説明

Fターム[5F048BB18]の内容

MOSIC、バイポーラ・MOSIC (97,815) | ゲート (19,021) | 閾値制御 (2,521) | 閾値電圧が異なる複数MOS (1,778) | 注入量、注入物質が異なるもの (323)

Fターム[5F048BB18]に分類される特許

61 - 80 / 323


幅広い電子デバイスのアレイ及びシステムにおける電力消費を低減する一式の新たな構造及び方法が提供される。これらの構造及び方法の一部は、大部分が、既存のバルクCMOSのプロセスフロー及び製造技術を再利用することで実現され、半導体産業及びより広いエレクトロニクス産業がコスト及びリスクを伴って代替技術へ切り替わることを回避可能にする。これらの構造及び方法の一部は、深空乏化チャネル(DDC)設計に関係し、CMOSベースのデバイスが従来のバルクCMOSと比較して低減されたσVTを有することと、チャネル領域にドーパントを有するFETの閾値電圧VTがより正確に設定されることとを可能にする。DDC設計はまた、従来のバルクCMOSトランジスタと比較して強いボディ効果を有することができ、それにより、DDCトランジスタにおける電力消費の有意義な動的制御が可能になる。
(もっと読む)


量子井戸トランジスタは、ゲルマニウムの量子井戸チャネル領域を有する。シリコンを含有したエッチング停止領域が、チャネル近くへのゲート誘電体の配置を容易にする。III−V族材料のバリア層がチャネルに歪みを付与する。チャネル領域の上及び下の傾斜シリコンゲルマニウム層によって性能が向上される。複数のゲート誘電体材料によって、high−k値のゲート誘電体の使用が可能になる。
(もっと読む)


【課題】駆動電流が大きくリーク電流の少ない低消費電力のMISトランジスタを有する半導体装置及びその製造方法を提供する。
【解決手段】チャネル領域を有する半導体基板と、チャネル領域上に形成されたゲート絶縁膜と、ゲート絶縁膜上に形成されたゲート電極と、半導体基板内にチャネル領域を挟むように配置されたソース拡散層及びドレイン拡散層と、ソース拡散層側の半導体基板内に形成された第1のポケット不純物層と、ドレイン拡散層側の半導体基板内に形成された第2のポケット不純物層とを有し、第1のポケット不純物層は、ソース拡散層のエクステンション不純物層の濃度ピーク位置よりも深い位置に濃度ピークを有しており、第2のポケット不純物層は、ドレイン拡散層のエクステンション不純物層の濃度ピーク位置よりも浅い位置に濃度ピークを有している。 (もっと読む)


【課題】pチャネルトランジスタ及びnチャネルトランジスタの閾値電圧を共に低減できるCMISトランジスタを有する半導体装置を提供する。
【解決手段】pチャネルトランジスタは、半導体基板100における第1の領域上に形成された第1のゲート構造150Aと、第1のゲート構造150Aの側壁上に形成された第1のスペーサ構造とを有する。nチャネルトランジスタは、半導体基板100における第2の領域上に形成された第2のゲート構造150Bと、第2のゲート構造150Bの側壁上に形成された第2のスペーサ構造とを有する。第1のスペーサ構造における第1のゲート構造150Aの側壁との接触部分の含有酸素濃度は、第2のスペーサ構造における第2のゲート構造150Bの側壁との接触部分の含有酸素濃度よりも高い。 (もっと読む)


幅広い電子デバイスのアレイ及びシステムにおける電力消費を低減する一式の新たな構造及び方法が提供される。これらの構造及び方法のうちの一部は、大部分が既存のバルクCMOSのプロセスフロー及び製造技術を再利用することで実現され、半導体産業及びより広いエレクトロニクス産業がコスト及びリスクを伴って代替技術へ切り替わることを回避可能にする。これらの構造及び方法のうちの一部は、深空乏化チャネル(DDC)設計に関係し、CMOSベースのデバイスが従来のバルクCMOSと比較して低減されたσVTを有することと、チャネル領域にドーパントを有するFETの閾値電圧VTがより一層正確に設定されることとを可能にする。DDC設計はまた、従来のバルクCMOSトランジスタと比較して強いボディ効果を有することができ、それにより、DDCトランジスタにおける電力消費の有意義な動的制御が可能になる。
(もっと読む)


【課題】p型MISトランジスタ及びn型MISトランジスタの特性を向上した相補型MISトランジスタを備えた半導体装置を容易に実現できるようにする。
【解決手段】半導体装置の製造方法は、p型半導体領域10A及びn型半導体領域10Bを有する半導体基板101の上に、高誘電率膜106、アルミニウムからなる第1のキャップ膜107及びハードマスク108を順次形成する。次に、第1のキャップ膜107及びハードマスク108におけるn型半導体領域10Bの上に形成された部分を除去する。その後、半導体基板101の上に、実効仕事関数を低下させる効果を有する元素を含む第2のキャップ膜109を形成する。 (もっと読む)


【課題】n型MISトランジスタとp型MISトランジスタとで異なる閾値電圧制御用金属が高誘電率ゲート絶縁膜に添加されたトランジスタ構造において、トランジスタ特性の変動を防止できるようにする。
【解決手段】第1の活性領域1a上から素子分離領域2上を経て第2の活性領域1b上まで、ゲート絶縁膜となる高誘電率膜6が形成されている。第1の活性領域1aに隣接する部分の素子分離領域2の上部には第1の切り欠き部2aが形成されている。第2の活性領域1bに隣接する部分の素子分離領域2の上部には第2の切り欠き部2bが形成されている。第2の切り欠き部2bは第1の切り欠き部2aよりも浅く形成されている。 (もっと読む)


【課題】
幅広い電子デバイスのアレイ及びシステムにおける電力消費を低減する一式の新たな構造及び方法が提供される。一部の構造及び方法は、大部分が、既存のバルクCMOSのプロセスフロー及び製造技術を再利用することで実現され、半導体産業及びより広いエレクトロニクス産業がコスト及びリスクを伴って代替技術へ切り替わることを回避可能にする。一部の構造及び方法は、深空乏化チャネル(DDC)設計に関係し、CMOSベースのデバイスが従来のバルクCMOSと比較して低減されたσVTを有することと、チャネル領域にドーパントを有するFETの閾値電圧VTがより正確に設定されることとを可能にする。DDC設計はまた、従来のバルクCMOSトランジスタと比較して強いボディ効果を有することができ、それにより、DDCトランジスタにおける電力消費の有意義な動的制御が可能になる。様々な効果を達成するようDDCを構成する手法が数多く存在し得る。
(もっと読む)


【課題】
電子デバイスにおける電力消費を低減するシステム及び方法が開示される。この構造及び方法は、大部分が、バルクCMOSのプロセスフロー及び製造技術を再利用することによって実現され得る。この構造及び方法は、深空乏化チャネル(DDC)設計に関係し、CMOSベースのデバイスが従来のバルクCMOSと比較して低減されたσVTを有することを可能にするとともに、チャネル領域にドーパントを有するFETの閾値電圧VTがより正確に設定されることを可能にする。DDC設計はまた、従来のバルクCMOSトランジスタと比較して強いボディ効果を有し、それにより、電力制御の有意義な動的制御が可能になる。
(もっと読む)


【課題】複数ゲートトランジスタの改良された構造、およびその製造プロセスの提供。
【解決手段】相補型金属酸化膜半導体(CMOS)デバイス100は、第1のパラメータを有する少なくとも2つの第1のゲート電極を備えたPMOSトランジスタと、上記第1のパラメータとは異なる第2のパラメータを有する少なくとも2つの第2のゲート電極を備えたNMOSトランジスタと、を有している。上記第1のパラメータおよび上記第2のパラメータは、上記PMOSおよびNMOSトランジスタの上記ゲート電極材料120の厚さ、またはドーパントプロファイルを含んでいる。上記少なくとも2つの第1のゲート電極および上記少なくとも2つの第2のゲート電極の上記第1および第2のパラメータは、それぞれ、上記PMOSおよびNMOSトランジスタの仕事関数を規定する。 (もっと読む)


【課題】 高誘電率ゲート絶縁膜を用い、PMOS、NMOSそれぞれに適した仕事関数を有するCMOSFETを有する半導体装置及びその製造方法を提供する。
【解決手段】 半導体基板の主面に素子分離領域によって、絶縁分離されたP型及びN型領域を形成する工程と、前記第P型及びN型領域上にシリコン酸化膜或いはシリコン酸窒化膜からなる第一の絶縁膜を形成する工程と、前記P型領域上の前記第一の絶縁膜上にランタン酸化膜を形成する工程と、前記P型領域上の前記ランタン酸化膜及び前記N型領域上の前記第一の絶縁膜上にハフニウム或いはジルコニウムを含む第二の絶縁膜を形成する工程と、前記第二の絶縁膜上にTiとするとx/y<1を満たすチタンナイトライド膜を形成する工程とを備えることを特徴とする半導体装置の製造方法。 (もっと読む)


【課題】高誘電体ゲート絶縁膜/メタルゲート電極のMOSトランジスタ構造において、メタルゲート電極側壁の酸化層を抑制し、トランジスタ駆動能力を改善する。
【解決手段】基板101上に、金属含有膜110を形成する工程(a)と、反応室内において金属含有膜にアンモニアラジカルを曝露する工程(b)と、反応室内に不活性ガスを供給し、工程(b)において生じたガスを排気する工程(c)と、工程(b)及び工程(c)を所定の回数繰り返した後に、大気曝露することなく、反応室内において金属含有膜110を覆うシリコン窒化膜100aを形成する工程(d)とを備える。 (もっと読む)


【課題】p型MISトランジスタのゲート絶縁膜の酸化膜換算膜厚の厚膜化を抑制しつつ、p型MISトランジスタの実効仕事関数を増加させて、低閾値電圧を有するn型,p型MISトランジスタを実現する。
【解決手段】半導体装置は、第1,第2のMISトランジスタnTr,pTrを備えている。第1のMISトランジスタnTrは、第1の活性領域10a上に形成され、第1の高誘電率膜14Xaを有する第1のゲート絶縁膜14Aと、第1のゲート電極18Aとを備えている。第2のMISトランジスタpTrは、第2の活性領域10b上に形成され、第2の高誘電率膜14xを有する第2のゲート絶縁膜14Bと、第2のゲート電極18Bとを備えている。第2の高誘電率膜14xは、第1の調整用金属を含む。第1の高誘電率膜14Xaは、第2の高誘電率膜14xよりも窒素濃度が高く、且つ、第1の調整用金属を含まない。 (もっと読む)


【課題】素子の特性や信頼性を向上させることが可能な半導体装置およびその製造方法を提供する。
【解決手段】Hfを含む高誘電率ゲート絶縁膜3上にゲート電極13、14を有する相補型電界効果型トランジスタにおいて、ゲート電極13、14の少なくともゲート絶縁膜3に接する部分は、Ni組成が40%を超えない結晶化したNiシリサイドを主成分とし、pチャネル上のゲート電極14に含まれるNiシリサイドとゲート絶縁膜3との界面にB、Al、Ga、In、Tlの中の少なくともひとつの元素を含み、且つ、nチャネル上のゲート電極13に含まれるNiシリサイドとゲート絶縁膜3との界面にN、P、As、Sb、Biの中の少なくともひとつの元素を含む半導体装置を提供する。 (もっと読む)


【課題】ゲート電極中に含まれる不純物の拡散を防止することができ、さらに、ゲート絶縁膜の信頼性及びホットキャリア耐性を向上させることができる半導体装置及びその製造方法を得る。
【解決手段】N型シリコン基板1上にゲート酸化膜36およびP+型ゲート電極35を形成する。P+型ゲート電極35の両側にソース/ドレイン領域6を形成する。ゲート酸化膜36およびP+型ゲート電極35中には窒素がドープされ、窒素ドーピング領域30が形成される。 (もっと読む)


【課題】容易に製造できる半導体装置を提供する。
【解決手段】半導体装置は、PMOSトランジスタのゲート電極1pの仕事関数値が、High-kゲート絶縁膜16(16a)、及び、High-kゲート絶縁膜16・酸化シリコン膜15界面へのAlの拡散により調整されており、NMOSトランジスタのゲート電極1nの仕事関数値が、High-kゲート絶縁膜16・金属ゲート膜19間に挿入された、数原子層程度のAl層18により調整されている構成を有する。 (もっと読む)


【課題】高誘電体材料を含むゲート絶縁膜とメタルゲート電極とを有する半導体装置の製造中にポリシリコンからなる残渣が素子分離領域上に生じる虞があり、不良の原因であった。
【解決手段】半導体基板10の第1の活性領域10a上には、高誘電体材料と第1の金属とを含有する第1のゲート絶縁膜13aと、下層導電膜15aと第1の導電膜18aと第1のシリコン膜19aとを有する第1のゲート電極30aとを備えた第1導電型の第1のトランジスタが形成されている。半導体基板10の第2の活性領域10b上には、高誘電体材料と第2の金属とを含有する第2のゲート絶縁膜13bと、第1の導電膜18aと同一の材料からなる第2の導電膜18bと第2のシリコン膜19bとを有する第2のゲート電極30bとを備えた第2導電型の第2のトランジスタが形成されている。 (もっと読む)


【課題】高誘電体絶縁膜及びメタルゲート電極を有する半導体装置において、高仕事関数を得ると共にNBTI信頼性劣化を低減する。
【解決手段】半導体装置100において、基板101上に、高誘電体ゲート絶縁膜109を介してメタルゲート電極110が形成されている。高誘電体ゲート絶縁膜109とメタルゲート電極110との界面におけるメタルゲート電極110の側に、ハロゲン元素が偏析している。 (もっと読む)


【課題】各々ばらつきの少ない異なる閾値電圧を有する複数のトランジスタを備えた半導体装置およびその製造方法を提供する。
【解決手段】本発明の一態様に係る半導体装置は、半導体基板2上に形成された高誘電率材料を母材料とするゲート絶縁膜11、ゲート電極12、およびゲート絶縁膜11に接するように形成されたSiNを主成分とする絶縁材料からなるオフセットスペーサ13、を有する低閾値電圧MISFET10と、半導体基板2上に形成された高誘電率材料からなるゲート絶縁膜21、ゲート電極22、およびゲート絶縁膜21に接するように形成されたSiNを主成分とする絶縁材料からなるオフセットスペーサ23、を有する高閾値電圧MISFET20と、を有し、オフセットスペーサ23は、オフセットスペーサ13よりも、単位体積当たりのSi−H結合とN−H結合の存在比、単位体積当たりのClの量、および単位体積当たりのHの量の少なくともいずれか1つが大きい。 (もっと読む)


【課題】簡易な手順で、高誘電率ゲート絶縁膜とメタルゲート電極とのゲートスタック構造を有する相補型トランジスタの閾値を調整する。
【解決手段】相補型トランジスタの第1導電型のトランジスタ(162)の閾値電圧を変化させる第1の調整用金属を第1導電型のトランジスタ(162)および第2導電型のトランジスタ(160)に同時に添加し、第2導電型のトランジスタ(160)のメタルゲート電極(110a)上から第1の調整用金属の拡散を抑制する拡散抑制元素を添加する。 (もっと読む)


61 - 80 / 323