑制すること。
【解決手段】第1及び第2導電型のトランジスタをそれぞれ基板上の第1及び第2領域に形成する半導体装置の製造方法であって、前記第1及び第2領域にわたってゲート絶縁膜と犠牲層とを堆積し、前記第1領域から前記犠牲層を除去し、前記第1領域に露出した前記ゲート絶縁膜上及び前記第2領域に残存する前記犠牲層上に第1のゲート電極層を堆積し、前記第2領域から前記第1のゲート電極層と前記犠牲層とを除去し、前記第2領域に露出した前記ゲート絶縁膜上に第2のゲート電極層を堆積し、前記ゲート絶縁膜と前記第1のゲート電極層とを含む前記第1導電型のトランジスタを形成し、前記ゲート絶縁膜と前記第2のゲート電極層とを含む前記第2導電型のトランジスタを形成することを特徴とする半導体装置の製造方法。 (もっと読む)


【課題】駆動回路領域においては、高速動作が可能で駆動電圧の低い薄膜トランジスタを、一方画素領域においては、高耐圧で信頼性の高い薄膜トランジスタを有する表示装置を提供することを目的とする。従って、低消費電力かつ高信頼性を付与された表示装置を提供することを目的とする。
【解決手段】絶縁表面を有する基板上に設けられた画素領域及び駆動回路領域を有し、画素領域及び駆動回路領域にそれぞれ薄膜トランジスタを有しており、駆動回路領域に設けられた薄膜トランジスタの半導体層はチャネル形成領域のみ局所的に薄膜化され、そのチャネル形成領域の膜厚は、画素領域に設けられた薄膜トランジスタの半導体層のチャネル形成領域の膜厚より薄い表示装置とする。 (もっと読む)


【課題】窒化シリコン膜の成膜工程において、ポリメタルゲートの一部を構成する高融点金属の酸化物による基板の汚染を低減する半導体集積回路装置の製造技術を提供する。
【解決手段】タングステン膜を含むゲート電極7A、7B、7C上に窒化シリコン膜11を形成する際、CVD装置のチャンバ内をタングステンの酸化物が還元される雰囲気にし、チャンバ内にアンモニアを供給し続けながら、ウエハ1を600℃以上の温度で昇温する。次に、チャンバ内にアンモニアとモノシランとを供給し、これらのガスを反応させることによって窒化シリコン膜11を堆積する。次に、モノシランの供給を止め、チャンバ内にアンモニアのみを供給し続けながらウエハ1を400℃まで降温した後、チャンバ内を窒素で置換し、ウエハをアンロードする。 (もっと読む)


【課題】微細化されても良好な品質を有するゲート絶縁膜を備え、信頼性が高く、高速に動作可能な半導体装置およびその製造方法を提供する。
【構成】半導体装置は、半導体基板1001内に形成されたp型活性領域1003およびn型活性領域1004と、p型活性領域1003の上面に形成されたゲート絶縁膜1006と、上部におけるLaの濃度がその他の部分のLaの濃度よりも大きい第1の電極形成膜1015を含む第1のゲート電極とを有するp型MISFETとを備えている。さらに、n型活性領域1004の上面に形成されたゲート絶縁膜1006と、上部におけるAlの濃度がその他の部分のAlの濃度よりも大きい第2の電極形成膜1014を含む第2のゲート電極とを有するn型MISFETとを備えている。 (もっと読む)


【課題】半導体基板とは格子定数の異なる半導体層からチャネル部に対して効果的に応力を印加することが可能でこれによりキャリア移動度の向上を図り高機能化の達成が可能な半導体装置を提供する。
【解決手段】半導体基板3上にゲート絶縁膜5を介して設けられたゲート電極7と、ゲート電極7の両脇において半導体基板3の表面を掘り下げた部分にエピタキシャル成長によって形成された半導体層(応力印加層)9とを備えた半導体装置1において、半導体層9は、半導体基板3とは格子定数の異なる層であり、ゲート絶縁膜5およびゲート電極7は、半導体層9間において半導体基板3の表面を掘り下げた部分を埋め込む状態で設けられている。半導体基板3の表面に対するゲート絶縁膜5の深さ位置d2は、半導体層9の深さ位置d1よりも浅いこととする。 (もっと読む)


301 - 320 / 480